/* * Copyright (c) 2023 deveritec GmbH * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT ti_tmag5273 #include "tmag5273.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(TMAG5273, CONFIG_SENSOR_LOG_LEVEL); #define CONV_FACTOR_MT_TO_GS 10 #define TMAG5273_CRC_DATA_BYTES 4 #define TMAG5273_CRC_I2C_SIZE COND_CODE_1(CONFIG_CRC, (1), (0)) /** * @brief size of the buffer to read out all result data from the sensor * * Since the register counting is zero-based, one byte needs to be added to get the correct size. * Also takes into account if CRC is enabled, which adds an additional byte for the CRC always * located after the last read result byte. */ #define TMAG5273_I2C_BUFFER_SIZE \ (TMAG5273_REG_RESULT_END - TMAG5273_REG_RESULT_BEGIN + 1 + TMAG5273_CRC_I2C_SIZE) /** static configuration data */ struct tmag5273_config { struct i2c_dt_spec i2c; uint8_t mag_channel; uint8_t axis; bool temperature; uint8_t meas_range; uint8_t temperature_coefficient; uint8_t angle_magnitude_axis; uint8_t ch_mag_gain_correction; uint8_t operation_mode; uint8_t averaging; bool trigger_conv_via_int; bool low_noise_mode; bool ignore_diag_fail; struct gpio_dt_spec int_gpio; #ifdef CONFIG_CRC bool crc_enabled; #endif }; struct tmag5273_data { uint8_t version; /** version as given by the sensor */ uint16_t conversion_time_us; /** time for one conversion */ int16_t x_sample; /** measured B-field @x-axis */ int16_t y_sample; /** measured B-field @y-axis */ int16_t z_sample; /** measured B-field @z-axis */ int16_t temperature_sample; /** measured temperature data */ uint16_t xyz_range; /** magnetic range for x/y/z-axis in mT */ int16_t angle_sample; /** measured angle in degree, if activated */ uint8_t magnitude_sample; /** Positive vector magnitude (can be >7 bit). */ }; /** * @brief resets the DEVICE_STATUS register * * @param dev driver handle * @retval see @ref i2c_reg_write_byte */ static int tmag5273_reset_device_status(const struct device *dev) { const struct tmag5273_config *drv_cfg = dev->config; return i2c_reg_write_byte_dt(&drv_cfg->i2c, TMAG5273_REG_DEVICE_STATUS, TMAG5273_RESET_DEVICE_STATUS); } /** * @brief checks for DIAG_FAIL errors and reads out the DEVICE_STATUS register if necessary * * @param[in] drv_cfg driver instance configuration * @param[out] device_status DEVICE_STATUS register if DIAG_FAIL is set * * @retval 0 on success * @retval "!= 0" on error * - \c -EIO on any set error device status bit * - see @ref i2c_reg_read_byte for error codes * * @note * If tmag5273_config.ignore_diag_fail is set * - \a device_status will be always set to \c 0, * - the function always returns \c 0. */ static int tmag5273_check_device_status(const struct tmag5273_config *drv_cfg, uint8_t *device_status) { int retval; if (drv_cfg->ignore_diag_fail) { *device_status = 0; return 0; } retval = i2c_reg_read_byte_dt(&drv_cfg->i2c, TMAG5273_REG_CONV_STATUS, device_status); if (retval < 0) { LOG_ERR("error reading CONV_STATUS %d", retval); return retval; } if ((*device_status & TMAG5273_DIAG_STATUS_MSK) != TMAG5273_DIAG_FAIL) { /* no error */ *device_status = 0; return 0; } retval = i2c_reg_read_byte_dt(&drv_cfg->i2c, TMAG5273_REG_DEVICE_STATUS, device_status); if (retval < 0) { LOG_ERR("error reading DEVICE_STATUS %d", retval); return retval; } if ((*device_status & TMAG5273_VCC_UV_ER_MSK) == TMAG5273_VCC_UV_ERR) { LOG_ERR("VCC under voltage detected"); } #ifdef CONFIG_CRC if (drv_cfg->crc_enabled && ((*device_status & TMAG5273_OTP_CRC_ER_MSK) == TMAG5273_OTP_CRC_ERR)) { LOG_ERR("OTP CRC error detected"); } #endif if ((*device_status & TMAG5273_INT_ER_MSK) == TMAG5273_INT_ERR) { LOG_ERR("INT pin error detected"); } if ((*device_status & TMAG5273_OSC_ER_MSK) == TMAG5273_OSC_ERR) { LOG_ERR("Oscillator error detected"); } return -EIO; } /** * @brief performs a trigger through the INT-pin * * @param drv_cfg driver instance configuration * * @retval 0 on success * @retval see @ref gpio_pin_set_dt */ static inline int