/* ST Microelectronics LIS2DU12 3-axis accelerometer sensor driver * * Copyright (c) 2023 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 * * Datasheet: * https://www.st.com/resource/en/datasheet/lis2du12.pdf */ #define DT_DRV_COMPAT st_lis2du12 #include #include #include #include #include #include #include #include #include "lis2du12.h" LOG_MODULE_REGISTER(LIS2DU12, CONFIG_SENSOR_LOG_LEVEL); static const float lis2du12_odr_map[14] = { 0.0f, 1.6f, 3.0f, 6.0f, 6.0f, 12.5f, 25.0f, 50.0f, 100.0f, 200.0f, 400.0f, 800.0f, 0.0f, 0.0f}; static int lis2du12_freq_to_odr_val(const struct device *dev, uint16_t freq) { size_t i; for (i = 0; i < ARRAY_SIZE(lis2du12_odr_map); i++) { if (freq <= lis2du12_odr_map[i]) { return i; } } return -EINVAL; } static const uint16_t lis2du12_accel_fs_map[] = {2, 4, 8, 16}; static int lis2du12_accel_range_to_fs_val(int32_t range) { size_t i; for (i = 0; i < ARRAY_SIZE(lis2du12_accel_fs_map); i++) { if (range == lis2du12_accel_fs_map[i]) { return i; } } return -EINVAL; } static inline int lis2du12_reboot(const struct device *dev) { const struct lis2du12_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; lis2du12_status_t status; uint8_t tries = 10; if (lis2du12_init_set(ctx, LIS2DU12_RESET) < 0) { return -EIO; } do { if (!--tries) { LOG_ERR("sw reset timed out"); return -ETIMEDOUT; } k_usleep(50); if (lis2du12_status_get(ctx, &status) < 0) { return -EIO; } } while (status.sw_reset != 0); if (lis2du12_init_set(ctx, LIS2DU12_DRV_RDY) < 0) { return -EIO; } return 0; } static int lis2du12_accel_set_fs_raw(const struct device *dev, uint8_t fs) { const struct lis2du12_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lis2du12_data *data = dev->data; lis2du12_md_t mode; if (lis2du12_mode_get(ctx, &mode) < 0) { return -EIO; } mode.fs = fs; if (lis2du12_mode_set(ctx, &mode) < 0) { return -EIO; } data->accel_fs = fs; return 0; } static int lis2du12_accel_set_odr_raw(const struct device *dev, uint8_t odr) { const struct lis2du12_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lis2du12_data *data = dev->data; lis2du12_md_t mode; if (lis2du12_mode_get(ctx, &mode) < 0) { return -EIO; } mode.odr = odr; if (lis2du12_mode_set(ctx, &mode) < 0) { return -EIO; } data->accel_freq = odr; return 0; } static int lis2du12_accel_odr_set(const struct device *dev, uint16_t freq) { int odr; odr = lis2du12_freq_to_odr_val(dev, freq); if (odr < 0) { return odr; } if (lis2du12_accel_set_odr_raw(dev, odr) < 0) { LOG_ERR("failed to set accelerometer sampling rate"); return -EIO; } return 0; } static int lis2du12_accel_range_set(const struct device *dev, int32_t range) { int fs; struct lis2du12_data *data = dev->data; fs = lis2du12_accel_range_to_fs_val(range); if (fs < 0) { return fs; } if (lis2du12_accel_set_fs_raw(dev, fs) < 0) { LOG_ERR("failed to set accelerometer full-scale"); return -EIO; } data->acc_gain = lis2du12_accel_fs_map[fs] * GAIN_UNIT_XL / 2; return 0; } static int lis2du12_accel_config(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { switch (attr) { case SENSOR_ATTR_FULL_SCALE: return lis2du12_accel_range_set(dev, sensor_ms2_to_g(val)); case SENSOR_ATTR_SAMPLING_FREQUENCY: return lis2du12_accel_odr_set(dev, val->val1); default: LOG_WRN("Accel attribute %d not supported.", attr); return -ENOTSUP; } return 0; } static int lis2du12_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { switch (chan) { case SENSOR_CHAN_ACCEL_XYZ: return lis2du12_accel_config(dev, chan, attr, val); default: LOG_WRN("attribute %d not supported on this channel.", chan); return -ENOTSUP; } return 0; } static int lis2du12_sample_fetch_accel(const struct device *dev) { const struct lis2du12_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lis2du12_data *data = dev->data; lis2du12_data_t xl_data; lis2du12_md_t md; md.fs = cfg->accel_range; if (lis2du12_data_get(ctx, &md, &xl_data) < 0) { LOG_ERR("Failed to read sample"); return -EIO; } data->acc[0] = xl_data.xl.raw[0]; data->acc[1] = xl_data.xl.raw[1]; data->acc[2] = xl_data.xl.raw[2]; return 0; } static int lis2du12_sample_fetch(const struct device *dev, enum sensor_channel chan) { switch (chan) { case SENSOR_CHAN_ACCEL_XYZ: lis2du12_sample_fetch_accel(dev); break; case SENSOR_CHAN_ALL: lis2du12_sample_fetch_accel(dev); break; default: return -ENOTSUP; } return 0; } static inline void lis2du12_accel_convert(struct sensor_value *val, int raw_val, uint32_t sensitivity) { int64_t dval; /* Sensitivity is exposed in ug/LSB */ /* Convert to m/s^2 */ dval = (int64_t)(raw_val) * sensitivity * SENSOR_G_DOUBLE; val->val1 = (int32_t)(dval / 1000000); val->val2 = (int32_t)(dval % 1000000); } static inline int lis2du12_accel_get_channel(enum sensor_channel chan, struct sensor_value *val, struct lis2du12_data *data, uint32_t sensitivity) { uint8_t i; switch (chan) { case SENSOR_CHAN_ACCEL_X: lis2du12_accel_convert(val, data->acc[0], sensitivity); break; case SENSOR_CHAN_ACCEL_Y: lis2du12_accel_convert(val, data->acc[1], sensitivity); break; case SENSOR_CHAN_ACCEL_Z: lis2du12_accel_convert(val, data->acc[2], sensitivity); break; case SENSOR_CHAN_ACCEL_XYZ: for (i = 0; i < 3; i++) { lis2du12_accel_convert(val++, data->acc[i], sensitivity); } break; default: return -ENOTSUP; } return 0; } static int lis2du12_accel_channel_get(enum sensor_channel chan, struct sensor_value *val, struct lis2du12_data *data) { return lis2du12_accel_get_channel(chan, val, data, data->acc_gain); } static int lis2du12_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val) { struct lis2du12_data *data = dev->data; switch (chan) { case SENSOR_CHAN_ACCEL_X: case SENSOR_CHAN_ACCEL_Y: case SENSOR_CHAN_ACCEL_Z: case SENSOR_CHAN_ACCEL_XYZ: lis2du12_accel_channel_get(chan, val, data); break; default: return -ENOTSUP; } return 0; } static DEVICE_API(sensor, lis2du12_driver_api) = { .attr_set = lis2du12_attr_set, #if CONFIG_LIS2DU12_TRIGGER .trigger_set = lis2du12_trigger_set, #endif .sample_fetch = lis2du12_sample_fetch, .channel_get = lis2du12_channel_get, }; static int lis2du12_init_chip(const struct device *dev) { const struct lis2du12_config *cfg = dev->config; stmdev_ctx_t *ctx = (stmdev_ctx_t *)&cfg->ctx; struct lis2du12_data *lis2du12 = dev->data; lis2du12_id_t chip_id; uint8_t odr, fs; if (lis2du12_id_get(ctx, &chip_id) < 0) { LOG_ERR("Failed reading chip id"); return -EIO; } LOG_INF("chip id 0x%x", chip_id.whoami); if (chip_id.whoami != LIS2DU12_ID) { LOG_ERR("Invalid chip id 