/* ST Microelectronics LSM6DSO 6-axis IMU sensor driver * * Copyright (c) 2019 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 * * Datasheet: * https://www.st.com/resource/en/datasheet/lsm6dso.pdf */ #include #include #include #include #include #include #include #include "lsm6dso.h" LOG_MODULE_REGISTER(LSM6DSO, CONFIG_SENSOR_LOG_LEVEL); static const uint16_t lsm6dso_odr_map[] = {0, 12, 26, 52, 104, 208, 417, 833, 1667, 3333, 6667}; static int lsm6dso_freq_to_odr_val(uint16_t freq) { size_t i; for (i = 0; i < ARRAY_SIZE(lsm6dso_odr_map); i++) { if (freq <= lsm6dso_odr_map[i]) { return i; } } return -EINVAL; } static int lsm6dso_odr_to_freq_val(uint16_t odr) { /* for valid index, return value from map */ if (odr < ARRAY_SIZE(lsm6dso_odr_map)) { return lsm6dso_odr_map[odr]; } /* invalid index, return last entry */ return lsm6dso_odr_map[ARRAY_SIZE(lsm6dso_odr_map) - 1]; } static const uint16_t lsm6dso_accel_fs_map[] = {2, 16, 4, 8}; static int lsm6dso_accel_range_to_fs_val(int32_t range, bool double_range) { size_t i; for (i = 0; i < ARRAY_SIZE(lsm6dso_accel_fs_map); i++) { if (range == (lsm6dso_accel_fs_map[i] << double_range)) { return i; } } return -EINVAL; } static int lsm6dso_accel_fs_val_to_gain(int fs, bool double_range) { /* Range of ±2G has a LSB of GAIN_UNIT_XL, thus divide by 2 */ return double_range ? lsm6dso_accel_fs_map[fs] * GAIN_UNIT_XL : lsm6dso_accel_fs_map[fs] * GAIN_UNIT_XL / 2; } static const uint16_t lsm6dso_gyro_fs_map[] = {250, 125, 500, 0, 1000, 0, 2000}; static const uint16_t lsm6dso_gyro_fs_sens[] = {2, 1, 4, 0, 8, 0, 16}; static int lsm6dso_gyro_range_to_fs_val(int32_t range) { size_t i; for (i = 0; i < ARRAY_SIZE(lsm6dso_gyro_fs_map); i++) { if (range == lsm6dso_gyro_fs_map[i]) { return i; } } return -EINVAL; } static inline int lsm6dso_reboot(const struct device *dev) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; if (lsm6dso_boot_set(ctx, 1) < 0) { return -EIO; } /* Wait sensor turn-on time as per datasheet */ k_busy_wait(35 * USEC_PER_MSEC); return 0; } static int lsm6dso_accel_set_fs_raw(const struct device *dev, uint8_t fs) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dso_data *data = dev->data; if (lsm6dso_xl_full_scale_set(ctx, fs) < 0) { return -EIO; } data->accel_fs = fs; return 0; } static int lsm6dso_accel_set_odr_raw(const struct device *dev, uint8_t odr) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dso_data *data = dev->data; if (lsm6dso_xl_data_rate_set(ctx, odr) < 0) { return -EIO; } data->accel_freq = lsm6dso_odr_to_freq_val(odr); return 0; } static int lsm6dso_gyro_set_fs_raw(const struct device *dev, uint8_t fs) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; if (lsm6dso_gy_full_scale_set(ctx, fs) < 0) { return -EIO; } return 0; } static int lsm6dso_gyro_set_odr_raw(const struct device *dev, uint8_t odr) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; if (lsm6dso_gy_data_rate_set(ctx, odr) < 0) { return -EIO; } return 0; } static int lsm6dso_accel_odr_set(const struct device *dev, uint16_t freq) { int odr; odr = lsm6dso_freq_to_odr_val(freq); if (odr < 0) { return odr; } if (lsm6dso_accel_set_odr_raw(dev, odr) < 0) { LOG_DBG("failed to set accelerometer sampling rate"); return -EIO; } return 0; } static int lsm6dso_accel_range_set(const struct device *dev, int32_t range) { int fs; struct lsm6dso_data *data = dev->data; const struct lsm6dso_config *cfg = dev->config; bool range_double = !!