/* * Copyright 2023 Nikhef * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT atmel_sam_hsmci #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(hsmci, CONFIG_SDHC_LOG_LEVEL); #ifdef HSMCI_MR_PDCMODE #ifdef CONFIG_SAM_HSMCI_PDCMODE #define _HSMCI_PDCMODE #endif #endif #ifdef CONFIG_SAM_HSMCI_PWRSAVE #if (CONFIG_SAM_HSMCI_PWRSAVE_DIV < 0) || (CONFIG_SAM_HSMCI_PWRSAVE_DIV > 7) #error "CONFIG_SAM_HSMCI_PWRSAVE_DIV must be 0 to 7" #endif #endif #define _HSMCI_DEFAULT_TIMEOUT 5000 #define _HSMCI_MAX_FREQ (SOC_ATMEL_SAM_MCK_FREQ_HZ >> 1) #define _HSMCI_MIN_FREQ (_HSMCI_MAX_FREQ / 0x200) #define _MSMCI_MAX_DIVISOR 0x1FF #define _HSMCI_SR_ERR (HSMCI_SR_RINDE \ | HSMCI_SR_RDIRE \ | HSMCI_SR_RCRCE \ | HSMCI_SR_RENDE \ | HSMCI_SR_RTOE \ | HSMCI_SR_DCRCE \ | HSMCI_SR_DTOE \ | HSMCI_SR_CSTOE \ | HSMCI_SR_OVRE \ | HSMCI_SR_UNRE) static const uint8_t _resp2size[] = { [SD_RSP_TYPE_NONE] = HSMCI_CMDR_RSPTYP_NORESP, [SD_RSP_TYPE_R1] = HSMCI_CMDR_RSPTYP_48_BIT, [SD_RSP_TYPE_R1b] = HSMCI_CMDR_RSPTYP_R1B, [SD_RSP_TYPE_R2] = HSMCI_CMDR_RSPTYP_136_BIT, [SD_RSP_TYPE_R3] = HSMCI_CMDR_RSPTYP_48_BIT, [SD_RSP_TYPE_R4] = HSMCI_CMDR_RSPTYP_48_BIT, [SD_RSP_TYPE_R5] = 0 /* SDIO not supported */, [SD_RSP_TYPE_R5b] = 0 /* SDIO not supported */, [SD_RSP_TYPE_R6] = HSMCI_CMDR_RSPTYP_48_BIT, [SD_RSP_TYPE_R7] = HSMCI_CMDR_RSPTYP_48_BIT, }; /* timeout multiplier shift (actual value is 1 << _mul_shift[*]) */ static const uint8_t _mul_shift[] = {0, 4, 7, 8, 10, 12, 16, 20}; static const uint8_t _mul_shift_size = 8; struct sam_hsmci_config { Hsmci *base; const struct atmel_sam_pmc_config clock_cfg; const struct pinctrl_dev_config *pincfg; struct gpio_dt_spec carrier_detect; }; struct sam_hsmci_data { bool open_drain; uint8_t cmd_in_progress; struct k_mutex mtx; }; static int sam_hsmci_reset(const struct device *dev) { const struct sam_hsmci_config *config = dev->config; Hsmci *hsmci = config->base; uint32_t mr = hsmci->HSMCI_MR; uint32_t dtor = hsmci->HSMCI_DTOR; uint32_t sdcr = hsmci->HSMCI_SDCR; uint32_t cstor = hsmci->HSMCI_CSTOR; uint32_t cfg = hsmci->HSMCI_CFG; hsmci->HSMCI_CR = HSMCI_CR_SWRST; hsmci->HSMCI_MR = mr; hsmci->HSMCI_DTOR = dtor; hsmci->HSMCI_SDCR = sdcr; hsmci->HSMCI_CSTOR = cstor; hsmci->HSMCI_CFG = cfg; hsmci->HSMCI_CR = HSMCI_CR_PWSEN | HSMCI_CR_MCIEN; return 0; } static int sam_hsmci_get_host_props(const struct device *dev, struct sdhc_host_props *props) { memset(props, 0, sizeof(*props)); props->f_max = _HSMCI_MAX_FREQ; props->f_min = _HSMCI_MIN_FREQ; /* high-speed not working yet due to limitations of the SDHC sm */ props->host_caps.high_spd_support = false; props->power_delay = 500; props->is_spi = false; props->max_current_330 = 4; return 0; } static int sam_hsmci_set_io(const struct device *dev, struct sdhc_io *ios) { const struct sam_hsmci_config *config = dev->config; struct sam_hsmci_data *data = dev->data; Hsmci *hsmci = config->base; uint32_t frequency; uint32_t div_val; int ret; LOG_DBG("%s(clock=%d, bus_width=%d, timing=%d, mode=%d)", __func__, ios->clock, ios->bus_width, ios->timing, ios->bus_mode); if (ios->clock > 0) { if (ios->clock > _HSMCI_MAX_FREQ) { return -ENOTSUP; } ret = clock_control_get_rate(SAM_DT_PMC_CONTROLLER, (clock_control_subsys_t)&config->clock_cfg, &frequency); if (ret < 0) { LOG_ERR("Failed to get clock rate, err=%d", ret); return ret; } div_val = frequency / ios->clock - 2; if (div_val < 0) { div_val = 0; } if (div_val > _MSMCI_MAX_DIVISOR) { div_val = _MSMCI_MAX_DIVISOR; } LOG_DBG("divider: %d (freq=%d)", div_val, frequency / (div_val + 2)); hsmci->HSMCI_MR &= ~HSMCI_MR_CLKDIV_Msk; hsmci->HSMCI_MR |= ((div_val & 1) ? HSMCI_MR_CLKODD : 0) | HSMCI_MR_CLKDIV(div_val >> 1); } if (ios->bus_width) { hsmci->HSMCI_SDCR &= ~HSMCI_SDCR_SDCBUS_Msk; switch (ios->bus_width) { case SDHC_BUS_WIDTH1BIT: hsmci->HSMCI_SDCR = HSMCI_SDCR_SDCBUS_1; break; case SDHC_BUS_WIDTH4BIT: hsmci->HSMCI_SDCR = HSMCI_SDCR_SDCBUS_4; break; default: return -ENOTSUP; } } data->open_drain = (ios->bus_mode == SDHC_BUSMODE_OPENDRAIN); if (ios->timing) { switch (ios->timing) { case SDHC_TIMING_LEGACY: hsmci->HSMCI_CFG &= ~HSMCI_CFG_HSMODE; break; case SDHC_TIMING_HS: hsmci->HSMCI_CFG |= HSMCI_CFG_HSMODE; break; default: return -ENOTSUP; } } return 0; } static int sam_hsmci_init(const struct device *dev) { const struct sam_hsmci_config *config = dev->config; int ret; /* Connect pins to the peripheral */ ret = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { LOG_ERR("pinctrl_apply_state() => %d", ret); return ret; } /* Enable module's clock */ (void)clock_control_on(SAM_DT_PMC_CONTROLLER, (clock_control_subsys_t)&config->clock_cfg); /* init carrier detect (if set) */ if (config->carrier_detect.port != NULL) { if (!gpio_is_ready_dt(&config->carrier_detect)) { LOG_ERR("GPIO port for carrier-detect pin is not ready"); return -ENODEV; } ret = gpio_pin_configure_dt(&config->carrier_detect, GPIO_INPUT); if (ret < 0) { LOG_ERR("Couldn't configure carrier-detect pin; (%d)", ret); return ret; } } Hsmci *hsmci = config->base; /* reset the device */ hsmci->HSMCI_CR = HSMCI_CR_SWRST; hsmci->HSMCI_CR = HSMCI_CR_PWSDIS; hsmci->HSMCI_CR = HSMCI_CR_MCIEN; #ifdef CONFIG_SAM_HSMCI_PWRSAVE hsmci->HSMCI_MR = HSMCI_MR_RDPROOF | HSMCI_MR_WRPROOF | HSMCI_MR_PWSDIV(CONFIG_SAM_HSMCI_PWRSAVE_DIV); hsmci->HSMCI_CR = HSMCI_CR_PWSEN; #else hsmci->HSMCI_MR = HSMCI_MR_RDPROOF | HSMCI_MR_WRPROOF; #endif return 0; } static int sam_hsmci_get_card_present(const struct device *dev) { const struct sam_hsmci_config *config = dev->config; if (config->carrier_detect.port == NULL) { return 1; } return gpio_pin_get_dt(&config->carrier_detect); } static int sam_hsmci_card_busy(const struct device *dev) { const struct sam_hsmci_config *config = dev->config; Hsmci *hsmci = config->base; return (hsmci->HSMCI_SR & HSMCI_SR_NOTBUSY) == 0; } static void sam_hsmci_send_clocks(Hsmci *hsmci) { hsmci->HSMCI_MR &= ~(HSMCI_MR_WRPROOF | HSMCI_MR_RDPROOF | HSMCI_MR_FBYTE); hsmci->HSMCI_ARGR = 0; hsmci->HSMCI_CMDR = HSMCI_CMDR_RSPTYP_NORESP | HSMCI_CMDR_SPCMD_INIT | HSMCI_CMDR_OPDCMD_OPENDRAIN; while (!(hsmci->HSMCI_SR & HSMCI_SR_CMDRDY)) { ; } hsmci->HSMCI_MR |= HSMCI_MR_WRPROOF | HSMCI_MR_RDPROOF; } static int sam_hsmci_send_cmd(Hsmci *hsmci, struct sdhc_command *cmd, uint32_t cmdr, struct sam_hsmci_data *data) { uint32_t sr; hsmci->HSMCI_ARGR = cmd->arg; cmdr |= HSMCI_CMDR_CMDNB(cmd->opcode) | HSMCI_CMDR_MAXLAT_64; if (data->open_drain) { cmdr |= HSMCI_CMDR_OPDCMD_OPENDRAIN; } uint8_t nrt = cmd->response_type & SDHC_NATIVE_RESPONSE_MASK; if (nrt > SD_RSP_TYPE_R7) { return -ENOTSUP; } cmdr |= _resp2size[nrt]; hsmci->HSMCI_CMDR = cmdr; do { sr = hsmci->HSMCI_SR; /* special case ,ignore CRC status if response is R3 to clear it */ if (nrt == SD_RSP_TYPE_R3 || nrt == SD_RSP_TYPE_NONE) { sr &= ~HSMCI_SR_RCRCE; } if ((sr & _HSMCI_SR_ERR) != 0) { LOG_DBG("Status register error bits: %08x", sr & _HSMCI_SR_ERR); return -EIO; } } while (!(sr & HSMCI_SR_CMDRDY)); if (nrt == SD_RSP_TYPE_R1b) { do { sr = hsmci->HSMCI_SR; } while (!((sr & HSMCI_SR_NOTBUSY) && ((sr & HSMCI_SR_DTIP) == 0))); } /* RSPR is just a FIFO, index is of no consequence */ cmd->response[3] = hsmci->HSMCI_RSPR[0]; cmd->response[2] = hsmci->HSMCI_RSPR[0]; cmd->response[1] = hsmci->HSMCI_RSPR[0]; cmd->response[0] = hsmci->HSMCI_RSPR[0]; return 0; } static int sam_hsmci_wait_write_end(Hsmci *hsmci) { uint32_t sr = 0; #ifdef _HSMCI_PDCMODE /* Timeout is included in HSMCI, see DTOE bit, not required explicitly. */ do { sr = hsmci->HSMCI_SR; if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) { LOG_DBG("PDC sr 0x%08x error", sr); return -EIO; } } while (!(sr & HSMCI_SR_TXBUFE)); #endif do { sr = hsmci->HSMCI_SR; if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) { LOG_DBG("PDC sr 0x%08x last transfer error", sr); return -EIO; } } while (!