0x%x", chip_id.whoami); return -EIO; } /* reboot device */ if (lis2du12_reboot(dev) < 0) { return -EIO; } /* set FS from DT */ fs = cfg->accel_range; LOG_DBG("accel range is %d", fs); if (lis2du12_accel_set_fs_raw(dev, fs) < 0) { LOG_ERR("failed to set accelerometer range %d", fs); return -EIO; } lis2du12->acc_gain = lis2du12_accel_fs_map[fs] * GAIN_UNIT_XL / 2; /* set odr from DT (the only way to go in high performance) */ odr = cfg->accel_odr; LOG_DBG("accel odr is %d", odr); if (lis2du12_accel_set_odr_raw(dev, odr) < 0) { LOG_ERR("failed to set accelerometer odr %d", odr); return -EIO; } return 0; } static int lis2du12_init(const struct device *dev) { #ifdef CONFIG_LIS2DU12_TRIGGER const struct lis2du12_config *cfg = dev->config; #endif struct lis2du12_data *data = dev->data; LOG_INF("Initialize device %s", dev->name); data->dev = dev; if (lis2du12_init_chip(dev) < 0) { LOG_ERR("failed to initialize chip"); return -EIO; } #ifdef CONFIG_LIS2DU12_TRIGGER if (cfg->trig_enabled) { if (lis2du12_init_interrupt(dev) < 0) { LOG_ERR("Failed to initialize interrupt."); return -EIO; } } #endif return 0; } /* * Device creation macro, shared by LIS2DU12_DEFINE_SPI() and * LIS2DU12_DEFINE_I2C(). */ #define LIS2DU12_DEVICE_INIT(inst) \ SENSOR_DEVICE_DT_INST_DEFINE(inst, \ lis2du12_init, \ NULL, \ &lis2du12_data_##inst, \ &lis2du12_config_##inst, \ POST_KERNEL, \ CONFIG_SENSOR_INIT_PRIORITY, \ &lis2du12_driver_api); /* * Instantiation macros used when a device is on a SPI bus. */ #ifdef CONFIG_LIS2DU12_TRIGGER #define LIS2DU12_CFG_IRQ(inst) \ .trig_enabled = true, \ .int1_gpio = GPIO_DT_SPEC_INST_GET_OR(inst, int1_gpios, { 0 }), \ .int2_gpio = GPIO_DT_SPEC_INST_GET_OR(inst, int2_gpios, { 0 }), \ .drdy_pulsed = DT_INST_PROP(inst, drdy_pulsed), \ .drdy_pin = DT_INST_PROP(inst, drdy_pin) #else #define LIS2DU12_CFG_IRQ(inst) #endif /* CONFIG_LIS2DU12_TRIGGER */ #define LIS2DU12_SPI_OP (SPI_WORD_SET(8) | \ SPI_OP_MODE_MASTER | \ SPI_MODE_CPOL | \ SPI_MODE_CPHA) \ #define LIS2DU12_CONFIG_COMMON(inst) \ .accel_odr = DT_INST_PROP(inst, accel_odr), \ .accel_range = DT_INST_PROP(inst, accel_range), \ IF_ENABLED(UTIL_OR(DT_INST_NODE_HAS_PROP(inst, int1_gpios), \ DT_INST_NODE_HAS_PROP(inst, int2_gpios)), \ (LIS2DU12_CFG_IRQ(inst))) /* * Instantiation macros used when a device is on a SPI bus. */ #define LIS2DU12_CONFIG_SPI(inst) \ { \ STMEMSC_CTX_SPI(&lis2du12_config_##inst.stmemsc_cfg), \ .stmemsc_cfg = { \ .spi = SPI_DT_SPEC_INST_GET(inst, \ LIS2DU12_SPI_OP, \ 0), \ }, \ LIS2DU12_CONFIG_COMMON(inst) \ } /* * Instantiation macros used when a device is on an I2C bus. */ #define LIS2DU12_CONFIG_I2C(inst) \ { \ STMEMSC_CTX_I2C(&lis2du12_config_##inst.stmemsc_cfg), \ .stmemsc_cfg = { \ .i2c = I2C_DT_SPEC_INST_GET(inst), \ }, \ LIS2DU12_CONFIG_COMMON(inst) \ } /* * Main instantiation macro. Use of COND_CODE_1() selects the right * bus-specific macro at preprocessor time. */ #define LIS2DU12_DEFINE(inst) \ static struct lis2du12_data lis2du12_data_##inst; \ static const struct lis2du12_config lis2du12_config_##inst = \ COND_CODE_1(DT_INST_ON_BUS(inst, spi), \ (LIS2DU12_CONFIG_SPI(inst)), \ (LIS2DU12_CONFIG_I2C(inst))); \ LIS2DU12_DEVICE_INIT(inst) DT_INST_FOREACH_STATUS_OKAY(LIS2DU12_DEFINE)