/* ST Microelectronics LSM6DSV16X 6-axis IMU sensor driver * * Copyright (c) 2023 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 * * Datasheet: * https://www.st.com/resource/en/datasheet/lsm6dsv16x.pdf */ #define DT_DRV_COMPAT st_lsm6dsv16x #include #include #include #include #include #include #include #include "lsm6dsv16x.h" #include "lsm6dsv16x_decoder.h" #include "lsm6dsv16x_rtio.h" LOG_MODULE_REGISTER(LSM6DSV16X, CONFIG_SENSOR_LOG_LEVEL); /* * values taken from lsm6dsv16x_data_rate_t in hal/st module. The mode/accuracy * should be selected through accel-odr property in DT */ static const float lsm6dsv16x_odr_map[3][13] = { /* High Accuracy off */ {0.0f, 1.875f, 7.5f, 15.0f, 30.0f, 60.0f, 120.0f, 240.0f, 480.0f, 960.0f, 1920.0f, 3840.0f, 7680.0f}, /* High Accuracy 1 */ {0.0f, 1.875f, 7.5f, 15.625f, 31.25f, 62.5f, 125.0f, 250.0f, 500.0f, 1000.0f, 2000.0f, 4000.0f, 8000.0f}, /* High Accuracy 2 */ {0.0f, 1.875f, 7.5f, 12.5f, 25.0f, 50.0f, 100.0f, 200.0f, 400.0f, 800.0f, 1600.0f, 3200.0f, 6400.0f}, }; static int lsm6dsv16x_freq_to_odr_val(const struct device *dev, uint16_t freq) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; lsm6dsv16x_data_rate_t odr; int8_t mode; size_t i; if (lsm6dsv16x_xl_data_rate_get(ctx, &odr) < 0) { return -EINVAL; } mode = (odr >> 4) & 0xf; for (i = 0; i < ARRAY_SIZE(lsm6dsv16x_odr_map[mode]); i++) { if (freq <= lsm6dsv16x_odr_map[mode][i]) { LOG_DBG("mode: %d - odr: %d", mode, i); return i; } } return -EINVAL; } static const uint16_t lsm6dsv16x_accel_fs_map[] = {2, 4, 8, 16}; static int lsm6dsv16x_accel_range_to_fs_val(int32_t range) { size_t i; for (i = 0; i < ARRAY_SIZE(lsm6dsv16x_accel_fs_map); i++) { if (range == lsm6dsv16x_accel_fs_map[i]) { return i; } } return -EINVAL; } static const uint16_t lsm6dsv16x_gyro_fs_map[] = {125, 250, 500, 1000, 2000, 0, 0, 0, 0, 0, 0, 0, 4000}; static const uint16_t lsm6dsv16x_gyro_fs_sens[] = {1, 2, 4, 8, 16, 0, 0, 0, 0, 0, 0, 0, 32}; int lsm6dsv16x_calc_accel_gain(uint8_t fs) { return lsm6dsv16x_accel_fs_map[fs] * GAIN_UNIT_XL / 2; } int lsm6dsv16x_calc_gyro_gain(uint8_t fs) { return lsm6dsv16x_gyro_fs_sens[fs] * GAIN_UNIT_G; } static int lsm6dsv16x_gyro_range_to_fs_val(int32_t range) { size_t i; for (i = 0; i < ARRAY_SIZE(lsm6dsv16x_gyro_fs_map); i++) { if (range == lsm6dsv16x_gyro_fs_map[i]) { return i; } } return -EINVAL; } static int lsm6dsv16x_accel_set_fs_raw(const struct device *dev, uint8_t fs) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *data = dev->data; lsm6dsv16x_xl_full_scale_t val; switch (fs) { case 0: val = LSM6DSV16X_2g; break; case 1: val = LSM6DSV16X_4g; break; case 2: val = LSM6DSV16X_8g; break; case 3: val = LSM6DSV16X_16g; break; default: return -EIO; } if (lsm6dsv16x_xl_full_scale_set(ctx, val) < 0) { return -EIO; } data->accel_fs = fs; return 0; } static int lsm6dsv16x_accel_set_odr_raw(const struct device *dev, uint8_t odr) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *data = dev->data; if (lsm6dsv16x_xl_data_rate_set(ctx, odr) < 0) { return -EIO; } data->accel_freq = odr; return 0; } static int lsm6dsv16x_gyro_set_fs_raw(const struct device *dev, uint8_t fs) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *data = dev->data; if (lsm6dsv16x_gy_full_scale_set(ctx, fs) < 0) { return -EIO; } data->gyro_fs = fs; return 0; } static int lsm6dsv16x_gyro_set_odr_raw(const struct device *dev, uint8_t odr) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; if (lsm6dsv16x_gy_data_rate_set(ctx, odr) < 0) { return -EIO; } return 0; } static int lsm6dsv16x_accel_odr_set(const