/* * Copyright (c) 2021 Microchip Technology Inc. * * SPDX-License-Identifier: Apache-2.0 */ /** * @brief Driver for External interrupt controller in Microchip XEC devices * * Driver is currently implemented to support MEC172x ECIA GIRQs */ #define DT_DRV_COMPAT microchip_xec_ecia #include #include #include #include #include #include #include #include #include /* defined at the SoC layer */ #define MCHP_FIRST_GIRQ MCHP_FIRST_GIRQ_NOS #define MCHP_LAST_GIRQ MCHP_LAST_GIRQ_NOS #define MCHP_XEC_DIRECT_CAPABLE MCHP_ECIA_DIRECT_BITMAP #define GIRQ_ID_TO_BITPOS(id) ((id) + 8) /* * MEC SoC's have one and only one instance of ECIA. GIRQ8 register are located * at the beginning of the ECIA block. */ #define ECIA_XEC_REG_BASE \ ((struct ecia_regs *)(DT_REG_ADDR(DT_NODELABEL(ecia)))) #define ECS_XEC_REG_BASE \ ((struct ecs_regs *)(DT_REG_ADDR(DT_NODELABEL(ecs)))) #define PCR_XEC_REG_BASE \ ((struct pcr_regs *)(DT_REG_ADDR(DT_NODELABEL(pcr)))) #define ECIA_XEC_PCR_REG_IDX DT_INST_CLOCKS_CELL(0, regidx) #define ECIA_XEC_PCR_BITPOS DT_INST_CLOCKS_CELL(0, bitpos) #define ECIA_XEC_PCR_INFO \ MCHP_XEC_PCR_SCR_ENCODE(DT_INST_CLOCKS_CELL(0, regidx), \ DT_INST_CLOCKS_CELL(0, bitpos), \ DT_INST_CLOCKS_CELL(0, domain)) struct xec_girq_config { uintptr_t base; uint8_t girq_id; uint8_t num_srcs; uint8_t sources[32]; }; struct xec_ecia_config { uintptr_t ecia_base; struct mchp_xec_pcr_clk_ctrl clk_ctrl; const struct device *girq_node_handles[32]; }; struct xec_girq_src_data { mchp_xec_ecia_callback_t cb; void *data; }; #define DEV_ECIA_CFG(ecia_dev) \ ((const struct xec_ecia_config *const)(ecia_dev)->config) #define DEV_GIRQ_CFG(girq_dev) \ ((const struct xec_girq_config *const)(girq_dev)->config) #define DEV_GIRQ_DATA(girq_dev) \ ((struct xec_girq_src_data *const)(girq_dev)->data) /* * Enable/disable specified GIRQ's aggregated output. Aggregated output is the * bit-wise or of all the GIRQ's result bits. */ void mchp_xec_ecia_girq_aggr_en(uint8_t girq_num, uint8_t enable) { struct ecia_regs *regs = ECIA_XEC_REG_BASE; if (enable) { regs->BLK_EN_SET = BIT(girq_num); } else { regs->BLK_EN_CLR = BIT(girq_num); } } void mchp_xec_ecia_girq_src_clr(uint8_t girq_num, uint8_t src_bit_pos) { if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) { return; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; /* write 1 to clear */ regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].SRC = BIT(src_bit_pos); } void mchp_xec_ecia_girq_src_en(uint8_t girq_num, uint8_t src_bit_pos) { if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) { return; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; /* write 1 to set */ regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].EN_SET = BIT(src_bit_pos); } void mchp_xec_ecia_girq_src_dis(uint8_t girq_num, uint8_t src_bit_pos) { if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) { return; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; /* write 1 to clear */ regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].EN_CLR = BIT(src_bit_pos); } void mchp_xec_ecia_girq_src_clr_bitmap(uint8_t girq_num, uint32_t bitmap) { if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) { return; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; /* write 1 to clear */ regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].SRC = bitmap; } void mchp_xec_ecia_girq_src_en_bitmap(uint8_t girq_num, uint32_t bitmap) { if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) { return; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; /* write 1 to clear */ regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].EN_SET = bitmap; } void mchp_xec_ecia_girq_src_dis_bitmap(uint8_t girq_num, uint32_t bitmap) { if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) { return; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; /* write 