tmag5273_dev_int_trigger(const struct tmag5273_config *drv_cfg) { int retval; retval = gpio_pin_configure_dt(&drv_cfg->int_gpio, GPIO_OUTPUT); if (retval < 0) { return retval; } retval = gpio_pin_set_dt(&drv_cfg->int_gpio, 1); if (retval < 0) { return retval; } retval = gpio_pin_set_dt(&drv_cfg->int_gpio, 0); if (retval < 0) { return retval; } retval = gpio_pin_configure_dt(&drv_cfg->int_gpio, GPIO_INPUT); if (retval < 0) { return retval; } return 0; } /** @brief returns the high measurement range based on the chip version */ static inline uint16_t tmag5273_range_high(uint8_t version) { switch (version) { case TMAG5273_VER_TMAG5273X1: return TMAG5273_MEAS_RANGE_HIGH_MT_VER1; case TMAG5273_VER_TMAG5273X2: return TMAG5273_MEAS_RANGE_HIGH_MT_VER2; case TMAG5273_VER_TMAG3001X1: return TMAG3001_MEAS_RANGE_HIGH_MT_VER1; case TMAG5273_VER_TMAG3001X2: return TMAG3001_MEAS_RANGE_HIGH_MT_VER2; default: return -ENODEV; } } /** @brief returns the low measurement range based on the chip version */ static inline uint16_t tmag5273_range_low(uint8_t version) { switch (version) { case TMAG5273_VER_TMAG5273X1: return TMAG5273_MEAS_RANGE_LOW_MT_VER1; case TMAG5273_VER_TMAG5273X2: return TMAG5273_MEAS_RANGE_LOW_MT_VER2; case TMAG5273_VER_TMAG3001X1: return TMAG3001_MEAS_RANGE_LOW_MT_VER1; case TMAG5273_VER_TMAG3001X2: return TMAG3001_MEAS_RANGE_LOW_MT_VER2; default: return -ENODEV; } } /** * @brief update the measurement range of the X/Y/Z-axis * * @param dev handle to the sensor * @param val value to be set * * @return see @ref i2c_reg_update_byte_dt */ static inline int tmag5273_attr_set_xyz_meas_range(const struct device *dev, const struct sensor_value *val) { const struct tmag5273_config *drv_cfg = dev->config; struct tmag5273_data *drv_data = dev->data; const uint16_t range_high = tmag5273_range_high(drv_data->version); const uint16_t range_low = tmag5273_range_low(drv_data->version); int retval; uint8_t regdata; uint16_t range; if (val->val1 >= range_high) { regdata = TMAG5273_XYZ_MEAS_RANGE_HIGH; range = range_high; } else { regdata = TMAG5273_XYZ_MEAS_RANGE_LOW; range = range_low; } retval = i2c_reg_update_byte_dt(&drv_cfg->i2c, TMAG5273_REG_SENSOR_CONFIG_2, TMAG5273_MEAS_RANGE_XYZ_MSK, regdata); if (retval < 0) { return retval; } drv_data->xyz_range = range; return 0; } /** * @brief returns the used measurement range of the X/Y/Z-axis * * @param dev handle to the sensor * @param val return value * * @return \c 0 on success * @return see @ref i2c_reg_read_byte_dt */ static inline int tmag5273_attr_get_xyz_meas_range(const struct device *dev, struct sensor_value *val) { const struct tmag5273_config *drv_cfg = dev->config; struct tmag5273_data *drv_data = dev->data; uint8_t regdata; int retval; retval = i2c_reg_read_byte_dt(&drv_cfg->i2c, TMAG5273_REG_SENSOR_CONFIG_2, ®data); if (retval < 0) { return retval; } if ((regdata & TMAG5273_MEAS_RANGE_XYZ_MSK) == TMAG5273_XYZ_MEAS_RANGE_HIGH) { val->val1 = tmag5273_range_high(drv_data->version); } else { val->val1 = tmag5273_range_low(drv_data->version); } val->val2 = 0; return 0; } /** * set the X/Y/Z angle & magnitude calculation mode * * @param dev handle to the sensor * @param val value to be set * * @return \c -ENOTSUP if unknown value * @return see @ref i2c_reg_update_byte_dt */ static inline int tmag5273_attr_set_xyz_calc(const struct device *dev, const struct sensor_value *val) { const struct tmag5273_config *drv_cfg = dev->config; uint8_t regdata; int retval; switch (val->val1) { case TMAG5273_ANGLE_CALC_NONE: regdata = TMAG5273_ANGLE_EN_NONE; break; case TMAG5273_ANGLE_CALC_XY: if (!(drv_cfg->axis & TMAG5273_MAG_CH_EN_X) || !(drv_cfg->axis & TMAG5273_MAG_CH_EN_Y)) { return -ENOTSUP; } regdata = TMAG5273_ANGLE_EN_XY; break; case TMAG5273_ANGLE_CALC_YZ: if (!(drv_cfg->axis & TMAG5273_MAG_CH_EN_Y) || !(drv_cfg->axis & TMAG5273_MAG_CH_EN_Z)) { return -ENOTSUP; } regdata = TMAG5273_ANGLE_EN_YZ; break; case TMAG5273_ANGLE_CALC_XZ: if (!(drv_cfg->axis & TMAG5273_MAG_CH_EN_X) || !