(sr & HSMCI_SR_NOTBUSY)); if (!(hsmci->HSMCI_SR & HSMCI_SR_FIFOEMPTY)) { return -EIO; } return 0; } static int sam_hsmci_wait_read_end(Hsmci *hsmci) { uint32_t sr; #ifdef _HSMCI_PDCMODE do { sr = hsmci->HSMCI_SR; if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) { LOG_DBG("PDC sr 0x%08x error", sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)); return -EIO; } } while (!(sr & HSMCI_SR_RXBUFF)); #endif do { sr = hsmci->HSMCI_SR; if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) { return -EIO; } } while (!(sr & HSMCI_SR_XFRDONE)); return 0; } static int sam_hsmci_write_timeout(Hsmci *hsmci, int timeout_ms) { /* convert to clocks (coarsely) */ int clocks = ATMEL_SAM_DT_CPU_CLK_FREQ_HZ / 1000 * timeout_ms; int mul, max_clock; for (int i = 0; i < _mul_shift_size; i++) { mul = 1 << _mul_shift[i]; max_clock = 15 * mul; if (max_clock > clocks) { hsmci->HSMCI_DTOR = ((i << HSMCI_DTOR_DTOMUL_Pos) & HSMCI_DTOR_DTOMUL_Msk) | HSMCI_DTOR_DTOCYC((clocks + mul - 1) / mul); return 0; } } /* * So, if it is > maximum timeout... we'll just put it on the maximum the driver supports * its not nice.. but it should work.. what else is there to do? */ hsmci->HSMCI_DTOR = HSMCI_DTOR_DTOMUL_Msk | HSMCI_DTOR_DTOCYC_Msk; return 0; } static inline int wait_write_transfer_done(Hsmci *hsmci) { int sr; do { sr = hsmci->HSMCI_SR; if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) { return -EIO; } } while (!(sr & HSMCI_SR_TXRDY)); return 0; } static inline int wait_read_transfer_done(Hsmci *hsmci) { int sr; do { sr = HSMCI->HSMCI_SR; if (sr & (HSMCI_SR_UNRE | HSMCI_SR_OVRE | HSMCI_SR_DTOE | HSMCI_SR_DCRCE)) { return -EIO; } } while (!(sr & HSMCI_SR_RXRDY)); return 0; } #ifndef _HSMCI_PDCMODE static int hsmci_do_manual_transfer(Hsmci *hsmci, bool byte_mode, bool is_write, void *data, int transfer_count) { int ret; if (is_write) { if (byte_mode) { const uint8_t *ptr = data; while (transfer_count-- > 0) { ret = wait_write_transfer_done(hsmci); if (ret != 0) { return ret; } hsmci->HSMCI_TDR = *ptr; ptr++; } } else { const uint32_t *ptr = data; while (transfer_count-- > 0) { ret = wait_write_transfer_done(hsmci); if (ret != 0) { return ret; } hsmci->HSMCI_TDR = *ptr; ptr++; } } ret = sam_hsmci_wait_write_end(hsmci); } else { if (byte_mode) { uint8_t *ptr = data; while (transfer_count-- > 0) { ret = wait_read_transfer_done(hsmci); if (ret != 0) { return ret; } *ptr = hsmci->HSMCI_RDR; ptr++; } } else { uint32_t *ptr = data; while (transfer_count-- > 0) { ret = wait_read_transfer_done(hsmci); if (ret != 0) { return ret; } *ptr = hsmci->HSMCI_RDR; ptr++; } } ret = sam_hsmci_wait_read_end(hsmci); } return ret; } #endif /* !