/* * Copyright (c) 2018, Cue Health Inc * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #ifdef CONFIG_SOC_NRF54H20_GPD #include #endif #include LOG_MODULE_REGISTER(pwm_nrfx, CONFIG_PWM_LOG_LEVEL); /* NRFX_PWM_NRF52_ANOMALY_109_WORKAROUND_ENABLED can be undefined or defined * to 0 or 1, hence the use of #if IS_ENABLED(). */ #if IS_ENABLED(NRFX_PWM_NRF52_ANOMALY_109_WORKAROUND_ENABLED) #define ANOMALY_109_EGU_IRQ_CONNECT(idx) _EGU_IRQ_CONNECT(idx) #define _EGU_IRQ_CONNECT(idx) \ extern void nrfx_egu_##idx##_irq_handler(void); \ IRQ_CONNECT(DT_IRQN(DT_NODELABEL(egu##idx)), \ DT_IRQ(DT_NODELABEL(egu##idx), priority), \ nrfx_isr, nrfx_egu_##idx##_irq_handler, 0) #else #define ANOMALY_109_EGU_IRQ_CONNECT(idx) #endif #define PWM_NRFX_CH_POLARITY_MASK BIT(15) #define PWM_NRFX_CH_COMPARE_MASK BIT_MASK(15) #define PWM_NRFX_CH_VALUE(compare_value, inverted) \ (compare_value | (inverted ? 0 : PWM_NRFX_CH_POLARITY_MASK)) struct pwm_nrfx_config { nrfx_pwm_t pwm; nrfx_pwm_config_t initial_config; nrf_pwm_sequence_t seq; const struct pinctrl_dev_config *pcfg; uint32_t clock_freq; #ifdef CONFIG_DCACHE uint32_t mem_attr; #endif }; struct pwm_nrfx_data { uint32_t period_cycles; /* Bit mask indicating channels that need the PWM generation. */ uint8_t pwm_needed; uint8_t prescaler; bool stop_requested; }; /* Ensure the pwm_needed bit mask can accommodate all available channels. */ #if (NRF_PWM_CHANNEL_COUNT > 8) #error "Current implementation supports maximum 8 channels." #endif static uint16_t *seq_values_ptr_get(const struct device *dev) { const struct pwm_nrfx_config *config = dev->config; return (uint16_t *)config->seq.values.p_raw; } static void pwm_handler(nrfx_pwm_evt_type_t event_type, void *p_context) { ARG_UNUSED(event_type); ARG_UNUSED(p_context); } static bool pwm_period_check_and_set(const struct device *dev, uint32_t channel, uint32_t period_cycles) { const struct pwm_nrfx_config *config = dev->config; struct pwm_nrfx_data *data = dev->data; uint8_t prescaler; uint32_t countertop; /* If the currently configured period matches the requested one, * nothing more needs to be done. */ if (period_cycles == data->period_cycles) { return true; } /* If any other channel is driven by the PWM peripheral, the period * that is currently set cannot be changed, as this would influence * the output for that channel. */ if ((data->pwm_needed & ~BIT(channel)) != 0) { LOG_ERR("Incompatible period."); return false; } /* Try to find a prescaler that will allow setting the requested period * after prescaling as the countertop value for the PWM peripheral. */ prescaler = 0; countertop = period_cycles; do { if (countertop <= PWM_COUNTERTOP_COUNTERTOP_Msk) { data->period_cycles = period_cycles; data->prescaler = prescaler; nrf_pwm_configure(config->pwm.p_reg, data->prescaler, config->initial_config.count_mode, (uint16_t)countertop); return true; } countertop >>= 1; ++prescaler; } while (prescaler <= PWM_PRESCALER_PRESCALER_Msk); LOG_ERR("Prescaler for period_cycles %u not found.", period_cycles); return false; } static bool channel_psel_get(uint32_t channel, uint32_t *psel, const struct pwm_nrfx_config *config) { *psel = nrf_pwm_pin_get(config->pwm.p_reg, (uint8_t)channel); return (((*psel & PWM_PSEL_OUT_CONNECT_Msk) >> PWM_PSEL_OUT_CONNECT_Pos) == PWM_PSEL_OUT_CONNECT_Connected); } static int pwm_nrfx_set_cycles(const struct device *dev, uint32_t channel, uint32_t period_cycles, uint32_t pulse_cycles, pwm_flags_t flags) { /* We assume here that period_cycles will always be 16MHz * peripheral clock. Since pwm_nrfx_get_cycles_per_sec() function might * be removed, see ISSUE #6958. * TODO: Remove this comment when issue has been resolved. */ const struct pwm_nrfx_config *config = dev->config; struct pwm_nrfx_data *data = dev->data; uint16_t compare_value; bool inverted = (flags & PWM_POLARITY_INVERTED); bool needs_pwm = false; if (channel >= NRF_PWM_CHANNEL_COUNT) { LOG_ERR("Invalid channel: %u.", channel); return -EINVAL; } /* If this PWM is in center-aligned mode, pulse and period lengths * are effectively doubled by the up-down count, so halve them here * to compensate. */ if (config->initial_config.count_mode == NRF_PWM_MODE_UP_AND_DOWN) { period_cycles /= 2; pulse_cycles /= 2; } if (pulse_cycles == 0) { /* Constantly inactive (duty 0%). */ compare_value = 0; } else if (pulse_cycles >= period_cycles) { /* Constantly active (duty 100%). */ /* This value is always greater than or equal to COUNTERTOP. */ compare_value = PWM_NRFX_CH_COMPARE_MASK; } else { /* PWM generation needed. Check if the requested period matches * the one that is currently set, or the PWM peripheral can be * reconfigured accordingly. */ if (!pwm_period_check_and_set(dev, channel, period_cycles)) { return -EINVAL; } compare_value = (uint16_t)(pulse_cycles >> data->prescaler); needs_pwm = true; } seq_values_ptr_get(dev)[channel] = PWM_NRFX_CH_VALUE(compare_value, inverted); #ifdef CONFIG_DCACHE if (config->mem_attr & DT_MEM_CACHEABLE) { sys_cache_data_flush_range(seq_values_ptr_get(dev), config->seq.length); } #endif LOG_DBG("channel %u, pulse %u, period %u, prescaler: %u.", channel, pulse_cycles, period_cycles, data->prescaler); /* If this channel does not need to be driven by the PWM peripheral * because its state is to be constant (duty 0% or 100%), set properly * the GPIO configuration for its output pin. This will provide * the correct output state for this channel when the PWM peripheral * is stopped. */ if (!needs_pwm) { uint32_t psel; if (channel_psel_get(channel, &psel, config)) { uint32_t out_level = (pulse_cycles == 0) ? 0 : 1; if (inverted) { out_level ^= 1; } nrf_gpio_pin_write(psel, out_level); } data->pwm_needed &= ~BIT(channel); } else { data->pwm_needed |= BIT(channel); } /* If the PWM generation is not needed for any channel (all are set * to constant inactive or active state), stop the PWM peripheral. * Otherwise, request a playback of the defined sequence so that * the PWM peripheral loads `seq_values` into its internal compare * registers and drives its outputs accordingly. */ if (data->pwm_needed == 0) { /* Don't wait here for the peripheral to actually stop. Instead, * ensure it is stopped before starting the next playback. */ nrfx_pwm_stop(&config->pwm, false); data->stop_requested = true; } else { if (data->stop_requested) { data->stop_requested = false; /* After a stop is requested, the PWM peripheral stops * pulse generation at the end of the current period, * and till that moment, it ignores any start requests, * so ensure here that it is stopped. */ while (!nrfx_pwm_stopped_check(&config->pwm)) { } } /* It is sufficient to play the sequence once without looping. * The PWM generation will continue with the loaded values * until another playback is requested (new values will be * loaded then) or the PWM peripheral is stopped. */ nrfx_pwm_simple_playback(&config->pwm, &config->seq, 1, NRFX_PWM_FLAG_NO_EVT_FINISHED); } return 0; } static int pwm_nrfx_get_cycles_per_sec(const struct device *dev, uint32_t channel, uint64_t *cycles) { const struct pwm_nrfx_config *config = dev->config; *cycles = config->clock_freq; return 0; } static DEVICE_API(pwm, pwm_nrfx_drv_api_funcs) = { .set_cycles = pwm_nrfx_set_cycles, .get_cycles_per_sec = pwm_nrfx_get_cycles_per_sec, }; static void pwm_resume(const struct device *dev) { const struct pwm_nrfx_config *config = dev->config; uint8_t initially_inverted = 0; (void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); #ifdef CONFIG_SOC_NRF54H20_GPD nrf_gpd_retain_pins_set(config->pcfg, false); #endif for (size_t i = 0; i < NRF_PWM_CHANNEL_COUNT; i++) { uint32_t psel; if (channel_psel_get(i, &psel, config)) { /* Mark