struct device *dev, uint16_t freq) { int odr; odr = lsm6dsv16x_freq_to_odr_val(dev, freq); if (odr < 0) { return odr; } if (lsm6dsv16x_accel_set_odr_raw(dev, odr) < 0) { LOG_DBG("failed to set accelerometer sampling rate"); return -EIO; } return 0; } static int lsm6dsv16x_accel_range_set(const struct device *dev, int32_t range) { int fs; struct lsm6dsv16x_data *data = dev->data; fs = lsm6dsv16x_accel_range_to_fs_val(range); if (fs < 0) { return fs; } if (lsm6dsv16x_accel_set_fs_raw(dev, fs) < 0) { LOG_DBG("failed to set accelerometer full-scale"); return -EIO; } data->acc_gain = lsm6dsv16x_calc_accel_gain(fs); return 0; } static int lsm6dsv16x_accel_config(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; lsm6dsv16x_xl_mode_t mode; switch (attr) { case SENSOR_ATTR_FULL_SCALE: return lsm6dsv16x_accel_range_set(dev, sensor_ms2_to_g(val)); case SENSOR_ATTR_SAMPLING_FREQUENCY: return lsm6dsv16x_accel_odr_set(dev, val->val1); case SENSOR_ATTR_CONFIGURATION: switch (val->val1) { case 0: /* High Performance */ mode = LSM6DSV16X_XL_HIGH_PERFORMANCE_MD; break; case 1: /* High Accuracy */ mode = LSM6DSV16X_XL_HIGH_ACCURACY_ODR_MD; break; case 3: /* ODR triggered */ mode = LSM6DSV16X_XL_ODR_TRIGGERED_MD; break; case 4: /* Low Power 2 */ mode = LSM6DSV16X_XL_LOW_POWER_2_AVG_MD; break; case 5: /* Low Power 4 */ mode = LSM6DSV16X_XL_LOW_POWER_4_AVG_MD; break; case 6: /* Low Power 8 */ mode = LSM6DSV16X_XL_LOW_POWER_8_AVG_MD; break; case 7: /* Normal */ mode = LSM6DSV16X_XL_NORMAL_MD; break; default: return -EIO; } return lsm6dsv16x_xl_mode_set(ctx, mode); default: LOG_DBG("Accel attribute not supported."); return -ENOTSUP; } return 0; } static int lsm6dsv16x_gyro_odr_set(const struct device *dev, uint16_t freq) { int odr; if (freq < 8) { return -EIO; } odr = lsm6dsv16x_freq_to_odr_val(dev, freq); if (odr < 0) { return odr; } if (lsm6dsv16x_gyro_set_odr_raw(dev, odr) < 0) { LOG_DBG("failed to set gyroscope sampling rate"); return -EIO; } return 0; } static int lsm6dsv16x_gyro_range_set(const struct device *dev, int32_t range) { int fs; struct lsm6dsv16x_data *data = dev->data; fs = lsm6dsv16x_gyro_range_to_fs_val(range); if (fs < 0) { return fs; } if (lsm6dsv16x_gyro_set_fs_raw(dev, fs) < 0) { LOG_DBG("failed to set gyroscope full-scale"); return -EIO; } data->gyro_gain = lsm6dsv16x_calc_gyro_gain(fs); return 0; } static int lsm6dsv16x_gyro_config(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; lsm6dsv16x_gy_mode_t mode; switch (attr) { case SENSOR_ATTR_FULL_SCALE: return lsm6dsv16x_gyro_range_set(dev, sensor_rad_to_degrees(val)); case SENSOR_ATTR_SAMPLING_FREQUENCY: return lsm6dsv16x_gyro_odr_set(dev, val->val1); case SENSOR_ATTR_CONFIGURATION: switch (val->val1) { case 0: /* High Performance */ mode = LSM6DSV16X_GY_HIGH_PERFORMANCE_MD; break; case 1: /* High Accuracy */ mode = LSM6DSV16X_GY_HIGH_ACCURACY_ODR_MD; break; case 4: /* Sleep */ mode = LSM6DSV16X_GY_SLEEP_MD; break; case 5: /* Low Power */ mode = LSM6DSV16X_GY_LOW_POWER_MD; break; default: return -EIO; } return lsm6dsv16x_gy_mode_set(ctx, mode); default: LOG_DBG("Gyro attribute not supported."); return -ENOTSUP; } return 0; } static int lsm6dsv16x_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { #if defined(CONFIG_LSM6DSV16X_SENSORHUB) struct lsm6dsv16x_data *data = dev->data; #endif /* CONFIG_LSM6DSV16X_SENSORHUB */ switch (chan) { case SENSOR_CHAN_ACCEL_XYZ: return lsm6dsv16x_accel_config(dev, chan, attr, val); case SENSOR_CHAN_GYRO_XYZ: return lsm6dsv16x_gyro_config(dev, chan, attr, val); #if