_HSMCI_PDCMODE */ static int sam_hsmci_request_inner(const struct device *dev, struct sdhc_command *cmd, struct sdhc_data *sd_data) { const struct sam_hsmci_config *config = dev->config; struct sam_hsmci_data *data = dev->data; Hsmci *hsmci = config->base; uint32_t sr; uint32_t size; uint32_t transfer_count; uint32_t cmdr = 0; int ret; bool is_write, byte_mode; LOG_DBG("%s(opcode=%d, arg=%08x, data=%08x, rsptype=%d)", __func__, cmd->opcode, cmd->arg, (uint32_t)sd_data, cmd->response_type & SDHC_NATIVE_RESPONSE_MASK); if (cmd->opcode == SD_GO_IDLE_STATE) { /* send 74 clocks, as required by SD spec */ sam_hsmci_send_clocks(hsmci); } if (sd_data) { cmdr |= HSMCI_CMDR_TRCMD_START_DATA; ret = sam_hsmci_write_timeout(hsmci, cmd->timeout_ms); if (ret != 0) { return ret; } switch (cmd->opcode) { case SD_WRITE_SINGLE_BLOCK: cmdr |= HSMCI_CMDR_TRTYP_SINGLE; cmdr |= HSMCI_CMDR_TRDIR_WRITE; is_write = true; break; case SD_WRITE_MULTIPLE_BLOCK: is_write = true; cmdr |= HSMCI_CMDR_TRTYP_MULTIPLE; cmdr |= HSMCI_CMDR_TRDIR_WRITE; break; case SD_APP_SEND_SCR: case SD_SWITCH: case SD_READ_SINGLE_BLOCK: is_write = false; cmdr |= HSMCI_CMDR_TRTYP_SINGLE; cmdr |= HSMCI_CMDR_TRDIR_READ; break; case SD_READ_MULTIPLE_BLOCK: is_write = false; cmdr |= HSMCI_CMDR_TRTYP_MULTIPLE; cmdr |= HSMCI_CMDR_TRDIR_READ; break; case SD_APP_SEND_NUM_WRITTEN_BLK: is_write = false; break; default: return -ENOTSUP; } if ((sd_data->block_size & 0x3) == 0 && (((uint32_t)sd_data->data) & 0x3) == 0) { size = (sd_data->block_size + 3) >> 2; hsmci->HSMCI_MR &= ~HSMCI_MR_FBYTE; byte_mode = true; } else { size = sd_data->block_size; hsmci->HSMCI_MR |= HSMCI_MR_FBYTE; byte_mode = false; } hsmci->HSMCI_BLKR = HSMCI_BLKR_BLKLEN(sd_data->block_size) | HSMCI_BLKR_BCNT(sd_data->blocks); transfer_count = size * sd_data->blocks; #ifdef _HSMCI_PDCMODE hsmci->HSMCI_MR |= HSMCI_MR_PDCMODE; hsmci->HSMCI_RNCR = 0; if (is_write) { hsmci->HSMCI_TCR = transfer_count; hsmci->HSMCI_TPR = (uint32_t)sd_data->data; } else { hsmci->HSMCI_RCR = transfer_count; hsmci->HSMCI_RPR = (uint32_t)sd_data->data; hsmci->HSMCI_PTCR = HSMCI_PTCR_RXTEN; } } else { hsmci->HSMCI_MR &= ~HSMCI_MR_PDCMODE; #endif /* _HSMCI_PDCMODE */ } ret = sam_hsmci_send_cmd(hsmci, cmd, cmdr, data); if (sd_data) { #ifdef _HSMCI_PDCMODE if (ret == 0) { if (is_write) { hsmci->HSMCI_PTCR = HSMCI_PTCR_TXTEN; ret = sam_hsmci_wait_write_end(hsmci); } else { ret = sam_hsmci_wait_read_end(hsmci); } } hsmci->HSMCI_PTCR = HSMCI_PTCR_TXTDIS | HSMCI_PTCR_RXTDIS; hsmci->HSMCI_MR &= ~HSMCI_MR_PDCMODE; #else /* !