channels as inverted according to what initial * state of their outputs has been set by pinctrl (high * idle state means that the channel is inverted). */ initially_inverted |= nrf_gpio_pin_out_read(psel) ? BIT(i) : 0; } } for (size_t i = 0; i < NRF_PWM_CHANNEL_COUNT; i++) { bool inverted = initially_inverted & BIT(i); seq_values_ptr_get(dev)[i] = PWM_NRFX_CH_VALUE(0, inverted); } } static void pwm_suspend(const struct device *dev) { const struct pwm_nrfx_config *config = dev->config; nrfx_pwm_stop(&config->pwm, false); while (!nrfx_pwm_stopped_check(&config->pwm)) { } #ifdef CONFIG_SOC_NRF54H20_GPD nrf_gpd_retain_pins_set(config->pcfg, true); #endif memset(dev->data, 0, sizeof(struct pwm_nrfx_data)); (void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP); } static int pwm_nrfx_pm_action(const struct device *dev, enum pm_device_action action) { if (action == PM_DEVICE_ACTION_RESUME) { pwm_resume(dev); } else if (IS_ENABLED(CONFIG_PM_DEVICE) && (action == PM_DEVICE_ACTION_SUSPEND)) { pwm_suspend(dev); } else { return -ENOTSUP; } return 0; } static int pwm_nrfx_init(const struct device *dev) { const struct pwm_nrfx_config *config = dev->config; nrfx_err_t err; ANOMALY_109_EGU_IRQ_CONNECT(NRFX_PWM_NRF52_ANOMALY_109_EGU_INSTANCE); if (IS_ENABLED(CONFIG_PM_DEVICE_RUNTIME)) { (void)pinctrl_apply_state(config->pcfg, PINCTRL_STATE_SLEEP); } err = nrfx_pwm_init(&config->pwm, &config->initial_config, pwm_handler, dev->data); if (err != NRFX_SUCCESS) { LOG_ERR("Failed to initialize device: %s", dev->name); return -EBUSY; } return pm_device_driver_init(dev, pwm_nrfx_pm_action); } #define PWM(dev_idx) DT_NODELABEL(pwm##dev_idx) #define PWM_PROP(dev_idx, prop) DT_PROP(PWM(dev_idx), prop) #define PWM_HAS_PROP(idx, prop) DT_NODE_HAS_PROP(PWM(idx), prop) #define PWM_MEM_REGION(idx) DT_PHANDLE(PWM(idx), memory_regions) #define PWM_MEMORY_SECTION(idx) \ COND_CODE_1(PWM_HAS_PROP(idx, memory_regions), \ (__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \ PWM_MEM_REGION(idx)))))), \ ()) #define PWM_GET_MEM_ATTR(idx) \ COND_CODE_1(PWM_HAS_PROP(idx, memory_regions), \ (DT_PROP_OR(PWM_MEM_REGION(idx), zephyr_memory_attr, 0)), (0)) #define PWM_NRFX_DEVICE(idx) \ NRF_DT_CHECK_NODE_HAS_PINCTRL_SLEEP(PWM(idx)); \ static struct pwm_nrfx_data pwm_nrfx_##idx##_data; \ static uint16_t pwm_##idx##_seq_values[NRF_PWM_CHANNEL_COUNT] \ PWM_MEMORY_SECTION(idx); \ PINCTRL_DT_DEFINE(PWM(idx)); \ static const struct pwm_nrfx_config pwm_nrfx_##idx##_config = { \ .pwm = NRFX_PWM_INSTANCE(idx), \ .initial_config = { \ .skip_gpio_cfg = true, \ .skip_psel_cfg = true, \ .base_clock = NRF_PWM_CLK_1MHz, \ .count_mode = (PWM_PROP(idx, center_aligned) \ ? NRF_PWM_MODE_UP_AND_DOWN \ : NRF_PWM_MODE_UP), \ .top_value = 1000, \ .load_mode = NRF_PWM_LOAD_INDIVIDUAL, \ .step_mode = NRF_PWM_STEP_TRIGGERED, \ }, \ .seq.values.p_raw = pwm_##idx##_seq_values, \ .seq.length = NRF_PWM_CHANNEL_COUNT, \ .pcfg = PINCTRL_DT_DEV_CONFIG_GET(PWM(idx)), \ .clock_freq = COND_CODE_1(DT_CLOCKS_HAS_IDX(PWM(idx), 0), \ (DT_PROP(DT_CLOCKS_CTLR(PWM(idx)), clock_frequency)), \ (16ul * 1000ul * 1000ul)), \ IF_ENABLED(CONFIG_DCACHE, \ (.mem_attr = PWM_GET_MEM_ATTR(idx),)) \ }; \ static int pwm_nrfx_init##idx(const struct device *dev) \ { \ IRQ_CONNECT(DT_IRQN(PWM(idx)), DT_IRQ(PWM(idx), priority), \ nrfx_isr, nrfx_pwm_##idx##_irq_handler, 0); \ return pwm_nrfx_init(dev); \ }; \ PM_DEVICE_DT_DEFINE(PWM(idx), pwm_nrfx_pm_action); \ DEVICE_DT_DEFINE(PWM(idx), \ pwm_nrfx_init##idx, PM_DEVICE_DT_GET(PWM(idx)), \ &pwm_nrfx_##idx##_data, \ &pwm_nrfx_##idx##_config, \ POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \ &pwm_nrfx_drv_api_funcs) #define COND_PWM_NRFX_DEVICE(unused, prefix, i, _) \ IF_ENABLED(CONFIG_HAS_HW_NRF_PWM##prefix##i, (PWM_NRFX_DEVICE(prefix##i);)) NRFX_FOREACH_PRESENT(PWM, COND_PWM_NRFX_DEVICE, (), (), _)