defined(CONFIG_LSM6DSV16X_SENSORHUB) case SENSOR_CHAN_MAGN_XYZ: case SENSOR_CHAN_PRESS: case SENSOR_CHAN_HUMIDITY: if (!data->shub_inited) { LOG_ERR("shub not inited."); return -ENOTSUP; } return lsm6dsv16x_shub_config(dev, chan, attr, val); #endif /* CONFIG_LSM6DSV16X_SENSORHUB */ default: LOG_WRN("attr_set() not supported on this channel."); return -ENOTSUP; } return 0; } static int lsm6dsv16x_accel_get_config(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, struct sensor_value *val) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *data = dev->data; switch (attr) { case SENSOR_ATTR_FULL_SCALE: sensor_g_to_ms2(lsm6dsv16x_accel_fs_map[data->accel_fs], val); break; case SENSOR_ATTR_SAMPLING_FREQUENCY: { lsm6dsv16x_data_rate_t odr; int8_t mode; if (lsm6dsv16x_xl_data_rate_get(ctx, &odr) < 0) { return -EINVAL; } mode = (odr >> 4) & 0xf; val->val1 = lsm6dsv16x_odr_map[mode][data->accel_freq]; val->val2 = 0; break; } case SENSOR_ATTR_CONFIGURATION: { lsm6dsv16x_xl_mode_t mode; lsm6dsv16x_xl_mode_get(ctx, &mode); switch (mode) { case LSM6DSV16X_XL_HIGH_PERFORMANCE_MD: val->val1 = 0; break; case LSM6DSV16X_XL_HIGH_ACCURACY_ODR_MD: val->val1 = 1; break; case LSM6DSV16X_XL_ODR_TRIGGERED_MD: val->val1 = 3; break; case LSM6DSV16X_XL_LOW_POWER_2_AVG_MD: val->val1 = 4; break; case LSM6DSV16X_XL_LOW_POWER_4_AVG_MD: val->val1 = 5; break; case LSM6DSV16X_XL_LOW_POWER_8_AVG_MD: val->val1 = 6; break; case LSM6DSV16X_XL_NORMAL_MD: val->val1 = 7; break; default: return -EIO; } break; } default: LOG_DBG("Attr attribute not supported."); return -ENOTSUP; } return 0; } static int lsm6dsv16x_gyro_get_config(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, struct sensor_value *val) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *data = dev->data; switch (attr) { case SENSOR_ATTR_FULL_SCALE: sensor_degrees_to_rad(lsm6dsv16x_gyro_fs_map[data->gyro_fs], val); break; case SENSOR_ATTR_SAMPLING_FREQUENCY: { lsm6dsv16x_data_rate_t odr; int8_t mode; if (lsm6dsv16x_gy_data_rate_get(ctx, &odr) < 0) { return -EINVAL; } mode = (odr >> 4) & 0xf; val->val1 = lsm6dsv16x_odr_map[mode][data->gyro_freq]; val->val2 = 0; break; } case SENSOR_ATTR_CONFIGURATION: { lsm6dsv16x_gy_mode_t mode; lsm6dsv16x_gy_mode_get(ctx, &mode); switch (mode) { case LSM6DSV16X_GY_HIGH_PERFORMANCE_MD: val->val1 = 0; break; case LSM6DSV16X_GY_HIGH_ACCURACY_ODR_MD: val->val1 = 1; break; case LSM6DSV16X_GY_SLEEP_MD: val->val1 = 4; break; case LSM6DSV16X_GY_LOW_POWER_MD: val->val1 = 5; break; default: return -EIO; } break; } default: LOG_DBG("Gyro attribute not supported."); return -ENOTSUP; } return 0; } static int lsm6dsv16x_attr_get(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, struct sensor_value *val) { switch (chan) { case SENSOR_CHAN_ACCEL_XYZ: return lsm6dsv16x_accel_get_config(dev, chan, attr, val); case SENSOR_CHAN_GYRO_XYZ: return lsm6dsv16x_gyro_get_config(dev, chan, attr, val); default: LOG_WRN("attr_get() not supported on this channel."); return -ENOTSUP; } return 0; } static int lsm6dsv16x_sample_fetch_accel(const struct device *dev) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *data = dev->data; if (lsm6dsv16x_acceleration_raw_get(ctx, data->acc) < 0) { LOG_DBG("Failed to read sample"); return -EIO; } return 0; } static int lsm6dsv16x_sample_fetch_gyro(const struct device *dev) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *data = dev->data; if (lsm6dsv16x_angular_rate_raw_get(ctx, data->gyro) < 0) { LOG_DBG("Failed to read sample"); return -EIO; } return 0; } #if defined(CONFIG_LSM6DSV16X_ENABLE_TEMP) static int