(drv_cfg->axis & TMAG5273_MAG_CH_EN_Z)) { return -ENOTSUP; } regdata = TMAG5273_ANGLE_EN_XZ; break; default: LOG_ERR("unknown attribute value %d", val->val1); return -ENOTSUP; } retval = i2c_reg_update_byte_dt(&drv_cfg->i2c, TMAG5273_REG_SENSOR_CONFIG_2, TMAG5273_ANGLE_EN_MSK, regdata); if (retval < 0) { return retval; } return 0; } /** * returns the X/Y/Z angle & magnitude calculation mode * * @param dev handle to the sensor * @param val return value * * @return \c 0 on success * @return see @ref i2c_reg_read_byte_dt */ static inline int tmag5273_attr_get_xyz_calc(const struct device *dev, struct sensor_value *val) { const struct tmag5273_config *drv_cfg = dev->config; uint8_t regdata; int retval; retval = i2c_reg_read_byte_dt(&drv_cfg->i2c, TMAG5273_REG_SENSOR_CONFIG_2, ®data); if (retval < 0) { return retval; } switch (regdata & TMAG5273_ANGLE_EN_MSK) { case TMAG5273_ANGLE_EN_XY: val->val1 = TMAG5273_ANGLE_CALC_XY; break; case TMAG5273_ANGLE_EN_YZ: val->val1 = TMAG5273_ANGLE_CALC_YZ; break; case TMAG5273_ANGLE_EN_XZ: val->val1 = TMAG5273_ANGLE_CALC_XZ; break; case TMAG5273_ANGLE_EN_NONE: __fallthrough; default: val->val1 = TMAG5273_ANGLE_CALC_NONE; } val->val2 = 0; return 0; } /** @brief returns the number of bytes readable per block for i2c burst reads */ static inline uint8_t tmag5273_get_fetch_block_size(const struct tmag5273_config *drv_cfg, uint8_t remaining_bytes) { #ifdef CONFIG_CRC if (drv_cfg->crc_enabled && (remaining_bytes > TMAG5273_CRC_DATA_BYTES)) { return TMAG5273_CRC_DATA_BYTES; } #endif return remaining_bytes; } /** @brief returns the size of the CRC field if active */ static inline uint8_t tmag5273_get_crc_size(const struct tmag5273_config *drv_cfg) { #ifdef CONFIG_CRC if (drv_cfg->crc_enabled) { return TMAG5273_CRC_I2C_SIZE; } #else ARG_UNUSED(drv_cfg); #endif return 0; } static int tmag5273_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { CHECKIF(dev == NULL) { LOG_ERR("dev: NULL"); return -EINVAL; } CHECKIF(val == NULL) { LOG_ERR("val: NULL"); return -EINVAL; } if (chan != SENSOR_CHAN_MAGN_XYZ) { return -ENOTSUP; } const struct tmag5273_config *drv_cfg = dev->config; int retval; switch ((uint16_t)attr) { case SENSOR_ATTR_FULL_SCALE: if (drv_cfg->meas_range != TMAG5273_DT_AXIS_RANGE_RUNTIME) { return -ENOTSUP; } retval = tmag5273_attr_set_xyz_meas_range(dev, val); if (retval < 0) { return retval; } break; case TMAG5273_ATTR_ANGLE_MAG_AXIS: if (drv_cfg->angle_magnitude_axis != TMAG5273_DT_ANGLE_MAG_RUNTIME) { return -ENOTSUP; } retval = tmag5273_attr_set_xyz_calc(dev, val); if (retval < 0) { return retval; } break; default: LOG_ERR("unknown attribute %d", attr); return -ENOTSUP; } return 0; } static int tmag5273_attr_get(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, struct sensor_value *val) { CHECKIF(dev == NULL) { LOG_ERR("dev: NULL"); return -EINVAL; } CHECKIF(val == NULL) { LOG_ERR("val: NULL"); return -EINVAL; } if (chan != SENSOR_CHAN_MAGN_XYZ) { return -ENOTSUP; } const struct tmag5273_config *drv_cfg = dev->config; int retval; switch ((uint16_t)attr) { case SENSOR_ATTR_FULL_SCALE: if (drv_cfg->meas_range != TMAG5273_DT_AXIS_RANGE_RUNTIME) { return -ENOTSUP; } retval = tmag5273_attr_get_xyz_meas_range(dev, val); if (retval < 0) { return retval; } break; case TMAG5273_ATTR_ANGLE_MAG_AXIS: if (drv_cfg->angle_magnitude_axis != TMAG5273_DT_ANGLE_MAG_RUNTIME) { return -ENOTSUP; } retval = tmag5273_attr_get_xyz_calc(dev, val); if (retval < 0) { return retval; } break; default: LOG_ERR("unknown attribute %d", attr); return -ENOTSUP; } return 0; } static int tmag5273_sample_fetch(const struct device *dev, enum sensor_channel chan) { const struct tmag5273_config *drv_cfg = dev->config; struct tmag5273_data *drv_data = dev->data; int retval; uint8_t i2c_buffer[TMAG5273_I2C_BUFFER_SIZE] = {0}; /* trigger a conversion and wait until done if in standby mode */ if (drv_cfg->operation_mode == TMAG5273_DT_OPER_MODE_STANDBY) { if (drv_cfg->trigger_conv_via_int) { retval = tmag5273_dev_int_trigger(drv_cfg); if (retval < 0) { return retval; } } uint8_t conv_bit = TMAG5273_CONVERSION_START_BIT; while ((i2c_buffer[0] & TMAG5273_RESULT_STATUS_MSK) != TMAG5273_CONVERSION_COMPLETE) { retval = i2c_reg_read_byte_dt( &drv_cfg->i2c, TMAG5273_REG_CONV_STATUS | conv_bit, &i2c_buffer[0]); if (retval < 0) { LOG_ERR("error reading conversion state %d", retval); return retval; } conv_bit = 0; k_usleep(drv_data->conversion_time_us); } } /* read data */ uint8_t start_address, end_address; switch ((int)chan) { case SENSOR_CHAN_MAGN_X: if (!