/* Bosch BMP180 pressure sensor * * Copyright (c) 2024 , Chris Ruehl * * SPDX-License-Identifier: Apache-2.0 * * Datasheet: * https://www.mouser.hk/datasheet/2/783/BST-BMP180-DS000-1509579.pdf */ #include #include #include #include #include #include #include #include #include #include "bmp180.h" #define DT_DRV_COMPAT bosch_bmp180 LOG_MODULE_REGISTER(BMP180, CONFIG_SENSOR_LOG_LEVEL); /* * byte swap added for signed (int16_t) * and named _u16 and _s16 to make clear what its used for * macro from include/zephyr/sys/byteorder.h */ #define BSWAP_u16(x) sys_cpu_to_be16(x) #define BSWAP_s16(x) ((int16_t) sys_cpu_to_be16(x)) /* Calibration Registers structure */ struct bmp180_cal_data { int16_t ac1; int16_t ac2; int16_t ac3; uint16_t ac4; uint16_t ac5; uint16_t ac6; int16_t b1; int16_t b2; int16_t mb; int16_t mc; int16_t md; } __packed; struct bmp180_config { const struct i2c_dt_spec i2c; }; struct bmp180_data { uint8_t osr_pressure; int32_t raw_press; int32_t raw_temp; int32_t comp_temp; struct bmp180_cal_data cal; }; static inline int bmp180_bus_check(const struct device *dev) { const struct bmp180_config *cfg = dev->config; return i2c_is_ready_dt(&cfg->i2c) ? 0 : -ENODEV; } static inline int bmp180_reg_read(const struct device *dev, uint8_t start, uint8_t *buf, int size) { const struct bmp180_config *cfg = dev->config; return i2c_burst_read_dt(&cfg->i2c, start, buf, size); } static inline int bmp180_reg_write(const struct device *dev, uint8_t reg, uint8_t val) { const struct bmp180_config *cfg = dev->config; return i2c_reg_write_byte_dt(&cfg->i2c, reg, val); } #ifdef CONFIG_BMP180_OSR_RUNTIME static int bmp180_attr_set_oversampling(const struct device *dev, enum sensor_channel chan, uint16_t val) { struct bmp180_data *data = dev->data; /* Value must be a positive value 0-3 */ if ((chan != SENSOR_CHAN_PRESS) || (val > 3)) { return -EINVAL; } data->osr_pressure = val; return 0; } #endif /* CONFIG_BMP180_OSR_RUNTIME */ static int bmp180_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { int ret; #ifdef CONFIG_PM_DEVICE enum pm_device_state state; (void)pm_device_state_get(dev, &state); if (state != PM_DEVICE_STATE_ACTIVE) { return -EBUSY; } #endif /* CONFIG_PM_DEVICE */ switch (attr) { #ifdef CONFIG_BMP180_OSR_RUNTIME case SENSOR_ATTR_OVERSAMPLING: ret = bmp180_attr_set_oversampling(dev, chan, val->val1); break; #endif /* CONFIG_BMP180_OSR_RUNTIME */ default: ret = -EINVAL; } return ret; } static inline int bmp180_conv_ready(const struct device *dev, uint32_t time_wait_ms) { int ret; uint8_t ctrlreg; uint8_t retry = 2; k_sleep(K_MSEC(time_wait_ms)); /* * for the first while read 'delay+1' ms which is the convension time * descripted in the data-sheet in case the register not yet ready wait again * and return error if retry exhaused */ while (true) { k_sleep(K_MSEC(1)); ret = bmp180_reg_read(dev, BMP180_REG_MEAS_CTRL, &ctrlreg, 1); if (ret) { return ret; } /* bit 5 is 1 until data registers are ready */ if ((ctrlreg & BMP180_STATUS_CMD_RDY) == 0) { break; } --retry; if (retry == 0) { return -ETIMEDOUT; } } return 0; } static int read_raw_temperature(const struct device *dev) { int ret; uint8_t reg16[2]; struct bmp180_data *data = dev->data; /* send temperature measurement command */ ret = bmp180_reg_write(dev, BMP180_REG_MEAS_CTRL, BMP180_CMD_GET_TEMPERATURE); if (ret) { return ret; } ret = bmp180_conv_ready(dev, BMP180_CMD_GET_TEMP_DELAY); if (ret) { return ret; } /* read msb and lsb */ ret = bmp180_reg_read(dev, BMP180_REG_MSB, (uint8_t *)®16, 2); if (ret) { return ret; } data->raw_temp = (int32_t)(sys_get_be16(reg16)); data->comp_temp = 0; return 0; } static int read_raw_pressure(const struct device *dev) { int ret; uint8_t ctrlreg; uint8_t reg24[3]; uint32_t delay; int32_t pressure; struct bmp180_data *data = dev->data; switch (data->osr_pressure) { case BMP180_ULTRALOWPOWER: ctrlreg = BMP180_CMD_GET_OSS0_PRESS; delay = BMP180_CMD_GET_OSS0_DELAY; break; case BMP180_STANDARD: ctrlreg = BMP180_CMD_GET_OSS1_PRESS; delay = BMP180_CMD_GET_OSS1_DELAY; break; case BMP180_HIGHRES: ctrlreg = BMP180_CMD_GET_OSS2_PRESS; delay = BMP180_CMD_GET_OSS2_DELAY; break; case BMP180_ULTRAHIGH: ctrlreg = BMP180_CMD_GET_OSS3_PRESS; delay = BMP180_CMD_GET_OSS3_DELAY; break; default: return -EINVAL; } ret = bmp180_reg_write(dev, BMP180_REG_MEAS_CTRL, ctrlreg); if (ret) { return ret; } ret = bmp180_conv_ready(dev, delay); if (ret) { return ret; } /* read msb,lsb and xlsb */ ret = bmp180_reg_read(dev, BMP180_REG_MSB, (uint8_t *)®24, 3); if (ret) { return ret; } pressure = (int32_t)sys_get_be24(reg24); pressure >>= (8 - data->osr_pressure); data->raw_press = pressure; return 0; } static int bmp180_sample_fetch(const struct device *dev, enum sensor_channel chan) { int ret = 0; __ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL); #ifdef CONFIG_PM_DEVICE enum pm_device_state state; (void)pm_device_state_get(dev, &state); if (state != PM_DEVICE_STATE_ACTIVE) { return -EBUSY; } #endif /* CONFIG_PM_DEVICE */ pm_device_busy_set(dev); ret = read_raw_temperature(dev); if (ret < 0) { goto error; } ret = read_raw_pressure(dev); error: pm_device_busy_clear(dev); return ret; } static void bmp180_compensate_temp(struct bmp180_data *data) { int32_t partial_data1; int32_t partial_data2; int32_t divisor; struct bmp180_cal_data *cal = &data->cal; partial_data1 = (data->raw_temp - cal->ac6) * cal->ac5 / 0x8000; /* Check divisor before division */ divisor = partial_data1 + cal->md; __ASSERT(divisor != 0, "divisor is zero: partial_data1=%d, md=%d", partial_data1, cal->md); partial_data2 = cal->mc * 0x800 / divisor; /* Store for pressure calculation */ data->comp_temp = (partial_data1 + partial_data2); } static int bmp180_temp_channel_get(const struct device *dev, struct sensor_value *val) { struct bmp180_data *data = dev->data; if (data->comp_temp == 0) { bmp180_compensate_temp(data); } float ftmp = ((data->comp_temp + 8) >> 4) / 10.0; int64_t tmp = (int64_t)floorf(ftmp * 1000000); val->val1 = tmp / 1000000; val->val2 = tmp % 1000000; return 0; } static uint32_t bmp180_compensate_press(struct bmp180_data *data) { uint64_t partial_B7; uint64_t partial_B4; int32_t partial_X1; int32_t partial_X2; int32_t partial_X3; int32_t partial_B3; int32_t partial_B6; uint32_t comp_press; int32_t raw_pressure = data->raw_press; struct bmp180_cal_data *cal = &data->cal; partial_B6 = data->comp_temp - 4000; partial_X1 = cal->b2 * partial_B6 * (float)(1.0f * partial_B6 / 0x800000); partial_X2 = (cal->ac2 * partial_B6) / 0x800; partial_X3 = partial_X1 + partial_X2; partial_B3 = (((cal->ac1 * 4 + partial_X3) << data->osr_pressure) + 2) / 4; partial_X1 = (cal->ac3 * partial_B6) / 0x2000; partial_X2 = cal->b1 * partial_B6 * (float)(1.0f * partial_B6 / 0x8000000); partial_X3 = (partial_X1 + partial_X2 + 2) / 4; partial_B4 = (uint64_t)(cal->ac4 * ((int64_t)(partial_X3) + 32768)) >> 15; partial_B7 = (uint64_t)(raw_pressure - partial_B3) * (50000 >> data->osr_pressure); comp_press = (uint32_t)(partial_B7 / partial_B4 * 2); partial_X1 = comp_press * (float)(1.0f * comp_press / 0x10000); partial_X1 = (partial_X1 * 3038) / 0x10000; partial_X2 = ((int32_t)(-7357 * comp_press)) / 0x10000; comp_press += (partial_X1 + partial_X2 + 3791) / 16; /* returned value is Pa */ return comp_press; } static int bmp180_press_channel_get(const struct device *dev, struct sensor_value *val) { struct bmp180_data *data = dev->data; if (data->comp_temp == 0) { bmp180_compensate_temp(data); } uint32_t tmp = bmp180_compensate_press(data); /* tmp is Pa. Convert to kPa as specified in sensor * interface. */ val->val1 = tmp / 1000; val->val2 = (tmp % 1000) * 1000; return 0; } static int bmp180_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val) { switch (chan) { case SENSOR_CHAN_PRESS: bmp180_press_channel_get(dev, val); break; case SENSOR_CHAN_DIE_TEMP: bmp180_temp_channel_get(dev, val); break; default: LOG_DBG("Channel not supported."); return -ENOTSUP; } return 0; } static int bmp180_get_calibration_data(const struct device *dev) { struct bmp180_data *data = dev->data; struct bmp180_cal_data *cal = &data->cal; if (bmp180_reg_read(dev, BMP180_REG_CALIB0, (uint8_t *)cal, sizeof(struct bmp180_cal_data)) < 0) { return -EIO; } cal->ac1 = BSWAP_s16(cal->ac1); cal->ac2 = BSWAP_s16(cal->ac2); cal->ac3 = BSWAP_s16(cal->ac3); cal->ac4 = BSWAP_u16(cal->ac4); cal->ac5 = BSWAP_u16(cal->ac5); cal->ac6 = BSWAP_u16(cal->ac6); cal->b1 = BSWAP_s16(cal->b1); cal->b2 = BSWAP_s16(cal->b2); cal->mb = BSWAP_s16(cal->mb); cal->mc = BSWAP_s16(cal->mc); cal->md = BSWAP_s16(cal->md); return 0; } #ifdef CONFIG_PM_DEVICE static int bmp180_pm_action(const struct device *dev, enum pm_device_action action) { /* no power saving feature in bmp180 */ return 0; } #endif /* CONFIG_PM_DEVICE */ static DEVICE_API(sensor, bmp180_api) = { .attr_set = bmp180_attr_set, .sample_fetch = bmp180_sample_fetch, .channel_get = bmp180_channel_get, }; static int bmp180_init(const struct device *dev) { uint8_t val = 0U; if (bmp180_bus_check(dev) < 0) { LOG_DBG("bus check failed"); return -ENODEV; } /* reboot the chip */ if (bmp180_reg_write(dev, BMP180_REG_CMD, BMP180_CMD_SOFT_RESET) < 0) { LOG_ERR("Cannot reboot chip."); return -EIO; } k_sleep(K_MSEC(2)); if (bmp180_reg_read(dev, BMP180_REG_CHIPID, &val, 1) < 0) { LOG_ERR("Failed to read chip id."); return -EIO; } if (val != BMP180_CHIP_ID) { LOG_ERR("Unsupported chip detected (0x%x)!", val); return -ENODEV; } /* Read calibration data */ if (bmp180_get_calibration_data(dev) < 0) { LOG_ERR("Failed to read calibration data."); return -EIO; } return 0; } #define BMP180_INST(inst) \ static struct bmp180_data bmp180_data_##inst = {\ .osr_pressure = DT_INST_ENUM_IDX(inst, osr_press),\ };\ static const struct bmp180_config bmp180_config_##inst = {\ .i2c = I2C_DT_SPEC_INST_GET(inst),\ };\ PM_DEVICE_DT_INST_DEFINE(inst, bmp180_pm_action);\ SENSOR_DEVICE_DT_INST_DEFINE(inst, bmp180_init, PM_DEVICE_DT_INST_GET(inst),\ &bmp180_data_##inst, &bmp180_config_##inst,\ POST_KERNEL, CONFIG_SENSOR_INIT_PRIORITY,\ &bmp180_api); DT_INST_FOREACH_STATUS_OKAY(BMP180_INST)