lsm6dsv16x_sample_fetch_temp(const struct device *dev) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *data = dev->data; if (lsm6dsv16x_temperature_raw_get(ctx, &data->temp_sample) < 0) { LOG_DBG("Failed to read sample"); return -EIO; } return 0; } #endif #if defined(CONFIG_LSM6DSV16X_SENSORHUB) static int lsm6dsv16x_sample_fetch_shub(const struct device *dev) { if (lsm6dsv16x_shub_fetch_external_devs(dev) < 0) { LOG_DBG("failed to read ext shub devices"); return -EIO; } return 0; } #endif /* CONFIG_LSM6DSV16X_SENSORHUB */ static int lsm6dsv16x_sample_fetch(const struct device *dev, enum sensor_channel chan) { #if defined(CONFIG_LSM6DSV16X_SENSORHUB) struct lsm6dsv16x_data *data = dev->data; #endif /* CONFIG_LSM6DSV16X_SENSORHUB */ switch (chan) { case SENSOR_CHAN_ACCEL_XYZ: lsm6dsv16x_sample_fetch_accel(dev); break; case SENSOR_CHAN_GYRO_XYZ: lsm6dsv16x_sample_fetch_gyro(dev); break; #if defined(CONFIG_LSM6DSV16X_ENABLE_TEMP) case SENSOR_CHAN_DIE_TEMP: lsm6dsv16x_sample_fetch_temp(dev); break; #endif case SENSOR_CHAN_ALL: lsm6dsv16x_sample_fetch_accel(dev); lsm6dsv16x_sample_fetch_gyro(dev); #if defined(CONFIG_LSM6DSV16X_ENABLE_TEMP) lsm6dsv16x_sample_fetch_temp(dev); #endif #if defined(CONFIG_LSM6DSV16X_SENSORHUB) if (data->shub_inited) { lsm6dsv16x_sample_fetch_shub(dev); } #endif break; default: return -ENOTSUP; } return 0; } static inline void lsm6dsv16x_accel_convert(struct sensor_value *val, int raw_val, uint32_t sensitivity) { int64_t dval; /* Sensitivity is exposed in ug/LSB */ /* Convert to m/s^2 */ dval = (int64_t)(raw_val) * sensitivity; sensor_ug_to_ms2(dval, val); } static inline int lsm6dsv16x_accel_get_channel(enum sensor_channel chan, struct sensor_value *val, struct lsm6dsv16x_data *data, uint32_t sensitivity) { uint8_t i; switch (chan) { case SENSOR_CHAN_ACCEL_X: lsm6dsv16x_accel_convert(val, data->acc[0], sensitivity); break; case SENSOR_CHAN_ACCEL_Y: lsm6dsv16x_accel_convert(val, data->acc[1], sensitivity); break; case SENSOR_CHAN_ACCEL_Z: lsm6dsv16x_accel_convert(val, data->acc[2], sensitivity); break; case SENSOR_CHAN_ACCEL_XYZ: for (i = 0; i < 3; i++) { lsm6dsv16x_accel_convert(val++, data->acc[i], sensitivity); } break; default: return -ENOTSUP; } return 0; } static int lsm6dsv16x_accel_channel_get(enum sensor_channel chan, struct sensor_value *val, struct lsm6dsv16x_data *data) { return lsm6dsv16x_accel_get_channel(chan, val, data, data->acc_gain); } static inline void lsm6dsv16x_gyro_convert(struct sensor_value *val, int raw_val, uint32_t sensitivity) { int64_t dval; /* Sensitivity is exposed in udps/LSB */ /* So, calculate value in 10 udps unit and then to rad/s */ dval = (int64_t)(raw_val) * sensitivity / 10; sensor_10udegrees_to_rad(dval, val); } static inline int lsm6dsv16x_gyro_get_channel(enum sensor_channel chan, struct sensor_value *val, struct lsm6dsv16x_data *data, uint32_t sensitivity) { uint8_t i; switch (chan) { case SENSOR_CHAN_GYRO_X: lsm6dsv16x_gyro_convert(val, data->gyro[0], sensitivity); break; case SENSOR_CHAN_GYRO_Y: lsm6dsv16x_gyro_convert(val, data->gyro[1], sensitivity); break; case SENSOR_CHAN_GYRO_Z: lsm6dsv16x_gyro_convert(val, data->gyro[2], sensitivity); break; case SENSOR_CHAN_GYRO_XYZ: for (i = 0; i < 3; i++) { lsm6dsv16x_gyro_convert(val++, data->gyro[i], sensitivity); } break; default: return -ENOTSUP; } return 0; } static int lsm6dsv16x_gyro_channel_get(enum sensor_channel chan, struct sensor_value *val, struct lsm6dsv16x_data *data) { return lsm6dsv16x_gyro_get_channel(chan, val, data, data->gyro_gain); } #if