/* * Copyright (c) 2021, Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT invensense_mpu9250 #include #include #include #include "mpu9250.h" #ifdef CONFIG_MPU9250_MAGN_EN #include "ak8963.h" #endif LOG_MODULE_REGISTER(MPU9250, CONFIG_SENSOR_LOG_LEVEL); #define MPU9250_REG_CHIP_ID 0x75 #define MPU9250_CHIP_ID 0x71 #define MPU9250_REG_SR_DIV 0x19 #define MPU9250_REG_CONFIG 0x1A #define MPU9250_GYRO_DLPF_MAX 7 #define MPU9250_REG_GYRO_CFG 0x1B #define MPU9250_GYRO_FS_SHIFT 3 #define MPU9250_GYRO_FS_MAX 3 #define MPU9250_REG_ACCEL_CFG 0x1C #define MPU9250_ACCEL_FS_SHIFT 3 #define MPU9250_ACCEL_FS_MAX 3 #define MPU9250_REG_ACCEL_CFG2 0x1D #define MPU9250_ACCEL_DLPF_MAX 7 #define MPU9250_REG_DATA_START 0x3B #define MPU0259_TEMP_SENSITIVITY 334 #define MPU9250_TEMP_OFFSET 21 #define MPU9250_REG_PWR_MGMT1 0x6B #define MPU9250_SLEEP_EN BIT(6) #ifdef CONFIG_MPU9250_MAGN_EN #define MPU9250_READ_BUF_SIZE 11 #else #define MPU9250_READ_BUF_SIZE 7 #endif /* see "Accelerometer Measurements" section from register map description */ static void mpu9250_convert_accel(struct sensor_value *val, int16_t raw_val, uint16_t sensitivity_shift) { int64_t conv_val; conv_val = ((int64_t)raw_val * SENSOR_G) >> sensitivity_shift; val->val1 = conv_val / 1000000; val->val2 = conv_val % 1000000; } /* see "Gyroscope Measurements" section from register map description */ static void mpu9250_convert_gyro(struct sensor_value *val, int16_t raw_val, uint16_t sensitivity_x10) { int64_t conv_val; conv_val = ((int64_t)raw_val * SENSOR_PI * 10) / (sensitivity_x10 * 180U); val->val1 = conv_val / 1000000; val->val2 = conv_val % 1000000; } /* see "Temperature Measurement" section from register map description */ static inline void mpu9250_convert_temp(struct sensor_value *val, int16_t raw_val) { /* Temp[*C] = (raw / sensitivity) + offset */ val->val1 = (raw_val / MPU0259_TEMP_SENSITIVITY) + MPU9250_TEMP_OFFSET; val->val2 = (((int64_t)(raw_val % MPU0259_TEMP_SENSITIVITY) * 1000000) / MPU0259_TEMP_SENSITIVITY); if (val->val2 < 0) { val->val1--; val->val2 += 1000000; } else if (val->val2 >= 1000000) { val->val1++; val->val2 -= 1000000; } } static int mpu9250_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val) { struct mpu9250_data *drv_data = dev->data; #ifdef CONFIG_MPU9250_MAGN_EN int ret; #endif switch (chan) { case SENSOR_CHAN_ACCEL_XYZ: mpu9250_convert_accel(val, drv_data->accel_x, drv_data->accel_sensitivity_shift); mpu9250_convert_accel(val + 1, drv_data->accel_y, drv_data->accel_sensitivity_shift); mpu9250_convert_accel(val + 2, drv_data->accel_z, drv_data->accel_sensitivity_shift); break; case SENSOR_CHAN_ACCEL_X: mpu9250_convert_accel(val, drv_data->accel_x, drv_data->accel_sensitivity_shift); break; case SENSOR_CHAN_ACCEL_Y: mpu9250_convert_accel(val, drv_data->accel_y, drv_data->accel_sensitivity_shift); break; case SENSOR_CHAN_ACCEL_Z: mpu9250_convert_accel(val, drv_data->accel_z, drv_data->accel_sensitivity_shift); break; case