(drv_cfg->axis & TMAG5273_MAG_CH_EN_X)) { LOG_ERR("x-axis measurement deactivated"); return -ENOTSUP; } start_address = TMAG5273_REG_X_MSB_RESULT; end_address = TMAG5273_REG_X_LSB_RESULT; break; case SENSOR_CHAN_MAGN_Y: if (!(drv_cfg->axis & TMAG5273_MAG_CH_EN_Y)) { LOG_ERR("y-axis measurement deactivated"); return -ENOTSUP; } start_address = TMAG5273_REG_Y_MSB_RESULT; end_address = TMAG5273_REG_Y_LSB_RESULT; break; case SENSOR_CHAN_MAGN_Z: if (!(drv_cfg->axis & TMAG5273_MAG_CH_EN_Z)) { LOG_ERR("x-axis measurement deactivated"); return -ENOTSUP; } start_address = TMAG5273_REG_Z_MSB_RESULT; end_address = TMAG5273_REG_Z_LSB_RESULT; break; case SENSOR_CHAN_MAGN_XYZ: if (drv_cfg->axis == TMAG5273_MAG_CH_EN_NONE) { LOG_ERR("xyz-axis measurement deactivated"); return -ENOTSUP; } start_address = TMAG5273_REG_X_MSB_RESULT; end_address = TMAG5273_REG_Z_LSB_RESULT; break; case SENSOR_CHAN_DIE_TEMP: if (!drv_cfg->temperature) { LOG_ERR("temperature measurement deactivated"); return -ENOTSUP; } start_address = TMAG5273_REG_T_MSB_RESULT; end_address = TMAG5273_REG_T_LSB_RESULT; break; case SENSOR_CHAN_ROTATION: if (drv_cfg->angle_magnitude_axis == TMAG5273_ANGLE_CALC_NONE) { LOG_ERR("axis measurement deactivated"); return -ENOTSUP; } start_address = TMAG5273_REG_ANGLE_MSB_RESULT; end_address = TMAG5273_REG_ANGLE_LSB_RESULT; break; case TMAG5273_CHAN_MAGNITUDE: case TMAG5273_CHAN_MAGNITUDE_MSB: if (drv_cfg->angle_magnitude_axis == TMAG5273_ANGLE_CALC_NONE) { LOG_ERR("axis measurement deactivated"); return -ENOTSUP; } start_address = end_address = TMAG5273_REG_MAGNITUDE_RESULT; break; case TMAG5273_CHAN_ANGLE_MAGNITUDE: if (drv_cfg->angle_magnitude_axis == TMAG5273_ANGLE_CALC_NONE) { LOG_ERR("axis measurement deactivated"); return -ENOTSUP; } start_address = TMAG5273_REG_ANGLE_MSB_RESULT; end_address = TMAG5273_REG_MAGNITUDE_RESULT; break; case SENSOR_CHAN_ALL: start_address = TMAG5273_REG_RESULT_BEGIN; end_address = TMAG5273_REG_RESULT_END; break; default: LOG_ERR("unknown sensor channel %d", chan); return -EINVAL; } __ASSERT_NO_MSG(start_address >= TMAG5273_REG_RESULT_BEGIN); __ASSERT_NO_MSG(end_address <= TMAG5273_REG_RESULT_END); __ASSERT_NO_MSG(start_address <= end_address); uint32_t nb_bytes = end_address - start_address + 1; #ifdef CONFIG_CRC /* if CRC is enabled multiples of TMAG5273_CRC_DATA_BYTES need to be read */ if (drv_cfg->crc_enabled && ((nb_bytes % TMAG5273_CRC_DATA_BYTES) != 0)) { const uint8_t diff = TMAG5273_CRC_DATA_BYTES - (nb_bytes % TMAG5273_CRC_DATA_BYTES); if ((start_address - diff) >= TMAG5273_REG_RESULT_BEGIN) { start_address -= diff; } nb_bytes = (nb_bytes / TMAG5273_CRC_DATA_BYTES + 1) * TMAG5273_CRC_DATA_BYTES; } __ASSERT_NO_MSG((start_address + nb_bytes) <= (TMAG5273_REG_RESULT_END + 1)); #endif uint8_t offset = start_address - TMAG5273_REG_RESULT_BEGIN; const uint8_t crc_size = tmag5273_get_crc_size(drv_cfg); while (nb_bytes) { const uint8_t block_size = tmag5273_get_fetch_block_size(drv_cfg, nb_bytes); __ASSERT((offset + block_size + crc_size) <= TMAG5273_I2C_BUFFER_SIZE, "block_size would exceed available i2c buffer capacity"); __ASSERT(start_address <= end_address, "start_address for reading after end address"); /* Note: crc_size needs to be read additionally, since it is appended on the end */ retval = i2c_burst_read_dt(&drv_cfg->i2c, start_address, &i2c_buffer[offset], block_size + crc_size); if (retval < 0) { LOG_ERR("could