defined(CONFIG_LSM6DSV16X_ENABLE_TEMP) static void lsm6dsv16x_gyro_channel_get_temp(struct sensor_value *val, struct lsm6dsv16x_data *data) { /* convert units to micro Celsius. Raw temperature samples are * expressed in 256 LSB/deg_C units. And LSB output is 0 at 25 C. */ int64_t temp_sample = data->temp_sample; int64_t micro_c = (temp_sample * 1000000LL) / 256; val->val1 = (int32_t)(micro_c / 1000000) + 25; val->val2 = (int32_t)(micro_c % 1000000); } #endif #if defined(CONFIG_LSM6DSV16X_SENSORHUB) static inline void lsm6dsv16x_magn_convert(struct sensor_value *val, int raw_val, uint16_t sensitivity) { double dval; /* Sensitivity is exposed in ugauss/LSB */ dval = (double)(raw_val * sensitivity); val->val1 = (int32_t)dval / 1000000; val->val2 = (int32_t)dval % 1000000; } static inline int lsm6dsv16x_magn_get_channel(enum sensor_channel chan, struct sensor_value *val, struct lsm6dsv16x_data *data) { int16_t sample[3]; int idx; idx = lsm6dsv16x_shub_get_idx(data->dev, SENSOR_CHAN_MAGN_XYZ); if (idx < 0) { LOG_DBG("external magn not supported"); return -ENOTSUP; } sample[0] = (int16_t)(data->ext_data[idx][0] | (data->ext_data[idx][1] << 8)); sample[1] = (int16_t)(data->ext_data[idx][2] | (data->ext_data[idx][3] << 8)); sample[2] = (int16_t)(data->ext_data[idx][4] | (data->ext_data[idx][5] << 8)); switch (chan) { case SENSOR_CHAN_MAGN_X: lsm6dsv16x_magn_convert(val, sample[0], data->magn_gain); break; case SENSOR_CHAN_MAGN_Y: lsm6dsv16x_magn_convert(val, sample[1], data->magn_gain); break; case SENSOR_CHAN_MAGN_Z: lsm6dsv16x_magn_convert(val, sample[2], data->magn_gain); break; case SENSOR_CHAN_MAGN_XYZ: lsm6dsv16x_magn_convert(val, sample[0], data->magn_gain); lsm6dsv16x_magn_convert(val + 1, sample[1], data->magn_gain); lsm6dsv16x_magn_convert(val + 2, sample[2], data->magn_gain); break; default: return -ENOTSUP; } return 0; } static inline void lsm6dsv16x_hum_convert(struct sensor_value *val, struct lsm6dsv16x_data *data) { float rh; int16_t raw_val; struct hts221_data *ht = &data->hts221; int idx; idx = lsm6dsv16x_shub_get_idx(data->dev, SENSOR_CHAN_HUMIDITY); if (idx < 0) { LOG_DBG("external press/temp not supported"); return; } raw_val = (int16_t)(data->ext_data[idx][0] | (data->ext_data[idx][1] << 8)); /* find relative humidty by linear interpolation */ rh = (ht->y1 - ht->y0) * raw_val + ht->x1 * ht->y0 - ht->x0 * ht->y1; rh /= (ht->x1 - ht->x0); /* convert humidity to integer and fractional part */ val->val1 = rh; val->val2 = rh * 1000000; } static inline void lsm6dsv16x_press_convert(struct sensor_value *val, struct lsm6dsv16x_data *data) { int32_t raw_val; int idx; idx = lsm6dsv16x_shub_get_idx(data->dev, SENSOR_CHAN_PRESS); if (idx < 0) { LOG_DBG("external press/temp not supported"); return; } raw_val = (int32_t)(data->ext_data[idx][0] | (data->ext_data[idx][1] << 8) | (data->ext_data[idx][2] << 16)); /* Pressure sensitivity is 4096 LSB/hPa */ /* Convert raw_val to val in kPa */ val->val1 = (raw_val >> 12) / 10; val->val2 = (raw_val >> 12) % 10 * 100000 + (((int32_t)((raw_val) & 0x0FFF) * 100000L) >> 12); } static inline void lsm6dsv16x_temp_convert(struct sensor_value *val, struct lsm6dsv16x_data *data) { int16_t raw_val; int idx; idx = lsm6dsv16x_shub_get_idx(data->dev, SENSOR_CHAN_PRESS); if (idx < 0) { LOG_DBG("external press/temp not supported"); return; } raw_val = (int16_t)(data->ext_data[idx][3] | (data->ext_data[idx][4] << 8)); /* Temperature sensitivity is 100 LSB/deg C */ val->val1 = raw_val / 100; val->val2 = (int32_t)raw_val % 100 * (10000); } #endif static int