/* * Copyright (c) 2023 Bjarki Arge Andreasen * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT atmel_sam_rtc #include #include #include #include #include #include #include #include "rtc_utils.h" #define RTC_SAM_REG_GET_FIELD(value, field) \ ((RTC_##field##_Msk & value) >> RTC_##field##_Pos) #define RTC_SAM_WPMR_DISABLE 0x52544300 #define RTC_SAM_WPMR_ENABLE 0x52544301 #define RTC_SAM_CALIBRATE_PPB_MAX (1950000) #define RTC_SAM_CALIBRATE_PPB_MIN (-1950000) #define RTC_SAM_CALIBRATE_PPB_QUANTA (1500) #define RTC_SAM_CALIBRATE_PPB_LOW_SCALE (30500) #define RTC_SAM_TIME_MASK \ (RTC_ALARM_TIME_MASK_SECOND | RTC_ALARM_TIME_MASK_MINUTE | RTC_ALARM_TIME_MASK_HOUR | \ RTC_ALARM_TIME_MASK_MONTH | RTC_ALARM_TIME_MASK_MONTHDAY | RTC_ALARM_TIME_MASK_YEAR | \ RTC_ALARM_TIME_MASK_WEEKDAY) typedef void (*rtc_sam_irq_init_fn_ptr)(void); struct rtc_sam_config { Rtc *regs; uint16_t irq_num; rtc_sam_irq_init_fn_ptr irq_init_fn_ptr; }; struct rtc_sam_data { #ifdef CONFIG_RTC_ALARM rtc_alarm_callback alarm_callback; void *alarm_user_data; #endif /* CONFIG_RTC_ALARM */ #ifdef CONFIG_RTC_UPDATE rtc_update_callback update_callback; void *update_user_data; #endif /* CONFIG_RTC_UPDATE */ struct k_spinlock lock; struct k_sem cr_sec_evt_sem; struct k_sem cr_upd_ack_sem; }; static void rtc_sam_disable_wp(void) { REG_RTC_WPMR = RTC_SAM_WPMR_DISABLE; } static void rtc_sam_enable_wp(void) { REG_RTC_WPMR = RTC_SAM_WPMR_ENABLE; } static uint32_t rtc_sam_timr_from_tm(const struct rtc_time *timeptr) { uint32_t timr; timr = RTC_TIMR_SEC(bin2bcd(timeptr->tm_sec)); timr |= RTC_TIMR_MIN(bin2bcd(timeptr->tm_min)); timr |= RTC_TIMR_HOUR(bin2bcd(timeptr->tm_hour)); return timr; } static uint32_t rtc_sam_calr_from_tm(const struct rtc_time *timeptr) { uint32_t calr; uint8_t centuries; uint8_t years; calr = RTC_CALR_DATE(bin2bcd(timeptr->tm_mday)); calr |= RTC_CALR_MONTH(bin2bcd(timeptr->tm_mon + 1)); centuries = (uint8_t)((timeptr->tm_year / 100) + 19); years = (uint8_t)((timeptr->tm_year % 100)); calr |= RTC_CALR_CENT(bin2bcd(centuries)); calr |= RTC_CALR_YEAR(bin2bcd(years)); calr |= RTC_CALR_DAY(bin2bcd(timeptr->tm_wday + 1)); return calr; } static int rtc_sam_set_time(const struct device *dev, const struct rtc_time *timeptr) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; if (rtc_utils_validate_rtc_time(timeptr, RTC_SAM_TIME_MASK) == false) { return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&data->lock); k_sem_reset(&data->cr_sec_evt_sem); k_sem_take(&data->cr_sec_evt_sem, K_MSEC(1100)); k_sem_reset(&data->cr_upd_ack_sem); /* Enable update acknowledge interrupt */ regs->RTC_IER = RTC_IER_ACKEN; rtc_sam_disable_wp(); /* Request update */ regs->RTC_CR = (RTC_CR_UPDTIM | RTC_CR_UPDCAL); /* Await update acknowledge */ if (k_sem_take(&data->cr_upd_ack_sem, K_MSEC(1100)) < 0) { regs->RTC_CR = 0; rtc_sam_enable_wp(); /* Disable update acknowledge interrupt */ regs->RTC_IDR = RTC_IDR_ACKDIS; k_spin_unlock(&data->lock, key); return -EAGAIN; } regs->RTC_TIMR = rtc_sam_timr_from_tm(timeptr); regs->RTC_CALR = rtc_sam_calr_from_tm(timeptr); regs->RTC_CR = 0; rtc_sam_enable_wp(); regs->RTC_IDR = RTC_IDR_ACKDIS; k_spin_unlock(&data->lock, key); return 0; } static int rtc_sam_get_time(const struct device *dev, struct rtc_time *timeptr) { const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; uint32_t timr0; uint32_t calr0; uint32_t timr1; uint32_t calr1; /* Validate time and date */ if (regs->RTC_VER & (RTC_VER_NVTIM | RTC_VER_NVCAL)) { return -ENODATA; } /* Read until synchronized (registers updated async) */ while (1) { timr0 = regs->RTC_TIMR; calr0 = regs->RTC_CALR; timr1 = regs->RTC_TIMR; calr1 = regs->RTC_CALR; if ((timr0 == timr1) && (calr0 == calr1)) { break; } } timeptr->tm_sec = bcd2bin(RTC_SAM_REG_GET_FIELD(timr0, TIMR_SEC)); timeptr->tm_min = bcd2bin(RTC_SAM_REG_GET_FIELD(timr0, TIMR_MIN)); timeptr->tm_hour = bcd2bin(RTC_SAM_REG_GET_FIELD(timr0, TIMR_HOUR)); timeptr->tm_mday = bcd2bin(RTC_SAM_REG_GET_FIELD(calr0, CALR_DATE)); timeptr->tm_mon = bcd2bin(RTC_SAM_REG_GET_FIELD(calr0, CALR_MONTH)) - 1; timeptr->tm_year = bcd2bin(RTC_SAM_REG_GET_FIELD(calr0, CALR_YEAR)); timeptr->tm_year += ((int)bcd2bin(RTC_SAM_REG_GET_FIELD(calr0, CALR_CENT))) * 100; timeptr->tm_year -= 1900; timeptr->tm_wday = bcd2bin(RTC_SAM_REG_GET_FIELD(calr0, CALR_DAY)) - 1; timeptr->tm_yday = -1; timeptr->tm_isdst = -1; timeptr->tm_nsec = 0; return 0; } static void rtc_sam_isr(const struct device *dev) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; uint32_t sr = regs->RTC_SR; if (sr & RTC_SR_ACKUPD) { regs->RTC_SCCR = RTC_SCCR_ACKCLR; k_sem_give(&data->cr_upd_ack_sem); } #ifdef CONFIG_RTC_ALARM if (sr & RTC_SR_ALARM) { regs->RTC_SCCR = RTC_SCCR_ALRCLR; if (data->alarm_callback != NULL) { data->alarm_callback(dev, 0, data->alarm_user_data); } } #endif /* CONFIG_RTC_ALARM */ #ifdef CONFIG_RTC_UPDATE if (sr & RTC_SR_SEC) { regs->RTC_SCCR = RTC_SCCR_SECCLR; if (data->update_callback != NULL) { data->update_callback(dev, data->update_user_data); } k_sem_give(&data->cr_sec_evt_sem); } #endif /* CONFIG_RTC_UPDATE */ } #ifdef CONFIG_RTC_ALARM static uint16_t rtc_sam_alarm_get_supported_mask(void) { return (RTC_ALARM_TIME_MASK_SECOND | RTC_ALARM_TIME_MASK_MINUTE | RTC_ALARM_TIME_MASK_HOUR | RTC_ALARM_TIME_MASK_MONTHDAY | RTC_ALARM_TIME_MASK_MONTH); } static uint32_t rtc_atmel_timalr_from_tm(const struct rtc_time *timeptr, uint32_t mask) { uint32_t timalr = 0; if (mask & RTC_ALARM_TIME_MASK_SECOND) { timalr |= RTC_TIMALR_SECEN; timalr |= RTC_TIMALR_SEC(bin2bcd(timeptr->tm_sec)); } if (mask & RTC_ALARM_TIME_MASK_MINUTE) { timalr |= RTC_TIMALR_MINEN; timalr |= RTC_TIMALR_MIN(bin2bcd(timeptr->tm_min)); } if (mask & RTC_ALARM_TIME_MASK_HOUR) { timalr |= RTC_TIMALR_HOUREN; timalr |= RTC_TIMALR_HOUR(bin2bcd(timeptr->tm_hour)); } return timalr; } static uint32_t rtc_atmel_calalr_from_tm(const struct rtc_time *timeptr, uint32_t mask) { uint32_t calalr = RTC_CALALR_MONTH(1) | RTC_CALALR_DATE(1); if (mask & RTC_ALARM_TIME_MASK_MONTH) { calalr |= RTC_CALALR_MTHEN; calalr |= RTC_CALALR_MONTH(bin2bcd(timeptr->tm_mon + 1)); } if (mask & RTC_ALARM_TIME_MASK_MONTHDAY) { calalr |= RTC_CALALR_DATEEN; calalr |= RTC_CALALR_DATE(bin2bcd(timeptr->tm_mday)); } return calalr; } static uint32_t rtc_sam_alarm_mask_from_timalr(uint32_t timalr) { uint32_t mask = 0; if (timalr & RTC_TIMALR_SECEN) { mask |= RTC_ALARM_TIME_MASK_SECOND; } if (timalr & RTC_TIMALR_MINEN) { mask |= RTC_ALARM_TIME_MASK_MINUTE; } if (timalr & RTC_TIMALR_HOUREN) { mask |= RTC_ALARM_TIME_MASK_HOUR; } return mask; } static uint32_t rtc_sam_alarm_mask_from_calalr(uint32_t calalr) { uint32_t mask = 0; if (calalr & RTC_CALALR_MTHEN) { mask |= RTC_ALARM_TIME_MASK_MONTH; } if (calalr & RTC_CALALR_DATEEN) { mask |= RTC_ALARM_TIME_MASK_MONTHDAY; } return mask; } static void rtc_sam_tm_from_timalr_calalr(struct rtc_time *timeptr, uint32_t mask, uint32_t timalr, uint32_t calalr) { memset(timeptr, 0x00, sizeof(*timeptr)); if (mask & RTC_ALARM_TIME_MASK_SECOND) { timeptr->tm_sec = bcd2bin(RTC_SAM_REG_GET_FIELD(timalr, TIMALR_SEC)); } if (mask & RTC_ALARM_TIME_MASK_MINUTE) { timeptr->tm_min = bcd2bin(RTC_SAM_REG_GET_FIELD(timalr, TIMALR_MIN)); } if (mask & RTC_ALARM_TIME_MASK_HOUR) { timeptr->tm_hour = bcd2bin(RTC_SAM_REG_GET_FIELD(timalr, TIMALR_HOUR)); } if (mask & RTC_ALARM_TIME_MASK_MONTHDAY) { timeptr->tm_mday = bcd2bin(RTC_SAM_REG_GET_FIELD(calalr, CALALR_DATE)); } if (mask & RTC_ALARM_TIME_MASK_MONTH) { timeptr->tm_mon = bcd2bin(RTC_SAM_REG_GET_FIELD(calalr, CALALR_MONTH)) - 1; } } static int rtc_sam_alarm_get_supported_fields(const struct device *dev, uint16_t id, uint16_t *mask) { ARG_UNUSED(dev); ARG_UNUSED(id); *mask = rtc_sam_alarm_get_supported_mask(); return 0; } static int rtc_sam_alarm_set_time(const struct device *dev, uint16_t id, uint16_t mask, const struct rtc_time *timeptr) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; uint32_t timalr; uint32_t calalr; uint32_t mask_supported; mask_supported = rtc_sam_alarm_get_supported_mask(); if ((id != 0)) { return -EINVAL; } if ((mask > 0) && (timeptr == NULL)) { return -EINVAL; } if (mask & ~mask_supported) { return -EINVAL; } if (rtc_utils_validate_rtc_time(timeptr, mask) == false) { return -EINVAL; } timalr = rtc_atmel_timalr_from_tm(timeptr, mask); calalr = rtc_atmel_calalr_from_tm(timeptr, mask); k_spinlock_key_t key = k_spin_lock(&data->lock); irq_disable(config->irq_num); rtc_sam_disable_wp(); /* Set RTC alarm time */ regs->RTC_TIMALR = timalr; regs->RTC_CALALR = calalr; rtc_sam_enable_wp(); /* Clear alarm pending status */ regs->RTC_SCCR = RTC_SCCR_ALRCLR; irq_enable(config->irq_num); k_spin_unlock(&data->lock, key); return 0; } static int rtc_sam_alarm_get_time(const struct device *dev, uint16_t id, uint16_t *mask, struct rtc_time *timeptr) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; uint32_t timalr; uint32_t calalr; if ((id != 0) || (mask == NULL) || (timeptr == NULL)) { return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&data->lock); timalr = regs->RTC_TIMALR; calalr = regs->RTC_CALALR; k_spin_unlock(&data->lock, key); *mask = rtc_sam_alarm_mask_from_timalr(timalr); *mask |= rtc_sam_alarm_mask_from_calalr(calalr); rtc_sam_tm_from_timalr_calalr(timeptr, *mask, timalr, calalr); return 0; } static int rtc_sam_alarm_is_pending(const struct device *dev, uint16_t id) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; if (id != 0) { return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&data->lock); if ((regs->RTC_SR & RTC_SR_ALARM) == 0) { k_spin_unlock(&data->lock, key); return 0; } regs->RTC_SCCR = RTC_SCCR_ALRCLR; k_spin_unlock(&data->lock, key); return 1; } static int rtc_sam_alarm_set_callback(const struct device *dev, uint16_t id, rtc_alarm_callback callback, void *user_data) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; if (id != 0) { return -EINVAL; } k_spinlock_key_t key = k_spin_lock(&data->lock); irq_disable(config->irq_num); data->alarm_callback = callback; data->alarm_user_data = user_data; if (data->alarm_callback) { regs->RTC_IER = RTC_IER_ALREN; } else { regs->RTC_IDR = RTC_IDR_ALRDIS; } irq_enable(config->irq_num); k_spin_unlock(&data->lock, key); return 0; } #endif /* CONFIG_RTC_ALARM */ #ifdef CONFIG_RTC_UPDATE static int rtc_sam_update_set_callback(const struct device *dev, rtc_update_callback callback, void *user_data) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; k_spinlock_key_t key = k_spin_lock(&data->lock); irq_disable(config->irq_num); data->update_callback = callback; data->update_user_data = user_data; if (data->update_callback) { regs->RTC_IER = RTC_IER_SECEN; } else { regs->RTC_IDR = RTC_IDR_SECDIS; } irq_enable(config->irq_num); k_spin_unlock(&data->lock, key); return 0; } #endif /* CONFIG_RTC_UPDATE */ #ifdef CONFIG_RTC_CALIBRATION static int rtc_sam_set_calibration(const struct device *dev, int32_t calibration) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; bool negative_calibration; bool high_calibration; uint32_t slow_clock_calibration; uint32_t mr; if ((calibration < RTC_SAM_CALIBRATE_PPB_MIN) || (calibration > RTC_SAM_CALIBRATE_PPB_MAX)) { return -EINVAL; } /* The value written to the register is absolute */ if (calibration < 0) { negative_calibration = true; calibration = -calibration; } else { negative_calibration = false; } /* * Formula adapted from * Atmel-11157-32-bit-Cortex-M4-Microcontroller-SAM4E16-SAM4E8_Datasheet.pdf * section 15.6.2 * * Formula if RTC_MR_HIGHPPM is 0 * * RTC_MR_CORRECTION = (3906 / (20 * ppm)) - 1 * * Formula if RTC_MR_HIGHPPM is 1 * * RTC_MR_CORRECTION = (3906 / ppm) - 1 * * Since we are working with ppb, we adapt the formula by increasing the * terms of the fraction by 1000, turning the ppm into ppb * * Adapted formula if RTC_MR_HIGHPPM is 0 * * RTC_MR_CORRECTION = (3906000 / (20 * ppb)) - 1 * * Adapted formula if RTC_MR_HIGHPPM is 1 * * RTC_MR_CORRECTION = (3906000 / ppb) - 1 */ if (calibration < RTC_SAM_CALIBRATE_PPB_QUANTA) { high_calibration = false; slow_clock_calibration = 0; } else if (calibration < RTC_SAM_CALIBRATE_PPB_LOW_SCALE) { high_calibration = false; slow_clock_calibration = (uint32_t)((3906000 / (20 * calibration)) - 1); } else { high_calibration = true; slow_clock_calibration = (uint32_t)((3906000 / calibration) - 1); } k_spinlock_key_t key = k_spin_lock(&data->lock); rtc_sam_disable_wp(); mr = regs->RTC_MR; if (negative_calibration == true) { mr |= RTC_MR_NEGPPM; } else { mr &= ~RTC_MR_NEGPPM; } mr &= ~RTC_MR_CORRECTION_Msk; mr |= RTC_MR_CORRECTION(slow_clock_calibration); if (high_calibration == true) { mr |= RTC_MR_HIGHPPM; } else { mr &= ~RTC_MR_HIGHPPM; } regs->RTC_MR = mr; rtc_sam_enable_wp(); k_spin_unlock(&data->lock, key); return 0; } static int rtc_sam_get_calibration(const struct device *dev, int32_t *calibration) { const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; uint32_t mr; int32_t correction; if (calibration == NULL) { return -EINVAL; } mr = regs->RTC_MR; correction = (int32_t)RTC_SAM_REG_GET_FIELD(mr, MR_CORRECTION); /* Formula documented in rtc_sam_set_calibration() */ if (correction == 0) { *calibration = 0; } else if (mr & RTC_MR_HIGHPPM) { *calibration = 3906000 / (correction + 1); } else { *calibration = 3906000 / ((correction + 1) * 20); } if (mr & RTC_MR_NEGPPM) { *calibration = -*calibration; } return 0; } #endif /* CONFIG_RTC_CALIBRATION */ static DEVICE_API(rtc, rtc_sam_driver_api) = { .set_time = rtc_sam_set_time, .get_time = rtc_sam_get_time, #ifdef CONFIG_RTC_ALARM .alarm_get_supported_fields = rtc_sam_alarm_get_supported_fields, .alarm_set_time = rtc_sam_alarm_set_time, .alarm_get_time = rtc_sam_alarm_get_time, .alarm_is_pending = rtc_sam_alarm_is_pending, .alarm_set_callback = rtc_sam_alarm_set_callback, #endif /* CONFIG_RTC_ALARM */ #ifdef CONFIG_RTC_UPDATE .update_set_callback = rtc_sam_update_set_callback, #endif /* CONFIG_RTC_UPDATE */ #ifdef CONFIG_RTC_CALIBRATION .set_calibration = rtc_sam_set_calibration, .get_calibration = rtc_sam_get_calibration, #endif /* CONFIG_RTC_CALIBRATION */ }; static int rtc_sam_init(const struct device *dev) { struct rtc_sam_data *data = dev->data; const struct rtc_sam_config *config = dev->config; Rtc *regs = config->regs; rtc_sam_disable_wp(); regs->RTC_MR &= ~(RTC_MR_HRMOD | RTC_MR_PERSIAN); regs->RTC_CR = 0; rtc_sam_enable_wp(); regs->RTC_IDR = (RTC_IDR_ACKDIS | RTC_IDR_ALRDIS | RTC_IDR_SECDIS | RTC_IDR_TIMDIS | RTC_IDR_CALDIS | RTC_IDR_TDERRDIS); k_sem_init(&data->cr_sec_evt_sem, 0, 1); k_sem_init(&data->cr_upd_ack_sem, 0, 1); config->irq_init_fn_ptr(); irq_enable(config->irq_num); return 0; } #define RTC_SAM_DEVICE(id) \ static void rtc_sam_irq_init_##id(void) \ { \ IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), \ rtc_sam_isr, DEVICE_DT_INST_GET(id), 0); \ } \ \ static const struct rtc_sam_config rtc_sam_config_##id = { \ .regs = (Rtc *)DT_INST_REG_ADDR(id), \ .irq_num = DT_INST_IRQN(id), \ .irq_init_fn_ptr = rtc_sam_irq_init_##id, \ }; \ \ static struct rtc_sam_data rtc_sam_data_##id; \ \ DEVICE_DT_INST_DEFINE(id, rtc_sam_init, NULL, \ &rtc_sam_data_##id, \ &rtc_sam_config_##id, POST_KERNEL, \ CONFIG_RTC_INIT_PRIORITY, \ &rtc_sam_driver_api); DT_INST_FOREACH_STATUS_OKAY(RTC_SAM_DEVICE);