/* * Copyright (c) 2022 Microchip Technololgy Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_xec_pwmbbled #include #include #include #include #include #ifdef CONFIG_SOC_SERIES_MEC172X #include #include #endif #include #include #include #include LOG_MODULE_REGISTER(pwmbbled_mchp_xec, CONFIG_PWM_LOG_LEVEL); #define XEC_PWM_BBLED_MAX_FREQ_DIV 256U /* We will choose frequency from Device Tree */ #define XEC_PWM_BBLED_INPUT_FREQ_HI 48000000 #define XEC_PWM_BBLED_INPUT_FREQ_LO 32768 /* Hardware blink mode equation is Fpwm = Fin / (256 * (LD + 1)) * The maximum Fpwm is actually Fin / 256 * LD in [0, 4095] */ #define XEC_PWM_BBLED_MAX_PWM_FREQ_HI (XEC_PWM_BBLED_INPUT_FREQ_HI / \ XEC_PWM_BBLED_MAX_FREQ_DIV) #define XEC_PWM_BBLED_MAX_PWM_FREQ_LO (XEC_PWM_BBLED_INPUT_FREQ_LO / \ XEC_PWM_BBLED_MAX_FREQ_DIV) #define XEC_PWM_BBLED_LD_MAX 4095 #define XEC_PWM_BBLED_DC_MIN 1u /* 0 full off */ #define XEC_PWM_BBLED_DC_MAX 254u /* 255 is full on */ /* BBLED PWM mode uses the duty cycle to set the PWM frequency: * Fpwm = Fclock / (256 * (LD + 1)) OR * Tpwm = (256 * (LD + 1)) / Fclock * Fclock is 48MHz or 32KHz * LD = Delay register, LOW_DELAY field: bits[11:0] * Pulse_ON_width = (1/Fpwm) * (duty_cycle/256) seconds * Puse_OFF_width = (1/Fpwm) * (256 - duty_cycle) seconds * where duty_cycle is an 8-bit value 0 to 255. * Prescale is derived from DELAY register LOW_DELAY 12-bit field * Duty cycle is derived from LIMITS register MINIMUM 8-bit field * * Fc in Hz, Tp in seconds * Fc / Fp = 256 * (LD+1) * Tp / Tc = 256 * (LD+1) * * API passes pulse period and pulse width in nanoseconds. * BBLED PWM mode duty cycle specified by 8-bit MIN field of the LIMITS register * MIN=0 is OFF, pin driven low * MIN=255 is ON, pin driven high */ /* Same BBLED hardware block in MEC15xx and MEC172x families * Config register */ #define XEC_PWM_BBLED_CFG_MSK 0x1ffffu #define XEC_PWM_BBLED_CFG_MODE_POS 0 #define XEC_PWM_BBLED_CFG_MODE_MSK 0x3u #define XEC_PWM_BBLED_CFG_MODE_OFF 0 #define XEC_PWM_BBLED_CFG_MODE_PWM 0x2u #define XEC_PWM_BBLED_CFG_MODE_ALWAYS_ON 0x3u #define XEC_PWM_BBLED_CFG_CLK_SRC_48M_POS 2 #define XEC_PWM_BBLED_CFG_EN_UPDATE_POS 6 #define XEC_PWM_BBLED_CFG_RST_PWM_POS 7 #define XEC_PWM_BBLED_CFG_WDT_RLD_POS 8 #define XEC_PWM_BBLED_CFG_WDT_RLD_MSK0 0xffu #define XEC_PWM_BBLED_CFG_WDT_RLD_MSK 0xff00u #define XEC_PWM_BBLED_CFG_WDT_RLD_DFLT 0x1400u /* Limits register */ #define XEC_PWM_BBLED_LIM_MSK 0xffffu #define XEC_PWM_BBLED_LIM_MIN_POS 0 #define XEC_PWM_BBLED_LIM_MIN_MSK 0xffu #define XEC_PWM_BBLED_LIM_MAX_POS 8 #define XEC_PWM_BBLED_LIM_MAX_MSK 0xff00u /* Delay register */ #define XEC_PWM_BBLED_DLY_MSK 0xffffffu #define XEC_PWM_BBLED_DLY_LO_POS 0 #define XEC_PWM_BBLED_DLY_LO_MSK 0xfffu #define XEC_PWM_BBLED_DLY_HI_POS 12 #define XEC_PWM_BBLED_DLY_HI_MSK 0xfff000u /* Output delay in clocks for initial enable and enable on resume from