(cfg->accel_range & ACCEL_RANGE_DOUBLE); fs = lsm6dso_accel_range_to_fs_val(range, range_double); if (fs < 0) { return fs; } if (lsm6dso_accel_set_fs_raw(dev, fs) < 0) { LOG_DBG("failed to set accelerometer full-scale"); return -EIO; } data->acc_gain = lsm6dso_accel_fs_val_to_gain(fs, range_double); return 0; } static int lsm6dso_accel_config(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { switch (attr) { case SENSOR_ATTR_FULL_SCALE: return lsm6dso_accel_range_set(dev, sensor_ms2_to_g(val)); case SENSOR_ATTR_SAMPLING_FREQUENCY: return lsm6dso_accel_odr_set(dev, val->val1); default: LOG_DBG("Accel attribute not supported."); return -ENOTSUP; } return 0; } static int lsm6dso_gyro_odr_set(const struct device *dev, uint16_t freq) { int odr; odr = lsm6dso_freq_to_odr_val(freq); if (odr < 0) { return odr; } if (lsm6dso_gyro_set_odr_raw(dev, odr) < 0) { LOG_DBG("failed to set gyroscope sampling rate"); return -EIO; } return 0; } static int lsm6dso_gyro_range_set(const struct device *dev, int32_t range) { int fs; struct lsm6dso_data *data = dev->data; fs = lsm6dso_gyro_range_to_fs_val(range); if (fs < 0) { return fs; } if (lsm6dso_gyro_set_fs_raw(dev, fs) < 0) { LOG_DBG("failed to set gyroscope full-scale"); return -EIO; } data->gyro_gain = (lsm6dso_gyro_fs_sens[fs] * GAIN_UNIT_G); return 0; } static int lsm6dso_gyro_config(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { switch (attr) { case SENSOR_ATTR_FULL_SCALE: return lsm6dso_gyro_range_set(dev, sensor_rad_to_degrees(val)); case SENSOR_ATTR_SAMPLING_FREQUENCY: return lsm6dso_gyro_odr_set(dev, val->val1); default: LOG_DBG("Gyro attribute not supported."); return -ENOTSUP; } return 0; } static int lsm6dso_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { #if defined(CONFIG_LSM6DSO_SENSORHUB) struct lsm6dso_data *data = dev->data; #endif /* CONFIG_LSM6DSO_SENSORHUB */ switch (chan) { case SENSOR_CHAN_ACCEL_XYZ: return lsm6dso_accel_config(dev, chan, attr, val); case SENSOR_CHAN_GYRO_XYZ: return lsm6dso_gyro_config(dev, chan, attr, val); #if defined(CONFIG_LSM6DSO_SENSORHUB) case SENSOR_CHAN_MAGN_XYZ: case SENSOR_CHAN_PRESS: case SENSOR_CHAN_HUMIDITY: if (!data->shub_inited) { LOG_ERR("shub not inited."); return -ENOTSUP; } return lsm6dso_shub_config(dev, chan, attr, val); #endif /* CONFIG_LSM6DSO_SENSORHUB */ default: LOG_WRN("attr_set() not supported on this channel."); return -ENOTSUP; } return 0; } static int lsm6dso_sample_fetch_accel(const struct device *dev) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dso_data *data = dev->data; if (lsm6dso_acceleration_raw_get(ctx, data->acc) < 0) { LOG_DBG("Failed to read sample"); return -EIO; } return 0; } static int lsm6dso_sample_fetch_gyro(const struct device *dev) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dso_data *data = dev->data; if (lsm6dso_angular_rate_raw_get(ctx, data->gyro) < 0) { LOG_DBG("Failed to read sample"); return -EIO; } return 0; } #if defined(CONFIG_LSM6DSO_ENABLE_TEMP) static int lsm6dso_sample_fetch_temp(const struct device *dev) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dso_data *data = dev->data; if (lsm6dso_temperature_raw_get(ctx, &data->temp_sample) < 0) { LOG_DBG("Failed to read sample"); return -EIO; } return 0; } #endif #if defined(CONFIG_LSM6DSO_SENSORHUB) static int lsm6dso_sample_fetch_shub(const struct device *dev) { if (lsm6dso_shub_fetch_external_devs(dev) < 0) { LOG_DBG("failed to read ext shub devices"); return -EIO; } return 0; } #endif /* CONFIG_LSM6DSO_SENSORHUB */ static int lsm6dso_sample_fetch(const struct device *dev, enum sensor_channel chan) { #if defined(CONFIG_LSM6DSO_SENSORHUB) struct lsm6dso_data *data = dev->data; #endif /* CONFIG_LSM6DSO_SENSORHUB */ switch (chan) { case SENSOR_CHAN_ACCEL_XYZ: lsm6dso_sample_fetch_accel(dev); break; case SENSOR_CHAN_GYRO_XYZ: lsm6dso_sample_fetch_gyro(dev); break; #if defined(CONFIG_LSM6DSO_ENABLE_TEMP) case SENSOR_CHAN_DIE_TEMP: lsm6dso_sample_fetch_temp(dev); break; #endif case SENSOR_CHAN_ALL: lsm6dso_sample_fetch_accel(dev); lsm6dso_sample_fetch_gyro(dev); #if defined(CONFIG_LSM6DSO_ENABLE_TEMP) lsm6dso_sample_fetch_temp(dev); #endif #if defined(CONFIG_LSM6DSO_SENSORHUB) if (data->shub_inited) { lsm6dso_sample_fetch_shub(dev); } #endif break; default: return -ENOTSUP; } return 0; } static inline void lsm6dso_accel_convert(struct sensor_value *val, int raw_val, uint32_t sensitivity) { int64_t dval; /* Sensitivity is exposed in ug/LSB */ /* Convert to m/s^2 */ dval = (int64_t)(raw_val) * sensitivity; sensor_ug_to_ms2(dval, val); } static inline int lsm6dso_accel_get_channel(enum sensor_channel chan, struct sensor_value *val, struct lsm6dso_data *data, uint32_t sensitivity) { uint8_t i; switch (chan) { case SENSOR_CHAN_ACCEL_X: lsm6dso_accel_convert(val, data->acc[0], sensitivity); break; case SENSOR_CHAN_ACCEL_Y: lsm6dso_accel_convert(val, data->acc[1], sensitivity); break; case SENSOR_CHAN_ACCEL_Z: lsm6dso_accel_convert(val, data->acc[2], sensitivity); break; case SENSOR_CHAN_ACCEL_XYZ: for (i = 0; i < 3; i++) { lsm6dso_accel_convert(val++, data->acc[i], sensitivity); } break; default: return -ENOTSUP; } return 0; } static int lsm6dso_accel_channel_get(enum sensor_channel chan, struct sensor_value *val, struct lsm6dso_data *data) { return lsm6dso_accel_get_channel(chan, val, data, data->acc_gain); } static inline void lsm6dso_gyro_convert(struct sensor_value *val, int raw_val, uint32_t sensitivity) { int64_t dval; /* Sensitivity is exposed in udps/LSB */ /* So, calculate value in 10 udps unit and then to rad/s */ dval = (int64_t)(raw_val) * sensitivity / 10; sensor_10udegrees_to_rad(dval, val); } static inline int lsm6dso_gyro_get_channel(enum sensor_channel chan, struct sensor_value *val, struct lsm6dso_data *data, uint32_t sensitivity) { uint8_t i; switch (chan) { case SENSOR_CHAN_GYRO_X: lsm6dso_gyro_convert(val, data->gyro[0], sensitivity); break; case SENSOR_CHAN_GYRO_Y: lsm6dso_gyro_convert(val, data->gyro[1], sensitivity); break; case SENSOR_CHAN_GYRO_Z: lsm6dso_gyro_convert(val, data->gyro[2], sensitivity); break; case SENSOR_CHAN_GYRO_XYZ: for (i = 0; i < 3; i++) { lsm6dso_gyro_convert(val++, data->gyro[i], sensitivity); } break; default: return -ENOTSUP; } return 0; } static int lsm6dso_gyro_channel_get(enum sensor_channel chan, struct sensor_value *val, struct lsm6dso_data *data) { return lsm6dso_gyro_get_channel(chan, val, data, data->gyro_gain); } #if defined(CONFIG_LSM6DSO_ENABLE_TEMP) static void lsm6dso_gyro_channel_get_temp(struct sensor_value *val, struct lsm6dso_data *data) { /* val = temp_sample / 256 + 25 */ val->val1 = data->temp_sample / 256 + 25; val->val2 = (data->temp_sample % 256) * (1000000 / 256); } #endif #if defined(CONFIG_LSM6DSO_SENSORHUB) static inline void lsm6dso_magn_convert(struct sensor_value *val, int raw_val, uint16_t sensitivity) { double dval; /* Sensitivity is exposed in ugauss/LSB */ dval = (double)(raw_val * sensitivity); val->val1 = (int32_t)dval / 1000000; val->val2 = (int32_t)dval % 1000000; } static inline int lsm6dso_magn_get_channel(enum sensor_channel chan, struct sensor_value *val, struct lsm6dso_data *data) { int16_t sample[3]; int idx; idx = lsm6dso_shub_get_idx(data->dev, SENSOR_CHAN_MAGN_XYZ); if (idx < 0) { LOG_DBG("external magn not supported"); return -ENOTSUP; } sample[0] = (int16_t)(data->ext_data[idx][0] | (data->ext_data[idx][1] << 8)); sample[1] = (int16_t)(data->ext_data[idx][2] | (data->ext_data[idx][3] << 8)); sample[2] = (int16_t)(data->ext_data[idx][4] | (data->ext_data[idx][5] << 8)); switch (chan) { case SENSOR_CHAN_MAGN_X: lsm6dso_magn_convert(val, sample[0], data->magn_gain); break; case SENSOR_CHAN_MAGN_Y: lsm6dso_magn_convert(val, sample[1], data->magn_gain); break; case SENSOR_CHAN_MAGN_Z: lsm6dso_magn_convert(val, sample[2], data->magn_gain); break; case SENSOR_CHAN_MAGN_XYZ: lsm6dso_magn_convert(val, sample[0], data->magn_gain); lsm6dso_magn_convert(val + 1, sample[1], data->magn_gain); lsm6dso_magn_convert(val + 2, sample[2], data->magn_gain); break; default: return -ENOTSUP; } return 0; } static inline void lsm6dso_hum_convert(struct sensor_value *val, struct lsm6dso_data *data) { float rh; int16_t raw_val; struct hts221_data *ht = &data->hts221; int idx; idx = lsm6dso_shub_get_idx(data->dev, SENSOR_CHAN_HUMIDITY); if (idx < 0) { LOG_DBG("external press/temp not supported"); return; } raw_val = (int16_t)(data->ext_data[idx][0] | (data->ext_data[idx][1] << 8)); /* find relative humidty by linear interpolation */ rh = (ht->y1 - ht->y0) * raw_val + ht->x1 * ht->y0 - ht->x0 * ht->y1; rh /= (ht->x1 - ht->x0); /* convert humidity to integer and fractional part */ val->val1 = rh; val->val2 = rh * 1000000; } static inline void lsm6dso_press_convert(struct sensor_value *val, struct lsm6dso_data *data) { int32_t raw_val; int idx; idx = lsm6dso_shub_get_idx(data->dev, SENSOR_CHAN_PRESS); if (idx < 0) { LOG_DBG("external press/temp not supported"); return; } raw_val = (int32_t)(data->ext_data[idx][0] | (data->ext_data[idx][1] << 8) | (data->ext_data[idx][2] << 16)); /* Pressure sensitivity is 4096 LSB/hPa */ /* Convert raw_val to val in kPa */ val->val1 = (raw_val >> 12) / 10; val->val2 = (raw_val >> 12) % 10 * 100000 + (((int32_t)((raw_val) & 0x0FFF) * 100000L) >> 12); } static inline void lsm6dso_temp_convert(struct sensor_value *val, struct lsm6dso_data *data) { int16_t raw_val; int idx; idx = lsm6dso_shub_get_idx(data->dev, SENSOR_CHAN_PRESS); if (idx < 0) { LOG_DBG("external press/temp not supported"); return; } raw_val = (int16_t)(data->ext_data[idx][3] | (data->ext_data[idx][4] << 8)); /* Temperature sensitivity is 100 LSB/deg C */ val->val1 = raw_val / 100; val->val2 = (int32_t)raw_val % 100 * (10000); } #endif static int lsm6dso_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val) { struct lsm6dso_data *data = dev->data; switch (chan) { case SENSOR_CHAN_ACCEL_X: case SENSOR_CHAN_ACCEL_Y: case SENSOR_CHAN_ACCEL_Z: case SENSOR_CHAN_ACCEL_XYZ: lsm6dso_accel_channel_get(chan, val, data); break; case SENSOR_CHAN_GYRO_X: case SENSOR_CHAN_GYRO_Y: case SENSOR_CHAN_GYRO_Z: case SENSOR_CHAN_GYRO_XYZ: lsm6dso_gyro_channel_get(chan, val, data); break; #if defined(CONFIG_LSM6DSO_ENABLE_TEMP) case SENSOR_CHAN_DIE_TEMP: lsm6dso_gyro_channel_get_temp(val, data); break; #endif #if defined(CONFIG_LSM6DSO_SENSORHUB) case SENSOR_CHAN_MAGN_X: case SENSOR_CHAN_MAGN_Y: case SENSOR_CHAN_MAGN_Z: case SENSOR_CHAN_MAGN_XYZ: if (!data->shub_inited) { LOG_ERR("attr_set() shub not inited."); return -ENOTSUP; } lsm6dso_magn_get_channel(chan, val, data); break; case SENSOR_CHAN_HUMIDITY: if (!data->shub_inited) { LOG_ERR("attr_set() shub not inited."); return -ENOTSUP; } lsm6dso_hum_convert(val, data); break; case SENSOR_CHAN_PRESS: if (!data->shub_inited) { LOG_ERR("attr_set() shub not inited."); return -ENOTSUP; } lsm6dso_press_convert(val, data); break; case SENSOR_CHAN_AMBIENT_TEMP: if (!data->shub_inited) { LOG_ERR("attr_set() shub not inited."); return -ENOTSUP; } lsm6dso_temp_convert(val, data); break; #endif default: return -ENOTSUP; } return 0; } static DEVICE_API(sensor, lsm6dso_driver_api) = { .attr_set = lsm6dso_attr_set, #if CONFIG_LSM6DSO_TRIGGER .trigger_set = lsm6dso_trigger_set, #endif .sample_fetch = lsm6dso_sample_fetch, .channel_get = lsm6dso_channel_get, }; static int lsm6dso_init_chip(const struct device *dev) { const struct lsm6dso_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lsm6dso_data *lsm6dso = dev->data; uint8_t chip_id, master_on; uint8_t odr, fs; /* All registers except 0x01 are different