SENSOR_CHAN_GYRO_XYZ: mpu9250_convert_gyro(val, drv_data->gyro_x, drv_data->gyro_sensitivity_x10); mpu9250_convert_gyro(val + 1, drv_data->gyro_y, drv_data->gyro_sensitivity_x10); mpu9250_convert_gyro(val + 2, drv_data->gyro_z, drv_data->gyro_sensitivity_x10); break; case SENSOR_CHAN_GYRO_X: mpu9250_convert_gyro(val, drv_data->gyro_x, drv_data->gyro_sensitivity_x10); break; case SENSOR_CHAN_GYRO_Y: mpu9250_convert_gyro(val, drv_data->gyro_y, drv_data->gyro_sensitivity_x10); break; case SENSOR_CHAN_GYRO_Z: mpu9250_convert_gyro(val, drv_data->gyro_z, drv_data->gyro_sensitivity_x10); break; #ifdef CONFIG_MPU9250_MAGN_EN case SENSOR_CHAN_MAGN_XYZ: ret = ak8963_convert_magn(val, drv_data->magn_x, drv_data->magn_scale_x, drv_data->magn_st2); if (ret < 0) { return ret; } ret = ak8963_convert_magn(val + 1, drv_data->magn_y, drv_data->magn_scale_y, drv_data->magn_st2); if (ret < 0) { return ret; } ret = ak8963_convert_magn(val + 2, drv_data->magn_z, drv_data->magn_scale_z, drv_data->magn_st2); return ret; case SENSOR_CHAN_MAGN_X: return ak8963_convert_magn(val, drv_data->magn_x, drv_data->magn_scale_x, drv_data->magn_st2); case SENSOR_CHAN_MAGN_Y: return ak8963_convert_magn(val, drv_data->magn_y, drv_data->magn_scale_y, drv_data->magn_st2); case SENSOR_CHAN_MAGN_Z: return ak8963_convert_magn(val, drv_data->magn_z, drv_data->magn_scale_z, drv_data->magn_st2); case SENSOR_CHAN_DIE_TEMP: mpu9250_convert_temp(val, drv_data->temp); break; #endif default: return -ENOTSUP; } return 0; } static int mpu9250_sample_fetch(const struct device *dev, enum sensor_channel chan) { struct mpu9250_data *drv_data = dev->data; const struct mpu9250_config *cfg = dev->config; int16_t buf[MPU9250_READ_BUF_SIZE]; int ret; ret = i2c_burst_read_dt(&cfg->i2c, MPU9250_REG_DATA_START, (uint8_t *)buf, sizeof(buf)); if (ret < 0) { LOG_ERR("Failed to read data sample."); return ret; } drv_data->accel_x = sys_be16_to_cpu(buf[0]); drv_data->accel_y = sys_be16_to_cpu(buf[1]); drv_data->accel_z = sys_be16_to_cpu(buf[2]); drv_data->temp = sys_be16_to_cpu(buf[3]); drv_data->gyro_x = sys_be16_to_cpu(buf[4]); drv_data->gyro_y = sys_be16_to_cpu(buf[5]); drv_data->gyro_z = sys_be16_to_cpu(buf[6]); #ifdef CONFIG_MPU9250_MAGN_EN drv_data->magn_x = sys_le16_to_cpu(buf[7]); drv_data->magn_y = sys_le16_to_cpu(buf[8]); drv_data->magn_z = sys_le16_to_cpu(buf[9]); drv_data->magn_st2 = ((uint8_t *)buf)[20]; LOG_DBG("magn_st2: %u", drv_data->magn_st2); #endif return 0; } static DEVICE_API(sensor, mpu9250_driver_api) = { #if CONFIG_MPU9250_TRIGGER .trigger_set = mpu9250_trigger_set, #endif .sample_fetch = mpu9250_sample_fetch, .channel_get = mpu9250_channel_get, }; /* measured in degrees/sec x10 to avoid floating point */ static const uint16_t mpu9250_gyro_sensitivity_x10[] = { 1310, 655, 328, 164 }; static int mpu9250_init(const struct device *dev) { struct mpu9250_data *drv_data = dev->data; const struct mpu9250_config *cfg = dev->config; uint8_t id; int ret; if (!device_is_ready(cfg->i2c.bus)) { LOG_ERR("I2C dev %s not ready", cfg->i2c.bus->name); return -ENODEV; } /* check chip ID */ ret = i2c_reg_read_byte_dt(&cfg->i2c, MPU9250_REG_CHIP_ID, &id); if (ret < 0) { LOG_ERR("Failed to read chip ID."); return ret; } if (id != MPU9250_CHIP_ID) { LOG_ERR("Invalid chip ID."); return -ENOTSUP; } /* wake up chip */ ret = i2c_reg_update_byte_dt(&cfg->i2c, MPU9250_REG_PWR_MGMT1, MPU9250_SLEEP_EN, 0); if (ret < 0) { LOG_ERR("Failed to wake up chip."); return ret; } if (cfg->accel_fs > MPU9250_ACCEL_FS_MAX) { LOG_ERR("Accel FS is too big: %d", cfg->accel_fs); return -EINVAL; } ret = i2c_reg_write_byte_dt(&cfg->i2c, MPU9250_REG_ACCEL_CFG, cfg->accel_fs << MPU9250_ACCEL_FS_SHIFT); if (ret < 0) { LOG_ERR("Failed to write accel full-scale range."); return ret; } drv_data->accel_sensitivity_shift = 14 - cfg->accel_fs; if (cfg->gyro_fs > MPU9250_GYRO_FS_MAX) { LOG_ERR("Gyro FS is too big: %d", cfg->gyro_fs); return -EINVAL; } ret = i2c_reg_write_byte_dt(&cfg->i2c, MPU9250_REG_GYRO_CFG, cfg->gyro_fs << MPU9250_GYRO_FS_SHIFT); if (ret < 0) { LOG_ERR("Failed to write gyro full-scale range."); return ret; } if (cfg->gyro_dlpf > MPU9250_GYRO_DLPF_MAX) { LOG_ERR("Gyro DLPF is too big: %d", cfg->gyro_dlpf); return -EINVAL; } ret = i2c_reg_write_byte_dt(&cfg->i2c, MPU9250_REG_CONFIG, cfg->gyro_dlpf); if (ret < 0) { LOG_ERR("Failed to write gyro digital LPF settings."); return ret; } if (cfg->accel_dlpf > MPU9250_ACCEL_DLPF_MAX) { LOG_ERR("Accel DLPF is too big: %d", cfg->accel_dlpf); return -EINVAL; } ret = i2c_reg_write_byte_dt(&cfg->i2c, MPU9250_REG_ACCEL_CFG2, cfg->accel_dlpf); if (ret < 0) { LOG_ERR("Failed to write accel digital LPF settings."); return ret; } ret = i2c_reg_write_byte_dt(&cfg->i2c, MPU9250_REG_SR_DIV, cfg->gyro_sr_div); if (ret < 0) { LOG_ERR("Failed to write gyro ODR divider."); return ret; } drv_data->gyro_sensitivity_x10 = mpu9250_gyro_sensitivity_x10[cfg->gyro_fs]; #ifdef CONFIG_MPU9250_MAGN_EN ret = ak8963_init(dev); if (ret < 0) { LOG_ERR("Failed to initialize AK8963."); return ret; } #endif #ifdef CONFIG_MPU9250_TRIGGER ret = mpu9250_init_interrupt(dev); if (ret < 0) { LOG_ERR("Failed to initialize interrupts."); return ret; } #endif return 0; } #define INIT_MPU9250_INST(inst) \ static struct mpu9250_data mpu9250_data_##inst; \ static const struct mpu9250_config mpu9250_cfg_##inst = { \ .i2c = I2C_DT_SPEC_INST_GET(inst), \ .gyro_sr_div = DT_INST_PROP(inst, gyro_sr_div), \ .gyro_dlpf = DT_INST_ENUM_IDX(inst, gyro_dlpf), \ .gyro_fs = DT_INST_ENUM_IDX(inst, gyro_fs), \ .accel_fs = DT_INST_ENUM_IDX(inst, accel_fs), \ .accel_dlpf = DT_INST_ENUM_IDX(inst, accel_dlpf), \ IF_ENABLED(CONFIG_MPU9250_TRIGGER, \ (.int_pin = GPIO_DT_SPEC_INST_GET(inst, irq_gpios))) \ }; \ \ SENSOR_DEVICE_DT_INST_DEFINE(inst, mpu9250_init, NULL, \ &mpu9250_data_##inst, &mpu9250_cfg_##inst,\ POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY, \ &mpu9250_driver_api); DT_INST_FOREACH_STATUS_OKAY(INIT_MPU9250_INST)