not read result data %d", retval); return -EIO; } #ifdef CONFIG_CRC /* check data validity, if activated */ if (drv_cfg->crc_enabled) { const uint8_t crc = crc8_ccitt(0xFF, &i2c_buffer[offset], block_size); if (i2c_buffer[offset + block_size] != crc) { LOG_ERR("invalid CRC value: 0x%X (expected: 0x%X)", i2c_buffer[offset + block_size], crc); return -EIO; } } #endif __ASSERT(nb_bytes >= block_size, "overflow on nb_bytes"); nb_bytes -= block_size; offset += block_size; start_address += block_size; } retval = tmag5273_check_device_status( drv_cfg, &i2c_buffer[TMAG5273_REG_CONV_STATUS - TMAG5273_REG_RESULT_BEGIN]); if (retval < 0) { return retval; } bool all_channels = (chan == SENSOR_CHAN_ALL); bool all_xyz = all_channels || (chan == SENSOR_CHAN_MAGN_XYZ); bool all_angle_magnitude = all_channels || ((int)chan == TMAG5273_CHAN_ANGLE_MAGNITUDE); if (all_xyz || (chan == SENSOR_CHAN_MAGN_X)) { drv_data->x_sample = sys_get_be16( &i2c_buffer[TMAG5273_REG_X_MSB_RESULT - TMAG5273_REG_RESULT_BEGIN]); } if (all_xyz || (chan == SENSOR_CHAN_MAGN_Y)) { drv_data->y_sample = sys_get_be16( &i2c_buffer[TMAG5273_REG_Y_MSB_RESULT - TMAG5273_REG_RESULT_BEGIN]); } if (all_xyz || (chan == SENSOR_CHAN_MAGN_Z)) { drv_data->z_sample = sys_get_be16( &i2c_buffer[TMAG5273_REG_Z_MSB_RESULT - TMAG5273_REG_RESULT_BEGIN]); } if (all_channels || (chan == SENSOR_CHAN_DIE_TEMP)) { drv_data->temperature_sample = sys_get_be16( &i2c_buffer[TMAG5273_REG_T_MSB_RESULT - TMAG5273_REG_RESULT_BEGIN]); } if (all_angle_magnitude || (chan == SENSOR_CHAN_ROTATION)) { drv_data->angle_sample = sys_get_be16( &i2c_buffer[TMAG5273_REG_ANGLE_MSB_RESULT - TMAG5273_REG_RESULT_BEGIN]); } if (all_angle_magnitude || ((int)chan == TMAG5273_CHAN_MAGNITUDE) || ((int)chan == TMAG5273_CHAN_MAGNITUDE_MSB)) { drv_data->magnitude_sample = i2c_buffer[TMAG5273_REG_MAGNITUDE_RESULT - TMAG5273_REG_RESULT_BEGIN]; } return 0; } /** * @brief calculates the b-field value in G based on the sensor value * * The calculation follows the formula * @f[ B=\frac{-(D_{15} \cdot 2^{15}) + \sum_{i=0}^{14} D_i \cdot 2^i}{2^{16}} \cdot 2|B_R| @f] * where * - \em D denotes the bit of the input data, * - \em Br represents the magnetic range in mT * * After the calculation, the value is scaled to Gauss (1 G == 0.1 mT). * * @param[in] raw_value data read from the device * @param[in] range magnetic range of the selected axis (in mT) * @param[out] b_field holds the result data after the operation */ static inline void tmag5273_channel_b_field_convert(int64_t raw_value, const uint16_t range, struct sensor_value *b_field) { raw_value *= (range << 1) * CONV_FACTOR_MT_TO_GS; /* calc integer part in mT and scale to G */ b_field->val1 = raw_value / (1 << 16); /* calc remaining part (first mT digit + fractal part) and scale according to Zephyr. * Ensure that always positive. */ const int64_t raw_dec_part = (int64_t)b_field->val1 * (1 << 16); b_field->val2 = ((raw_value - raw_dec_part) * 1000000) / (1 << 16); } /** * @brief calculates the temperature value * * @param[in] raw_value data read from the device * @param[out] temperature holds the result data after the operation */ static inline void tmag5273_temperature_convert(int64_t raw_value, struct sensor_value *temperature) { const int64_t value = (TMAG5273_TEMPERATURE_T_SENS_T0 + ((raw_value - TMAG5273_TEMPERATURE_T_ADC_T0) / TMAG5273_TEMPERATURE_T_ADC_RES)) * 1000000; temperature->val1 = value / 1000000; temperature->val2 = value % 1000000; } /** * @brief calculates the angle value between two axis * * @param[in] raw_value data read from the device * @param[out] angle holds the result data after the operation */ static inline void tmag5273_angle_convert(int16_t raw_value, struct sensor_value *angle) { angle->val1 = (raw_value >> 4) & 0x1FF; angle->val2 = ((raw_value & 0xF) * 1000000) >> 1; } /** * @brief calculates the magnitude value in G between two axis * * Note that \c MAGNITUDE_RESULT represents the MSB of the calculation, * therefore