between banks, including the WHO_AM_I * register and the register used for a SW reset. If the lsm6dso wasn't on the user * bank when it reset, then both the chip id check and the sw reset will fail unless we * set the bank now. */ if (lsm6dso_mem_bank_set(ctx, LSM6DSO_USER_BANK) < 0) { LOG_DBG("Failed to set user bank"); return -EIO; } if (lsm6dso_device_id_get(ctx, &chip_id) < 0) { LOG_DBG("Failed reading chip id"); return -EIO; } LOG_INF("chip id 0x%x", chip_id); if (chip_id != LSM6DSO_ID) { LOG_DBG("Invalid chip id 0x%x", chip_id); return -EIO; } /* I3C disable stay preserved after s/w reset */ if (lsm6dso_i3c_disable_set(ctx, LSM6DSO_I3C_DISABLE) < 0) { LOG_DBG("Failed to disable I3C"); return -EIO; } /* Per AN5192 §7.2.1, "… when applying the software reset procedure, the I2C master * must be disabled, followed by a 300 μs wait." */ if (lsm6dso_sh_master_get(ctx, &master_on) < 0) { LOG_DBG("Failed to get I2C_MASTER status"); return -EIO; } if (master_on) { LOG_DBG("Disable shub before reset"); lsm6dso_sh_master_set(ctx, 0); k_busy_wait(300); } /* reset device */ if (lsm6dso_reset_set(ctx, 1) < 0) { return -EIO; } k_busy_wait(100); /* set accel power mode */ LOG_DBG("accel pm is %d", cfg->accel_pm); switch (cfg->accel_pm) { default: case 0: lsm6dso_xl_power_mode_set(ctx, LSM6DSO_HIGH_PERFORMANCE_MD); break; case 1: lsm6dso_xl_power_mode_set(ctx, LSM6DSO_LOW_NORMAL_POWER_MD); break; case 2: lsm6dso_xl_power_mode_set(ctx, LSM6DSO_ULTRA_LOW_POWER_MD); break; } fs = cfg->accel_range & ACCEL_RANGE_MASK; LOG_DBG("accel range is %d", fs); if (lsm6dso_accel_set_fs_raw(dev, fs) < 0) { LOG_ERR("failed to set accelerometer range %d", fs); return -EIO; } lsm6dso->acc_gain = lsm6dso_accel_fs_val_to_gain(fs, cfg->accel_range & ACCEL_RANGE_DOUBLE); odr = cfg->accel_odr; LOG_DBG("accel odr is %d", odr); lsm6dso->accel_freq = lsm6dso_odr_to_freq_val(odr); if (lsm6dso_accel_set_odr_raw(dev, odr) < 0) { LOG_ERR("failed to set accelerometer odr %d", odr); return -EIO; } /* set gyro power mode */ LOG_DBG("gyro pm is %d", cfg->gyro_pm); switch (cfg->gyro_pm) { default: case 0: lsm6dso_gy_power_mode_set(ctx, LSM6DSO_GY_HIGH_PERFORMANCE); break; case 1: lsm6dso_gy_power_mode_set(ctx, LSM6DSO_GY_NORMAL); break; } fs = cfg->gyro_range; LOG_DBG("gyro range is %d", fs); if (lsm6dso_gyro_set_fs_raw(dev, fs) < 0) { LOG_ERR("failed to set gyroscope range %d", fs); return -EIO; } lsm6dso->gyro_gain = (lsm6dso_gyro_fs_sens[fs] * GAIN_UNIT_G); odr = cfg->gyro_odr; LOG_DBG("gyro odr is %d", odr); lsm6dso->gyro_freq = lsm6dso_odr_to_freq_val(odr); if (lsm6dso_gyro_set_odr_raw(dev, odr) < 0) { LOG_ERR("failed to set gyroscope odr %d", odr); return -EIO; } /* Set FIFO bypass mode */ if (lsm6dso_fifo_mode_set(ctx, LSM6DSO_BYPASS_MODE) < 0) { LOG_DBG("failed to set FIFO mode"); return -EIO; } if (lsm6dso_block_data_update_set(ctx, 1) < 0) { LOG_DBG("failed to set BDU mode"); return -EIO; } return 0; } static int lsm6dso_init(const struct device *dev) { #ifdef