_HSMCI_PDCMODE */ if (ret == 0) { ret = hsmci_do_manual_transfer(hsmci, byte_mode, is_write, sd_data->data, transfer_count); } #endif /* _HSMCI_PDCMODE */ } sr = hsmci->HSMCI_SR; LOG_DBG("RSP0=%08x, RPS1=%08x, RPS2=%08x,RSP3=%08x, SR=%08x", cmd->response[0], cmd->response[1], cmd->response[2], cmd->response[3], sr); return ret; } static void sam_hsmci_abort(const struct device *dev) { #ifdef _HSMCI_PDCMODE const struct sam_hsmci_config *config = dev->config; Hsmci *hsmci = config->base; hsmci->HSMCI_PTCR = HSMCI_PTCR_RXTDIS | HSMCI_PTCR_TXTDIS; #endif /* _HSMCI_PDCMODE */ struct sdhc_command cmd = { .opcode = SD_STOP_TRANSMISSION, .arg = 0, .response_type = SD_RSP_TYPE_NONE}; sam_hsmci_request_inner(dev, &cmd, NULL); } static int sam_hsmci_request(const struct device *dev, struct sdhc_command *cmd, struct sdhc_data *sd_data) { struct sam_hsmci_data *dev_data = dev->data; int busy_timeout = _HSMCI_DEFAULT_TIMEOUT; int ret; ret = k_mutex_lock(&dev_data->mtx, K_MSEC(cmd->timeout_ms)); if (ret) { LOG_ERR("Could not access card"); return -EBUSY; } #ifdef CONFIG_SAM_HSMCI_PWRSAVE const struct sam_hsmci_config *config = dev->config; Hsmci *hsmci = config->base; hsmci->HSMCI_CR = HSMCI_CR_PWSDIS; #endif /* CONFIG_SAM_HSMCI_PWRSAVE */ do { ret = sam_hsmci_request_inner(dev, cmd, sd_data); if (sd_data && (ret || sd_data->blocks > 1)) { sam_hsmci_abort(dev); while (busy_timeout > 0) { if (!sam_hsmci_card_busy(dev)) { break; } k_busy_wait(125); busy_timeout -= 125; } if (busy_timeout <= 0) { LOG_ERR("Card did not idle after CMD12"); ret = -ETIMEDOUT; } } } while (ret != 0 && (cmd->retries-- > 0)); #ifdef CONFIG_SAM_HSMCI_PWRSAVE hsmci->HSMCI_CR = HSMCI_CR_PWSEN; #endif /* CONFIG_SAM_HSMCI_PWRSAVE */ k_mutex_unlock(&dev_data->mtx); return ret; } static DEVICE_API(sdhc, hsmci_api) = { .reset = sam_hsmci_reset, .get_host_props = sam_hsmci_get_host_props, .set_io = sam_hsmci_set_io, .get_card_present = sam_hsmci_get_card_present, .request = sam_hsmci_request, .card_busy = sam_hsmci_card_busy, }; #define SAM_HSMCI_INIT(N) \ PINCTRL_DT_INST_DEFINE(N); \ static const struct sam_hsmci_config hsmci_##N##_config = { \ .base = (Hsmci *)DT_INST_REG_ADDR(N), \ .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(N), \ .clock_cfg = SAM_DT_INST_CLOCK_PMC_CFG(N), \ .carrier_detect = GPIO_DT_SPEC_INST_GET_OR(N, cd_gpios, {0})}; \ static struct sam_hsmci_data hsmci_##N##_data = {}; \ DEVICE_DT_INST_DEFINE(N, &sam_hsmci_init, NULL, &hsmci_##N##_data, &hsmci_##N##_config, \ POST_KERNEL, CONFIG_SDHC_INIT_PRIORITY, &hsmci_api); DT_INST_FOREACH_STATUS_OKAY(SAM_HSMCI_INIT)