it needs to be shifted. * * @param[in] raw_value data read from the device * @param[out] magnitude holds the result data after the operation */ static inline void tmag5273_magnitude_convert(uint8_t raw_value, const uint16_t range, struct sensor_value *magnitude) { tmag5273_channel_b_field_convert(raw_value << 8, range, magnitude); } static int tmag5273_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val) { CHECKIF(val == NULL) { LOG_ERR("val: NULL"); return -EINVAL; } const struct tmag5273_config *drv_cfg = dev->config; struct tmag5273_data *drv_data = dev->data; int8_t val_offset = 0; const bool all_mag_axis = (chan == SENSOR_CHAN_MAGN_XYZ) || (chan == SENSOR_CHAN_ALL); if ((drv_cfg->axis & TMAG5273_MAG_CH_EN_X) && (all_mag_axis || (chan == SENSOR_CHAN_MAGN_X))) { tmag5273_channel_b_field_convert(drv_data->x_sample, drv_data->xyz_range, val + val_offset); val_offset++; } if ((drv_cfg->axis & TMAG5273_MAG_CH_EN_Y) && (all_mag_axis || (chan == SENSOR_CHAN_MAGN_Y))) { tmag5273_channel_b_field_convert(drv_data->y_sample, drv_data->xyz_range, val + val_offset); val_offset++; } if ((drv_cfg->axis & TMAG5273_MAG_CH_EN_Z) && (all_mag_axis || (chan == SENSOR_CHAN_MAGN_Z))) { tmag5273_channel_b_field_convert(drv_data->z_sample, drv_data->xyz_range, val + val_offset); val_offset++; } if (drv_cfg->temperature && (chan == SENSOR_CHAN_DIE_TEMP)) { tmag5273_temperature_convert(drv_data->temperature_sample, val + val_offset); val_offset++; } if (drv_cfg->angle_magnitude_axis != TMAG5273_ANGLE_CALC_NONE) { const bool all_calc_ch = (TMAG5273_CHAN_ANGLE_MAGNITUDE == (uint16_t)chan); if (all_calc_ch || ((uint16_t)chan == SENSOR_CHAN_ROTATION)) { tmag5273_angle_convert(drv_data->angle_sample, val + val_offset); val_offset++; } if (all_calc_ch || ((uint16_t)chan == TMAG5273_CHAN_MAGNITUDE)) { tmag5273_magnitude_convert(drv_data->magnitude_sample, drv_data->xyz_range, val + val_offset); val_offset++; } if (all_calc_ch || (uint16_t)chan == TMAG5273_CHAN_MAGNITUDE_MSB) { val[val_offset].val1 = drv_data->magnitude_sample; val[val_offset].val2 = 0; val_offset++; } } if (val_offset == 0) { return -ENOTSUP; } return 0; } /** * @brief sets the \c DEVICE_CONFIG_1 and \c DEVICE_CONFIG_2 registers * * @param dev handle to the current device instance * * @retval 0 if everything was okay * @retval -EIO on communication errors */ static inline int tmag5273_init_device_config(const struct device *dev) { const struct tmag5273_config *drv_cfg = dev->config; struct tmag5273_data *drv_data = dev->data; int retval; uint8_t regdata; /* REG_DEVICE_CONFIG_1 */ regdata = 0; #ifdef CONFIG_CRC if (drv_cfg->crc_enabled) { regdata |= TMAG5273_CRC_ENABLE; } #endif switch (drv_cfg->temperature_coefficient) { case TMAG5273_DT_TEMP_COEFF_NDBFE: regdata |= TMAG5273_MAGNET_TEMP_COEFF_NDBFE; break; case TMAG5273_DT_TEMP_COEFF_CERAMIC: regdata |= TMAG5273_MAGNET_TEMP_COEFF_CERAMIC; break; case TMAG5273_DT_TEMP_COEFF_NONE: __fallthrough; default: regdata |= TMAG5273_MAGNET_TEMP_COEFF_NONE; break; } switch (drv_cfg->averaging) { case TMAG5273_DT_AVERAGING_2X: regdata |= TMAG5273_CONV_AVG_2; break; case TMAG5273_DT_AVERAGING_4X: regdata |= TMAG5273_CONV_AVG_4; break; case TMAG5273_DT_AVERAGING_8X: regdata |= TMAG5273_CONV_AVG_8; break; case TMAG5273_DT_AVERAGING_16X: regdata |= TMAG5273_CONV_AVG_16; break; case TMAG5273_DT_AVERAGING_32X: regdata |= TMAG5273_CONV_AVG_32; break; case TMAG5273_DT_AVERAGING_NONE: __fallthrough; default: regdata |= TMAG5273_CONV_AVG_1; break; } const int nb_captured_channels = ((drv_cfg->mag_channel >= TMAG5273_DT_AXIS_XYZ) ? 