sleep * Clocks are either 48MHz or 32KHz selected in CONFIG register. */ #define XEC_PWM_BBLED_OUT_DLY_MSK 0xffu /* DT enum values */ #define XEC_PWM_BBLED_CLKSEL_32K 0 #define XEC_PWM_BBLED_CLKSEL_AHB_48M 1 #define XEC_PWM_BBLED_CLKSEL_0 XEC_PWM_BBLED_CLKSEL_32K #define XEC_PWM_BBLED_CLKSEL_1 XEC_PWM_BBLED_CLKSEL_AHB_48M struct bbled_regs { volatile uint32_t config; volatile uint32_t limits; volatile uint32_t delay; volatile uint32_t update_step_size; volatile uint32_t update_interval; volatile uint32_t output_delay; }; #define XEC_PWM_BBLED_CLK_SEL_48M 0 #define XEC_PWM_BBLED_CLK_SEL_32K 1 struct pwm_bbled_xec_config { struct bbled_regs * const regs; const struct pinctrl_dev_config *pcfg; uint8_t girq; uint8_t girq_pos; uint8_t pcr_idx; uint8_t pcr_pos; uint8_t clk_sel; bool enable_low_power_32K; }; struct bbled_xec_data { uint32_t config; }; /* Issue: two separate registers must be updated. * LIMITS.MIN = duty cycle = [1, 254] * LIMITS register update takes effect immediately. * DELAY.LO = pre-scaler = [0, 4095] * Writing DELAY stores value in an internal holding register. * Writing bit[6]=1 causes HW to update DELAY at the beginning of * the next HW PWM period. */ static void xec_pwmbb_progam_pwm(const struct device *dev, uint32_t ld, uint32_t dc) { const struct pwm_bbled_xec_config * const cfg = dev->config; struct bbled_regs * const regs = cfg->regs; uint32_t val; val = regs->limits & ~(XEC_PWM_BBLED_LIM_MIN_MSK); val |= ((dc << XEC_PWM_BBLED_LIM_MIN_POS) & XEC_PWM_BBLED_LIM_MIN_MSK); regs->limits = val; val = regs->delay & ~(XEC_PWM_BBLED_DLY_LO_MSK); val |= ((ld << XEC_PWM_BBLED_DLY_LO_POS) & XEC_PWM_BBLED_DLY_LO_MSK); regs->delay = val; /* transfer new delay value from holding register */ regs->config |= BIT(XEC_PWM_BBLED_CFG_EN_UPDATE_POS); val = regs->config & ~(XEC_PWM_BBLED_CFG_MODE_MSK); val |= XEC_PWM_BBLED_CFG_MODE_PWM; regs->config = val; } /* API implementation: Get the clock rate (cycles per second) for a single PWM output. * BBLED in PWM mode (same as blink mode) PWM frequency = Source Frequency / (256 * (LP + 1)) * where Source Frequency is either 48 MHz or 32768 Hz and LP is the 12-bit low delay * field of the DELAY register. We return the maximum PWM frequency which is configured * hardware input frequency (32K or 48M) divided by 256. */ static int pwm_bbled_xec_get_cycles_per_sec(const struct device *dev, uint32_t channel, uint64_t *cycles) { const struct pwm_bbled_xec_config * const cfg = dev->config; struct bbled_regs * const regs = cfg->regs; if (channel > 0) { return -EIO; } if (cycles) { if (regs->config & BIT(XEC_PWM_BBLED_CFG_CLK_SRC_48M_POS)) { *cycles = XEC_PWM_BBLED_MAX_PWM_FREQ_HI; /* 187,500 Hz */ } else { *cycles = XEC_PWM_BBLED_MAX_PWM_FREQ_LO; /* 128 Hz */ } } return 0; } /* API PWM set cycles: * pulse == 0 -> pin should be constant inactive level * pulse >= period -> pin should