lsm6dsv16x_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val) { struct lsm6dsv16x_data *data = dev->data; switch (chan) { case SENSOR_CHAN_ACCEL_X: case SENSOR_CHAN_ACCEL_Y: case SENSOR_CHAN_ACCEL_Z: case SENSOR_CHAN_ACCEL_XYZ: lsm6dsv16x_accel_channel_get(chan, val, data); break; case SENSOR_CHAN_GYRO_X: case SENSOR_CHAN_GYRO_Y: case SENSOR_CHAN_GYRO_Z: case SENSOR_CHAN_GYRO_XYZ: lsm6dsv16x_gyro_channel_get(chan, val, data); break; #if defined(CONFIG_LSM6DSV16X_ENABLE_TEMP) case SENSOR_CHAN_DIE_TEMP: lsm6dsv16x_gyro_channel_get_temp(val, data); break; #endif #if defined(CONFIG_LSM6DSV16X_SENSORHUB) case SENSOR_CHAN_MAGN_X: case SENSOR_CHAN_MAGN_Y: case SENSOR_CHAN_MAGN_Z: case SENSOR_CHAN_MAGN_XYZ: if (!data->shub_inited) { LOG_ERR("attr_set() shub not inited."); return -ENOTSUP; } lsm6dsv16x_magn_get_channel(chan, val, data); break; case SENSOR_CHAN_HUMIDITY: if (!data->shub_inited) { LOG_ERR("attr_set() shub not inited."); return -ENOTSUP; } lsm6dsv16x_hum_convert(val, data); break; case SENSOR_CHAN_PRESS: if (!data->shub_inited) { LOG_ERR("attr_set() shub not inited."); return -ENOTSUP; } lsm6dsv16x_press_convert(val, data); break; case SENSOR_CHAN_AMBIENT_TEMP: if (!data->shub_inited) { LOG_ERR("attr_set() shub not inited."); return -ENOTSUP; } lsm6dsv16x_temp_convert(val, data); break; #endif default: return -ENOTSUP; } return 0; } static DEVICE_API(sensor, lsm6dsv16x_driver_api) = { .attr_set = lsm6dsv16x_attr_set, .attr_get = lsm6dsv16x_attr_get, #if CONFIG_LSM6DSV16X_TRIGGER .trigger_set = lsm6dsv16x_trigger_set, #endif .sample_fetch = lsm6dsv16x_sample_fetch, .channel_get = lsm6dsv16x_channel_get, #ifdef CONFIG_SENSOR_ASYNC_API .get_decoder = lsm6dsv16x_get_decoder, .submit = lsm6dsv16x_submit, #endif }; static int lsm6dsv16x_init_chip(const struct device *dev) { const struct lsm6dsv16x_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dsv16x_data *lsm6dsv16x = dev->data; uint8_t chip_id; uint8_t odr, fs; #if DT_ANY_INST_ON_BUS_STATUS_OKAY(i3c) if (cfg->i3c.bus != NULL) { /* * Need to grab the pointer to the I3C device descriptor * before we can talk to the sensor. */ lsm6dsv16x->i3c_dev = i3c_device_find(cfg->i3c.bus, &cfg->i3c.dev_id); if (lsm6dsv16x->i3c_dev == NULL) { LOG_ERR("Cannot find I3C device descriptor"); return -ENODEV; } } #endif /* All registers except 0x01 are different between banks, including the WHO_AM_I * register and the register used for a SW reset. If the lsm6dsv16x wasn't on the user * bank when it reset, then both the chip id check and the sw reset will fail unless we * set the bank now. */ if (lsm6dsv16x_mem_bank_set(ctx, LSM6DSV16X_MAIN_MEM_BANK) < 0) { LOG_DBG("Failed to set user bank"); return -EIO; } if (lsm6dsv16x_device_id_get(ctx, &chip_id) < 0) { LOG_DBG("Failed reading chip id"); return -EIO; } LOG_INF("chip id 0x%x", chip_id); if (chip_id != LSM6DSV16X_ID) { LOG_DBG("Invalid chip id 0x%x", chip_id); return -EIO; } /* Resetting the whole device while using I3C will also reset the DA, therefore perform * only a software reset if the bus is I3C. It should be assumed that the device was * already fully reset by the I3C CCC RSTACT (whole chip) done as apart of the I3C Bus * initialization. */ if (ON_I3C_BUS(cfg)) { /* Restore default configuration */ lsm6dsv16x_reset_set(ctx, LSM6DSV16X_RESTORE_CAL_PARAM); /* wait 150us as reported in AN5763 */ k_sleep(K_USEC(150)); } else { /* reset device (sw_por) */ if (lsm6dsv16x_reset_set(ctx, LSM6DSV16X_GLOBAL_RST) < 0) { return -EIO; } /* wait 30ms as reported in AN5763 */ k_sleep(K_MSEC(30)); } fs = cfg->accel_range; LOG_DBG("accel range is %d", fs); if (lsm6dsv16x_accel_set_fs_raw(dev, fs) < 0) { LOG_ERR("failed to set accelerometer range %d", fs); return -EIO; } lsm6dsv16x->acc_gain = lsm6dsv16x_calc_accel_gain(fs); odr = cfg->accel_odr; LOG_DBG("accel odr is %d", odr); if (lsm6dsv16x_accel_set_odr_raw(dev, odr) < 0) { LOG_ERR("failed to set accelerometer odr %d", odr); return -EIO; } fs = cfg->gyro_range; LOG_DBG("gyro range is %d", fs); if (lsm6dsv16x_gyro_set_fs_raw(dev, fs) < 0) { LOG_ERR("failed to set gyroscope range %d", fs); return -EIO; } lsm6dsv16x->gyro_gain = lsm6dsv16x_calc_gyro_gain(fs); odr = cfg->gyro_odr; LOG_DBG("gyro odr is %d", odr); lsm6dsv16x->gyro_freq = odr; if (lsm6dsv16x_gyro_set_odr_raw(dev, odr) < 0) { LOG_ERR("failed to set gyroscope odr %d", odr); return -EIO; } #if DT_ANY_INST_ON_BUS_STATUS_OKAY(i3c) if (IS_ENABLED(CONFIG_LSM6DSV16X_STREAM) && (ON_I3C_BUS(cfg))) { /* * Set MRL to the Max Size of the FIFO so the entire FIFO can be read * out at once */ struct i3c_ccc_mrl setmrl = { .len = 0x0700, .ibi_len = lsm6dsv16x->i3c_dev->data_length.max_ibi, }; if (i3c_ccc_do_setmrl(lsm6dsv16x->i3c_dev, &setmrl) < 0) { LOG_ERR("failed to set mrl"); return -EIO; } } #endif if (lsm6dsv16x_block_data_update_set(ctx, 1) < 0) { LOG_DBG("failed to set BDU mode"); return -EIO; } return 0; } static int lsm6dsv16x_init(const struct device *dev) { #ifdef CONFIG_LSM6DSV16X_TRIGGER const struct lsm6dsv16x_config *cfg = dev->config; #endif struct lsm6dsv16x_data *data = dev->data; LOG_INF("Initialize device %s", dev->name); data->dev = dev; if (lsm6dsv16x_init_chip(dev) < 0) { LOG_DBG("failed to initialize chip"); return -EIO; } #ifdef CONFIG_LSM6DSV16X_TRIGGER if (cfg->trig_enabled) { if (lsm6dsv16x_init_interrupt(dev) < 0) { LOG_ERR("Failed to initialize interrupt."); return -EIO; } } #endif #ifdef CONFIG_LSM6DSV16X_SENSORHUB data->shub_inited = true; if (lsm6dsv16x_shub_init(dev) < 0) { LOG_INF("shub: no external chips found"); data->shub_inited = false; } #endif return 0; } #if DT_NUM_INST_STATUS_OKAY(DT_DRV_COMPAT) == 0 #warning "LSM6DSV16X driver enabled without any devices" #endif /* * Device creation macro, shared by LSM6DSV16X_DEFINE_SPI() and * LSM6DSV16X_DEFINE_I2C(). */ #define LSM6DSV16X_DEVICE_INIT(inst) \ SENSOR_DEVICE_DT_INST_DEFINE(inst, \ lsm6dsv16x_init, \ NULL, \ &lsm6dsv16x_data_##inst, \ &lsm6dsv16x_config_##inst, \ POST_KERNEL, \ CONFIG_SENSOR_INIT_PRIORITY, \ &lsm6dsv16x_driver_api); #ifdef CONFIG_LSM6DSV16X_TRIGGER #define LSM6DSV16X_CFG_IRQ(inst) \ .trig_enabled = true, \ .int1_gpio = GPIO_DT_SPEC_INST_GET_OR(inst, int1_gpios, { 0 }), \ .int2_gpio = GPIO_DT_SPEC_INST_GET_OR(inst, int2_gpios, { 0 }), \ .drdy_pulsed = DT_INST_PROP(inst, drdy_pulsed), \ .drdy_pin = DT_INST_PROP(inst, drdy_pin) #else #define LSM6DSV16X_CFG_IRQ(inst) #endif /* CONFIG_LSM6DSV16X_TRIGGER */ #define LSM6DSV16X_CONFIG_COMMON(inst) \ .accel_odr = DT_INST_PROP(inst, accel_odr), \ .accel_range = DT_INST_PROP(inst, accel_range), \ .gyro_odr = DT_INST_PROP(inst, gyro_odr), \ .gyro_range = DT_INST_PROP(inst, gyro_range), \ IF_ENABLED(CONFIG_LSM6DSV16X_STREAM, \ (.fifo_wtm = DT_INST_PROP(inst, fifo_watermark), \ .accel_batch = DT_INST_PROP(inst, accel_fifo_batch_rate), \ .gyro_batch = DT_INST_PROP(inst, gyro_fifo_batch_rate), \ .sflp_odr = DT_INST_PROP(inst, sflp_odr), \ .sflp_fifo_en = DT_INST_PROP(inst, sflp_fifo_enable), \ .temp_batch = DT_INST_PROP(inst, temp_fifo_batch_rate),)) \ IF_ENABLED(UTIL_OR(DT_INST_NODE_HAS_PROP(inst, int1_gpios), \ DT_INST_NODE_HAS_PROP(inst, int2_gpios)), \ (LSM6DSV16X_CFG_IRQ(inst))) /* * Instantiation macros used when a device is on a SPI bus. */ #define LSM6DSV16X_SPI_OP (SPI_WORD_SET(8) | \ SPI_OP_MODE_MASTER | \ SPI_MODE_CPOL | \ SPI_MODE_CPHA) \ #define LSM6DSV16X_SPI_RTIO_DEFINE(inst) \ SPI_DT_IODEV_DEFINE(lsm6dsv16x_iodev_##inst, \ DT_DRV_INST(inst), LSM6DSV16X_SPI_OP, 0U); \ RTIO_DEFINE(lsm6dsv16x_rtio_ctx_##inst, 4, 4); #define LSM6DSV16X_CONFIG_SPI(inst) \ { \ STMEMSC_CTX_SPI(&lsm6dsv16x_config_##inst.stmemsc_cfg), \ .stmemsc_cfg = { \ .spi = SPI_DT_SPEC_INST_GET(inst, \ LSM6DSV16X_SPI_OP, \ 0), \ }, \ LSM6DSV16X_CONFIG_COMMON(inst) \ } #define LSM6DSV16X_DEFINE_SPI(inst) \ IF_ENABLED(CONFIG_LSM6DSV16X_STREAM, (LSM6DSV16X_SPI_RTIO_DEFINE(inst))); \ static struct lsm6dsv16x_data lsm6dsv16x_data_##inst = { \ IF_ENABLED(CONFIG_LSM6DSV16X_STREAM, \ (.rtio_ctx = &lsm6dsv16x_rtio_ctx_##inst, \ .iodev = &lsm6dsv16x_iodev_##inst, \ .bus_type = BUS_SPI,)) \ }; \ static const struct lsm6dsv16x_config lsm6dsv16x_config_##inst = \ LSM6DSV16X_CONFIG_SPI(inst); \ /* * Instantiation macros used when a device is on an I2C bus. */ #define LSM6DSV16X_I2C_RTIO_DEFINE(inst) \ I2C_DT_IODEV_DEFINE(lsm6dsv16x_iodev_##inst, DT_DRV_INST(inst));\ RTIO_DEFINE(lsm6dsv16x_rtio_ctx_##inst, 4, 4); #define LSM6DSV16X_CONFIG_I2C(inst) \ { \ STMEMSC_CTX_I2C(&lsm6dsv16x_config_##inst.stmemsc_cfg), \ .stmemsc_cfg = { \ .i2c = I2C_DT_SPEC_INST_GET(inst), \ }, \ LSM6DSV16X_CONFIG_COMMON(inst) \ } #define LSM6DSV16X_DEFINE_I2C(inst) \ IF_ENABLED(CONFIG_LSM6DSV16X_STREAM, (LSM6DSV16X_I2C_RTIO_DEFINE(inst))); \ static struct lsm6dsv16x_data lsm6dsv16x_data_##inst = { \ IF_ENABLED(CONFIG_LSM6DSV16X_STREAM, \ (.rtio_ctx = &lsm6dsv16x_rtio_ctx_##inst, \ .iodev = &lsm6dsv16x_iodev_##inst, \ .bus_type = BUS_I2C,)) \ }; \ static const struct lsm6dsv16x_config lsm6dsv16x_config_##inst = \ LSM6DSV16X_CONFIG_I2C(inst); \ /* * Instantiation macros used when a device is on an I3C bus. */ #define LSM6DSV16X_I3C_RTIO_DEFINE(inst) \ I3C_DT_IODEV_DEFINE(lsm6dsv16x_i3c_iodev_##inst, DT_DRV_INST(inst)); \ RTIO_DEFINE(lsm6dsv16x_rtio_ctx_##inst, 4, 4); #define LSM6DSV16X_CONFIG_I3C(inst) \ { \ STMEMSC_CTX_I3C(&lsm6dsv16x_config_##inst.stmemsc_cfg), \ .stmemsc_cfg = { \ .i3c = &lsm6dsv16x_data_##inst.i3c_dev, \ }, \ .i3c.bus = DEVICE_DT_GET(DT_INST_BUS(inst)), \ .i3c.dev_id = I3C_DEVICE_ID_DT_INST(inst), \ IF_ENABLED(CONFIG_LSM6DSV16X_TRIGGER, \ (.int_en_i3c = DT_INST_PROP(inst, int_en_i3c), \ .bus_act_sel = DT_INST_ENUM_IDX(inst, bus_act_sel_us),)) \ LSM6DSV16X_CONFIG_COMMON(inst) \ } #define LSM6DSV16X_DEFINE_I3C(inst) \ IF_ENABLED(CONFIG_LSM6DSV16X_STREAM, (LSM6DSV16X_I3C_RTIO_DEFINE(inst))); \ static struct lsm6dsv16x_data lsm6dsv16x_data_##inst = { \ IF_ENABLED(CONFIG_LSM6DSV16X_STREAM, \ (.rtio_ctx = &lsm6dsv16x_rtio_ctx_##inst, \ .iodev = &lsm6dsv16x_i3c_iodev_##inst, \ .bus_type = BUS_I3C,)) \ }; \ static const struct lsm6dsv16x_config lsm6dsv16x_config_##inst = \ LSM6DSV16X_CONFIG_I3C(inst); \ #define LSM6DSV16X_DEFINE_I3C_OR_I2C(inst) \ COND_CODE_0(DT_INST_PROP_BY_IDX(inst, reg, 1), \ (LSM6DSV16X_DEFINE_I2C(inst)), \ (LSM6DSV16X_DEFINE_I3C(inst))) /* * Main instantiation macro. Use of COND_CODE_1() selects the right * bus-specific macro at preprocessor time. */ #define LSM6DSV16X_DEFINE(inst) \ COND_CODE_1(DT_INST_ON_BUS(inst, spi), \ (LSM6DSV16X_DEFINE_SPI(inst)), \ (COND_CODE_1(DT_INST_ON_BUS(inst, i3c), \ (LSM6DSV16X_DEFINE_I3C_OR_I2C(inst)), \ (LSM6DSV16X_DEFINE_I2C(inst))))); \ LSM6DSV16X_DEVICE_INIT(inst) DT_INST_FOREACH_STATUS_OKAY(LSM6DSV16X_DEFINE)