3 : POPCOUNT((drv_cfg->mag_channel & TMAG5273_DT_AXIS_XYZ))) + (int)drv_cfg->temperature; drv_data->conversion_time_us = TMAG5273_T_CONVERSION_US( (FIELD_GET(TMAG5273_CONV_AVB_MSK, regdata)), (nb_captured_channels)); regdata |= TMAG5273_I2C_READ_MODE_STANDARD; retval = i2c_reg_write_byte_dt(&drv_cfg->i2c, TMAG5273_REG_DEVICE_CONFIG_1, regdata); if (retval < 0) { LOG_ERR("error setting DEVICE_CONFIG_1 %d", retval); return -EIO; } /* REG_DEVICE_CONFIG_2 */ regdata = 0; if (drv_cfg->low_noise_mode) { regdata |= TMAG5273_LP_LOWNOISE; } if (drv_cfg->trigger_conv_via_int) { regdata |= TMAG5273_TRIGGER_MODE_INT; } if (drv_cfg->operation_mode == TMAG5273_DT_OPER_MODE_CONTINUOUS) { regdata |= TMAG5273_OPERATING_MODE_CONTINUOUS; } /* Note: I2C glitch filter enabled by default */ retval = i2c_reg_write_byte_dt(&drv_cfg->i2c, TMAG5273_REG_DEVICE_CONFIG_2, regdata); if (retval < 0) { LOG_ERR("error setting DEVICE_CONFIG_2 %d", retval); return -EIO; } return 0; } /** * @brief sets the \c SENSOR_CONFIG_1 and \c SENSOR_CONFIG_2 registers * * @param drv_cfg configuration of the TMAG5273 instance * * @retval 0 if everything was okay * @retval -EIO on communication errors */ static inline int tmag5273_init_sensor_settings(const struct tmag5273_config *drv_cfg, uint8_t version) { int retval; uint8_t regdata; /* REG_SENSOR_CONFIG_1 */ regdata = drv_cfg->mag_channel << TMAG5273_MAG_CH_EN_POS; retval = i2c_reg_write_byte_dt(&drv_cfg->i2c, TMAG5273_REG_SENSOR_CONFIG_1, regdata); if (retval < 0) { LOG_ERR("error setting SENSOR_CONFIG_1 %d", retval); return -EIO; } /* REG_SENSOR_CONFIG_2 */ regdata = 0; if (drv_cfg->ch_mag_gain_correction == TMAG5273_DT_CORRECTION_CH_2) { regdata |= TMAG5273_MAG_GAIN_CORRECTION_CH_2; } switch (drv_cfg->angle_magnitude_axis) { case TMAG5273_DT_ANGLE_MAG_XY: regdata |= TMAG5273_ANGLE_EN_XY; break; case TMAG5273_DT_ANGLE_MAG_YZ: regdata |= TMAG5273_ANGLE_EN_YZ; break; case TMAG5273_DT_ANGLE_MAG_XZ: regdata |= TMAG5273_ANGLE_EN_XZ; break; case TMAG5273_DT_ANGLE_MAG_RUNTIME: case TMAG5273_DT_ANGLE_MAG_NONE: __fallthrough; default: regdata |= TMAG5273_ANGLE_EN_POS; break; } if (drv_cfg->meas_range == TMAG5273_DT_AXIS_RANGE_LOW) { regdata |= TMAG5273_XYZ_MEAS_RANGE_LOW; } else { regdata |= TMAG5273_XYZ_MEAS_RANGE_HIGH; } retval = i2c_reg_write_byte_dt(&drv_cfg->i2c, TMAG5273_REG_SENSOR_CONFIG_2, regdata); if (retval < 0) { LOG_ERR("error setting SENSOR_CONFIG_2 %d", retval); return -EIO; } /* the 3001 Variant has REG_CONFIG_3 instead of REG_T_CONFIG. No need for temp enable. */ if (version == TMAG5273_VER_TMAG3001X1 || version == TMAG5273_VER_TMAG3001X2) { return 0; } /* REG_T_CONFIG */ regdata = 0; if (drv_cfg->temperature) { regdata |= TMAG5273_T_CH_EN_ENABLED; } retval = i2c_reg_write_byte_dt(&drv_cfg->i2c, TMAG5273_REG_T_CONFIG, regdata); if (retval < 0) { LOG_ERR("error setting SENSOR_CONFIG_2 %d", retval); return -EIO; } return 0; } /** * @brief initialize a TMAG5273 sensor * * @param dev handle to the device * * @retval 0 on success * @retval -EINVAL if bus label is invalid * @retval -EIO on communication errors */ static int tmag5273_init(const struct device *dev) { const struct tmag5273_config *drv_cfg = dev->config; struct tmag5273_data *drv_data = dev->data; int retval; uint8_t regdata; if (!i2c_is_ready_dt(&drv_cfg->i2c)) { LOG_ERR("could not get pointer to TMAG5273 I2C device"); return -ENODEV; } if (drv_cfg->trigger_conv_via_int) { if (!gpio_is_ready_dt(&drv_cfg->int_gpio)) { LOG_ERR("invalid int-gpio configuration"); return -ENODEV; } retval = gpio_pin_configure_dt(&drv_cfg->int_gpio, GPIO_INPUT); if (retval < 0) { LOG_ERR("cannot configure GPIO %d", retval); return -EINVAL; } } retval = i2c_reg_read_byte_dt(&drv_cfg->i2c, TMAG5273_REG_DEVICE_CONFIG_2, ®data); if (retval < 0) { LOG_ERR("could not read device config 2 register %d", retval); return -EIO; } LOG_DBG("operation mode: %d", (int)FIELD_GET(TMAG5273_OPERATING_MODE_MSK, regdata)); retval = i2c_reg_read_byte_dt(&drv_cfg->i2c, TMAG5273_REG_MANUFACTURER_ID_LSB, ®data); if (retval < 0) { return -EIO; } if (regdata != TMAG5273_MANUFACTURER_ID_LSB) { LOG_ERR("unexpected manufacturer id LSB 0x%X", regdata); return -EINVAL; } retval = i2c_reg_read_byte_dt(&drv_cfg->i2c, TMAG5273_REG_MANUFACTURER_ID_MSB, ®data); if (retval < 0) { LOG_ERR("could not read MSB of manufacturer id %d", retval); return -EIO; } if (regdata != TMAG5273_MANUFACTURER_ID_MSB) { LOG_ERR("unexpected manufacturer id MSB 0x%X", regdata); return -EINVAL; } (void)tmag5273_check_device_status(drv_cfg, ®data); retval = tmag5273_reset_device_status(dev); if (retval < 0) { LOG_ERR("could not reset DEVICE_STATUS register %d", retval); return -EIO; } retval = i2c_reg_read_byte_dt(&drv_cfg->i2c, TMAG5273_REG_DEVICE_ID, ®data); if (retval < 0) { LOG_ERR("could not read DEVICE_ID register %d", retval); return -EIO; } drv_data->version = regdata & TMAG5273_VER_MSK; /* magnetic measurement range based on version, apply correct one */ if (drv_cfg->meas_range == TMAG5273_DT_AXIS_RANGE_LOW) { drv_data->xyz_range = tmag5273_range_low(drv_data->version); } else { drv_data->xyz_range = tmag5273_range_high(drv_data->version); } regdata = TMAG5273_INT_MODE_NONE; if (!drv_cfg->trigger_conv_via_int) { regdata |= TMAG5273_INT_MASK_INTB_PIN_MASKED; } retval = i2c_reg_write_byte_dt(&drv_cfg->i2c, TMAG5273_REG_INT_CONFIG_1, regdata); if (retval < 0) { LOG_ERR("error deactivating interrupts %d", retval); return -EIO; } /* set settings */ retval = tmag5273_init_sensor_settings(drv_cfg, drv_data->version); if (retval < 0) { LOG_ERR("error setting sensor configuration %d", retval); return retval; } retval = tmag5273_init_device_config(dev); if (retval < 0) { LOG_ERR("error setting device configuration %d", retval); return retval; } return 0; } static DEVICE_API(sensor, tmag5273_driver_api) = { .attr_set = tmag5273_attr_set, .attr_get = tmag5273_attr_get, .sample_fetch = tmag5273_sample_fetch, .channel_get = tmag5273_channel_get, }; #define TMAG5273_DT_X_AXIS_BIT(axis_dts) \ ((((axis_dts & TMAG5273_DT_AXIS_X) == TMAG5273_DT_AXIS_X) || \ (axis_dts == TMAG5273_DT_AXIS_XYX) || (axis_dts == TMAG5273_DT_AXIS_YXY) || \ (axis_dts == TMAG5273_DT_AXIS_XZX)) \ ? TMAG5273_MAG_CH_EN_X \ : 0) #define TMAG5273_DT_Y_AXIS_BIT(axis_dts) \ ((((axis_dts & TMAG5273_DT_AXIS_Y) == TMAG5273_DT_AXIS_Y) || \ (axis_dts == TMAG5273_DT_AXIS_XYX) || (axis_dts == TMAG5273_DT_AXIS_YXY) || \ (axis_dts == TMAG5273_DT_AXIS_YZY)) \ ? TMAG5273_MAG_CH_EN_Y \ : 0) #define TMAG5273_DT_Z_AXIS_BIT(axis_dts) \ ((((axis_dts & TMAG5273_DT_AXIS_Z) == TMAG5273_DT_AXIS_Z) || \ (axis_dts == TMAG5273_DT_AXIS_YZY) || (axis_dts == TMAG5273_DT_AXIS_XZX)) \ ? TMAG5273_MAG_CH_EN_Z \ : 0) /** Instantiation macro */ #define TMAG5273_DEFINE(inst) \ BUILD_ASSERT(IS_ENABLED(CONFIG_CRC) || (DT_INST_PROP(inst, crc_enabled) == 0), \ "CRC support necessary"); \ BUILD_ASSERT(!DT_INST_PROP(inst, trigger_conversion_via_int) || \ DT_INST_NODE_HAS_PROP(inst, int_gpios), \ "trigger-conversion-via-int requires int-gpios to be defined"); \ static const struct tmag5273_config tmag5273_driver_cfg##inst = { \ .i2c = I2C_DT_SPEC_INST_GET(inst), \ .mag_channel = DT_INST_PROP(inst, axis), \ .axis = (TMAG5273_DT_X_AXIS_BIT(DT_INST_PROP(inst, axis)) | \ TMAG5273_DT_Y_AXIS_BIT(DT_INST_PROP(inst, axis)) | \ TMAG5273_DT_Z_AXIS_BIT(DT_INST_PROP(inst, axis))), \ .temperature = DT_INST_PROP(inst, temperature), \ .meas_range = DT_INST_PROP(inst, range), \ .temperature_coefficient = DT_INST_PROP(inst, temperature_coefficient), \ .angle_magnitude_axis = DT_INST_PROP(inst, angle_magnitude_axis), \ .ch_mag_gain_correction = DT_INST_PROP(inst, ch_mag_gain_correction), \ .operation_mode = DT_INST_PROP(inst, operation_mode), \ .averaging = DT_INST_PROP(inst, average_mode), \ .trigger_conv_via_int = DT_INST_PROP(inst, trigger_conversion_via_int), \ .low_noise_mode = DT_INST_PROP(inst, low_noise), \ .ignore_diag_fail = DT_INST_PROP(inst, ignore_diag_fail), \ .int_gpio = GPIO_DT_SPEC_INST_GET_OR(inst, int_gpios, {0}), \ IF_ENABLED(CONFIG_CRC, (.crc_enabled = DT_INST_PROP(inst, crc_enabled),))}; \ static struct tmag5273_data tmag5273_driver_data##inst; \ SENSOR_DEVICE_DT_INST_DEFINE(inst, tmag5273_init, NULL, &tmag5273_driver_data##inst, \ &tmag5273_driver_cfg##inst, POST_KERNEL, \ CONFIG_SENSOR_INIT_PRIORITY, &tmag5273_driver_api); DT_INST_FOREACH_STATUS_OKAY(TMAG5273_DEFINE)