be constant active level * hardware PWM (blink) mode: Fpwm = Fin_actual / (LD + 1) * Fin_actual = XEC_PWM_BBLED_MAX_PWM_FREQ_HI or XEC_PWM_BBLED_MAX_PWM_FREQ_LO. * period cycles and pulse cycles both zero is OFF * pulse cycles == 0 is OFF * pulse cycles > 0 and period cycles == 0 is OFF * otherwise * compute duty cycle = 256 * (pulse_cycles / period_cycles). * compute (LD + 1) = Fin_actual / Fpwm * program LD into bits[11:0] of Delay register * program duty cycle info bits[7:0] of Limits register * NOTE: flags parameter is currently used for pin invert and PWM capture. * The BBLED HW does not support pin invert or PWM capture. * NOTE 2: Pin invert is possible by using the MCHP function invert feature * of the GPIO pin. This property can be set using PINCTRL at build time. */ static int pwm_bbled_xec_set_cycles(const struct device *dev, uint32_t channel, uint32_t period_cycles, uint32_t pulse_cycles, pwm_flags_t flags) { const struct pwm_bbled_xec_config * const cfg = dev->config; struct bbled_regs * const regs = cfg->regs; uint32_t dc, ld; if (channel > 0) { LOG_ERR("Invalid channel: %u", channel); return -EIO; } if (flags) { return -ENOTSUP; } LOG_DBG("period_cycles = %u pulse_cycles = %u", period_cycles, pulse_cycles); if (pulse_cycles == 0u) { /* drive pin to inactive state */ regs->config = (regs->config & ~XEC_PWM_BBLED_CFG_MODE_MSK) | XEC_PWM_BBLED_CFG_MODE_OFF; regs->limits &= ~XEC_PWM_BBLED_LIM_MIN_MSK; regs->delay &= ~(XEC_PWM_BBLED_DLY_LO_MSK); } else if (pulse_cycles >= period_cycles) { /* drive pin to active state */ regs->config = (regs->config & ~XEC_PWM_BBLED_CFG_MODE_MSK) | XEC_PWM_BBLED_CFG_MODE_ALWAYS_ON; regs->limits &= ~XEC_PWM_BBLED_LIM_MIN_MSK; regs->delay &= ~(XEC_PWM_BBLED_DLY_LO_MSK); } else { ld = period_cycles; if (ld) { ld--; if (ld > XEC_PWM_BBLED_LD_MAX) { ld = XEC_PWM_BBLED_LD_MAX; } } dc = ((XEC_PWM_BBLED_DC_MAX + 1) * pulse_cycles / period_cycles); if (dc < XEC_PWM_BBLED_DC_MIN) { dc = XEC_PWM_BBLED_DC_MIN; } else if (dc > XEC_PWM_BBLED_DC_MAX) { dc = XEC_PWM_BBLED_DC_MAX; } LOG_DBG("Program: ld = 0x%0x dc = 0x%0x", ld, dc); xec_pwmbb_progam_pwm(dev, ld, dc); } return 0; } #ifdef CONFIG_PM_DEVICE static int pwm_bbled_xec_pm_action(const struct device *dev, enum pm_device_action action) { const struct pwm_bbled_xec_config *const devcfg = dev->config; struct bbled_regs * const regs = devcfg->regs; struct bbled_xec_data * const data = dev->data; int ret = 0; /* 32K core clock is not gated by PCR in sleep, so BBLED can blink the LED even * in sleep, if it is configured to use 32K clock. If we want to control it * we shall use flag "enable_low_power_32K". * This flag dont have effect on 48M clock. Since it is gated by PCR in sleep, BBLED * will not get clock during sleep. */ if ((!devcfg->enable_low_power_32K) && (!