CONFIG_LSM6DSO_TRIGGER const struct lsm6dso_config *cfg = dev->config; #endif struct lsm6dso_data *data = dev->data; LOG_INF("Initialize device %s", dev->name); data->dev = dev; if (lsm6dso_init_chip(dev) < 0) { LOG_DBG("failed to initialize chip"); return -EIO; } #ifdef CONFIG_LSM6DSO_TRIGGER if (cfg->trig_enabled) { if (lsm6dso_init_interrupt(dev) < 0) { LOG_ERR("Failed to initialize interrupt."); return -EIO; } } #endif #ifdef CONFIG_LSM6DSO_SENSORHUB data->shub_inited = true; if (lsm6dso_shub_init(dev) < 0) { LOG_INF("shub: no external chips found"); data->shub_inited = false; } #endif return 0; } /* * Device creation macro, shared by LSM6DSO_DEFINE_SPI() and * LSM6DSO_DEFINE_I2C(). */ #define LSM6DSO_DEVICE_INIT(inst, model) \ SENSOR_DEVICE_DT_INST_DEFINE(inst, \ lsm6dso_init, \ NULL, \ &model##_data_##inst, \ &model##_config_##inst, \ POST_KERNEL, \ CONFIG_SENSOR_INIT_PRIORITY, \ &lsm6dso_driver_api); /* * Instantiation macros used when a device is on a SPI bus. */ #ifdef CONFIG_LSM6DSO_TRIGGER #define LSM6DSO_CFG_IRQ(inst) \ .trig_enabled = true, \ .gpio_drdy = GPIO_DT_SPEC_INST_GET(inst, irq_gpios), \ .int_pin = DT_INST_PROP(inst, int_pin) #else #define LSM6DSO_CFG_IRQ(inst) #endif /* CONFIG_LSM6DSO_TRIGGER */ #define LSM6DSO_SPI_OP (SPI_WORD_SET(8) | \ SPI_OP_MODE_MASTER | \ SPI_MODE_CPOL | \ SPI_MODE_CPHA) \ #define LSM6DSO_CONFIG_COMMON(inst) \ .accel_pm = DT_INST_PROP(inst, accel_pm), \ .accel_odr = DT_INST_PROP(inst, accel_odr), \ .accel_range = DT_INST_PROP(inst, accel_range) | \ (DT_INST_NODE_HAS_COMPAT(inst, st_lsm6dso32) ? \ ACCEL_RANGE_DOUBLE : 0), \ .gyro_pm = DT_INST_PROP(inst, gyro_pm), \ .gyro_odr = DT_INST_PROP(inst, gyro_odr), \ .gyro_range = DT_INST_PROP(inst, gyro_range), \ .drdy_pulsed = DT_INST_PROP(inst, drdy_pulsed), \ COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, irq_gpios), \ (LSM6DSO_CFG_IRQ(inst)), ()) #define LSM6DSO_CONFIG_SPI(inst, model) \ { \ STMEMSC_CTX_SPI(&model##_config_##inst.stmemsc_cfg), \ .stmemsc_cfg = { \ .spi = SPI_DT_SPEC_INST_GET(inst, \ LSM6DSO_SPI_OP, \ 0), \ }, \ LSM6DSO_CONFIG_COMMON(inst) \ } /* * Instantiation macros used when a device is on an I2C bus. */ #define LSM6DSO_CONFIG_I2C(inst, model) \ { \ STMEMSC_CTX_I2C(&model##_config_##inst.stmemsc_cfg), \ .stmemsc_cfg = { \ .i2c = I2C_DT_SPEC_INST_GET(inst), \ }, \ LSM6DSO_CONFIG_COMMON(inst) \ } /* * Main instantiation macro. Use of COND_CODE_1() selects the right * bus-specific macro at preprocessor time. */ #define LSM6DSO_DEFINE(inst, model) \ static struct lsm6dso_data model##_data_##inst; \ static const struct lsm6dso_config model##_config_##inst = \ COND_CODE_1(DT_INST_ON_BUS(inst, spi), \ (LSM6DSO_CONFIG_SPI(inst, model)), \ (LSM6DSO_CONFIG_I2C(inst, model))); \ LSM6DSO_DEVICE_INIT(inst, model) #define DT_DRV_COMPAT st_lsm6dso DT_INST_FOREACH_STATUS_OKAY_VARGS(LSM6DSO_DEFINE, lsm6dso) #undef DT_DRV_COMPAT #define DT_DRV_COMPAT st_lsm6dso32 DT_INST_FOREACH_STATUS_OKAY_VARGS(LSM6DSO_DEFINE, lsm6dso32) #undef DT_DRV_COMPAT