(regs->config & BIT(XEC_PWM_BBLED_CFG_CLK_SRC_48M_POS)))) { return ret; } switch (action) { case PM_DEVICE_ACTION_RESUME: ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret != 0) { LOG_ERR("XEC BBLED pinctrl setup failed (%d)", ret); } /* Turn on BBLED only if it is ON before sleep */ if ((data->config & XEC_PWM_BBLED_CFG_MODE_MSK) != XEC_PWM_BBLED_CFG_MODE_OFF) { regs->config |= (data->config & XEC_PWM_BBLED_CFG_MODE_MSK); regs->config |= BIT(XEC_PWM_BBLED_CFG_EN_UPDATE_POS); data->config = XEC_PWM_BBLED_CFG_MODE_OFF; } break; case PM_DEVICE_ACTION_SUSPEND: if ((regs->config & XEC_PWM_BBLED_CFG_MODE_MSK) != XEC_PWM_BBLED_CFG_MODE_OFF) { /* Do copy first, then clear mode. */ data->config = regs->config; regs->config &= ~(XEC_PWM_BBLED_CFG_MODE_MSK); } ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP); /* pinctrl-1 does not exist. */ if (ret == -ENOENT) { ret = 0; } break; default: ret = -ENOTSUP; } return ret; } #endif /* CONFIG_PM_DEVICE */ static DEVICE_API(pwm, pwm_bbled_xec_driver_api) = { .set_cycles = pwm_bbled_xec_set_cycles, .get_cycles_per_sec = pwm_bbled_xec_get_cycles_per_sec, }; static int pwm_bbled_xec_init(const struct device *dev) { const struct pwm_bbled_xec_config * const cfg = dev->config; struct bbled_regs * const regs = cfg->regs; int ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret != 0) { LOG_ERR("XEC PWM-BBLED pinctrl init failed (%d)", ret); return ret; } /* BBLED PWM WDT is enabled by default. Disable it and select 32KHz */ regs->config = BIT(XEC_PWM_BBLED_CFG_RST_PWM_POS); regs->config = 0U; if (cfg->clk_sel == XEC_PWM_BBLED_CLKSEL_AHB_48M) { regs->config |= BIT(XEC_PWM_BBLED_CFG_CLK_SRC_48M_POS); } return 0; } #define XEC_PWM_BBLED_CLKSEL(n) \ COND_CODE_1(DT_INST_NODE_HAS_PROP(n, clock_select), \ (DT_INST_ENUM_IDX(n, clock_select)), (0)) #define XEC_PWM_BBLED_CONFIG(inst) \ static struct pwm_bbled_xec_config pwm_bbled_xec_config_##inst = { \ .regs = (struct bbled_regs * const)DT_INST_REG_ADDR(inst), \ .girq = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 0)), \ .girq_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 1)), \ .pcr_idx = (uint8_t)DT_INST_PROP_BY_IDX(inst, pcrs, 0), \ .pcr_pos = (uint8_t)DT_INST_PROP_BY_IDX(inst, pcrs, 1), \ .clk_sel = UTIL_CAT(XEC_PWM_BBLED_CLKSEL_, XEC_PWM_BBLED_CLKSEL(inst)), \ .enable_low_power_32K = DT_INST_PROP(inst, enable_low_power_32k),\ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(inst), \ }; #define XEC_PWM_BBLED_DEVICE_INIT(index) \ \ static struct bbled_xec_data bbled_xec_data_##index; \ \ PINCTRL_DT_INST_DEFINE(index); \ \ XEC_PWM_BBLED_CONFIG(index); \ \ PM_DEVICE_DT_INST_DEFINE(index, pwm_bbled_xec_pm_action); \ \ DEVICE_DT_INST_DEFINE(index, &pwm_bbled_xec_init, \ PM_DEVICE_DT_INST_GET(index), \ &bbled_xec_data_##index, \ &pwm_bbled_xec_config_##index, POST_KERNEL, \ CONFIG_PWM_INIT_PRIORITY, \ &pwm_bbled_xec_driver_api); DT_INST_FOREACH_STATUS_OKAY(XEC_PWM_BBLED_DEVICE_INIT)