1 to clear */ regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].EN_CLR = bitmap; } /* * Return read-only GIRQ result register. Result is bit-wise and of source * and enable registers. */ uint32_t mchp_xec_ecia_girq_result(uint8_t girq_num) { if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) { return 0U; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; return regs->GIRQ[girq_num - MCHP_FIRST_GIRQ].RESULT; } /* Clear NVIC pending given the external NVIC input number (zero based) */ void mchp_xec_ecia_nvic_clr_pend(uint32_t nvic_num) { if (nvic_num >= ((SCnSCB->ICTR + 1) * 32)) { return; } NVIC_ClearPendingIRQ(nvic_num); } /* API taking input encoded with MCHP_XEC_ECIA(g, gb, na, nd) macro */ void mchp_xec_ecia_info_girq_aggr_en(int ecia_info, uint8_t enable) { uint8_t girq_num = MCHP_XEC_ECIA_GIRQ(ecia_info); mchp_xec_ecia_girq_aggr_en(girq_num, enable); } void mchp_xec_ecia_info_girq_src_clr(int ecia_info) { uint8_t girq_num = MCHP_XEC_ECIA_GIRQ(ecia_info); uint8_t bitpos = MCHP_XEC_ECIA_GIRQ_POS(ecia_info); mchp_xec_ecia_girq_src_clr(girq_num, bitpos); } void mchp_xec_ecia_info_girq_src_en(int ecia_info) { uint8_t girq_num = MCHP_XEC_ECIA_GIRQ(ecia_info); uint8_t bitpos = MCHP_XEC_ECIA_GIRQ_POS(ecia_info); mchp_xec_ecia_girq_src_en(girq_num, bitpos); } void mchp_xec_ecia_info_girq_src_dis(int ecia_info) { uint8_t girq_num = MCHP_XEC_ECIA_GIRQ(ecia_info); uint8_t bitpos = MCHP_XEC_ECIA_GIRQ_POS(ecia_info); mchp_xec_ecia_girq_src_dis(girq_num, bitpos); } uint32_t mchp_xec_ecia_info_girq_result(int ecia_info) { uint8_t girq_num = MCHP_XEC_ECIA_GIRQ(ecia_info); return mchp_xec_ecia_girq_result(girq_num); } /* * Clear NVIC pending status given GIRQ source information encoded by macro * MCHP_XEC_ECIA. For aggregated only sources the encoding sets direct NVIC * number equal to aggregated NVIC number. */ void mchp_xec_ecia_info_nvic_clr_pend(int ecia_info) { uint8_t nvic_num = MCHP_XEC_ECIA_NVIC_DIRECT(ecia_info); mchp_xec_ecia_nvic_clr_pend(nvic_num); } /** * @brief enable GIRQn interrupt for specific source * * @param girq is the GIRQ number (8 - 26) * @param src is the interrupt source in the GIRQ (0 - 31) */ int mchp_xec_ecia_enable(int girq, int src) { if ((girq < MCHP_FIRST_GIRQ) || (girq > MCHP_LAST_GIRQ) || (src < 0) || (src > 31)) { return -EINVAL; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; /* write 1 to set */ regs->GIRQ[girq - MCHP_FIRST_GIRQ].EN_SET = BIT(src); return 0; } /** * @brief enable EXTI interrupt for specific line specified by parameter * encoded with MCHP_XEC_ECIA macro. * * @param ecia_info is GIRQ connection encoded with MCHP_XEC_ECIA */ int mchp_xec_ecia_info_enable(int ecia_info) { uint8_t girq = (uint8_t)MCHP_XEC_ECIA_GIRQ(ecia_info); uint8_t src = (uint8_t)MCHP_XEC_ECIA_GIRQ_POS(ecia_info); return mchp_xec_ecia_enable(girq, src); } /** * @brief disable EXTI interrupt for specific line * * @param girq is the GIRQ number (8 - 26) * @param src is the interrupt source in the GIRQ (0 - 31) */ int mchp_xec_ecia_disable(int girq, int src) { if ((girq < MCHP_FIRST_GIRQ) || (girq > MCHP_LAST_GIRQ) || (src < 0) || (src > 31)) { return -EINVAL; } struct ecia_regs *regs = ECIA_XEC_REG_BASE; /* write 1 to clear */ regs->GIRQ[girq - MCHP_FIRST_GIRQ].EN_CLR = BIT(src); return 0; } /** * @brief disable EXTI interrupt for specific line specified by parameter * encoded with MCHP_XEC_ECIA macro. * * @param ecia_info is GIRQ connection encoded with MCHP_XEC_ECIA */ int mchp_xec_ecia_info_disable(int ecia_info) { uint8_t girq = (uint8_t)MCHP_XEC_ECIA_GIRQ(ecia_info); uint8_t src = (uint8_t)MCHP_XEC_ECIA_GIRQ_POS(ecia_info); return mchp_xec_ecia_disable(girq, src); } /* forward reference */ static const struct device *get_girq_dev(int girq_num); /** * @brief set GIRQn interrupt source callback * * @param dev_girq is the GIRQn device handle * @param src is the interrupt source in the GIRQ (0 - 31) * @param cb user callback * @param data user data */ int mchp_xec_ecia_set_callback_by_dev(const struct device *dev_girq, int src, mchp_xec_ecia_callback_t cb, void *data) { if ((dev_girq == NULL) || (src < 0) || (src > 31)) { return -EINVAL; } const struct xec_girq_config *const cfg = DEV_GIRQ_CFG(dev_girq); struct xec_girq_src_data *girq_data = DEV_GIRQ_DATA(dev_girq); /* source exists in this GIRQ? */ if (!(cfg->sources[src] & BIT(7))) { return -EINVAL; } /* obtain the callback array index for the source */ int idx = (int)(cfg->sources[src] & ~BIT(7)); girq_data[idx].cb = cb; girq_data[idx].data = data; return 0; } /** * @brief set GIRQn interrupt source callback * * @param girq is the GIRQ number (8 - 26) * @param src is the interrupt source in the GIRQ (0 - 31) * @param cb user callback * @param data user data */ int mchp_xec_ecia_set_callback(int girq_num, int src, mchp_xec_ecia_callback_t cb, void *data) { const struct device *dev = get_girq_dev(girq_num); return mchp_xec_ecia_set_callback_by_dev(dev, src, cb, data); } /** * @brief set GIRQn interrupt source callback * * @param ecia_info is GIRQ connection encoded with MCHP_XEC_ECIA * @param cb user callback * @param data user data */ int mchp_xec_ecia_info_set_callback(int ecia_info, mchp_xec_ecia_callback_t cb, void *data) { const struct device *dev = get_girq_dev(MCHP_XEC_ECIA_GIRQ(ecia_info)); uint8_t src = MCHP_XEC_ECIA_GIRQ_POS(ecia_info); return mchp_xec_ecia_set_callback_by_dev(dev, src, cb, data); } /** * @brief unset GIRQn interrupt source callback by device handle * * @param dev_girq is the GIRQn device handle * @param src is the interrupt source in the GIRQ (0 - 31) */ int mchp_ecia_unset_callback_by_dev(const struct device *dev_girq, int src) { if ((dev_girq == NULL) || (src < 0) || (src > 31)) { return -EINVAL; } const struct xec_girq_config *const cfg = DEV_GIRQ_CFG(dev_girq); struct xec_girq_src_data *girq_data = DEV_GIRQ_DATA(dev_girq); /* source exists in this GIRQ? */ if (!(cfg->sources[src] & BIT(7))) { return -EINVAL; } /* obtain the callback array index for the source */ int idx = (int)(cfg->sources[src] & ~BIT(7)); girq_data[idx].cb = NULL; girq_data[idx].data = NULL; return 0; } /** * @brief unset GIRQn interrupt source callback * * @param girq is the GIRQ number (8 - 26) * @param src is the interrupt source in the GIRQ (0 - 31) */ int mchp_ecia_unset_callback(int girq_num, int src) { const struct device *dev = get_girq_dev(girq_num); return mchp_ecia_unset_callback_by_dev(dev, src); } /** * @brief unset GIRQn interrupt source callback * * @param ecia_info is GIRQ connection encoded with MCHP_XEC_ECIA */ int mchp_ecia_info_unset_callback(int ecia_info) { const struct device *dev = get_girq_dev(MCHP_XEC_ECIA_GIRQ(ecia_info)); uint8_t src = MCHP_XEC_ECIA_GIRQ_POS(ecia_info); return mchp_ecia_unset_callback_by_dev(dev, src); } /* * Create a build time flag to know if any aggregated GIRQ has been enabled. * We make use of DT FOREACH macro to check GIRQ node status. * Enabling a GIRQ node (status = "okay") implies you want it used in * aggregated mode. Note, GIRQ 8-12, 24-26 are aggregated only by HW design. * If a GIRQ node is disabled(status = "disabled") and is direct capable the * other driver/application may use IRQ_CONNECT, irq_enable, and the helper * functions in this driver to set/clear GIRQ enable bits and status. * Leaving a node disabled also allows another driver/application to take over * aggregation by managing the GIRQ itself. */ #define XEC_CHK_REQ_AGGR(n) DT_NODE_HAS_STATUS_OKAY(n) | #define XEC_ECIA_REQUIRE_AGGR_ISR \ ( \ DT_FOREACH_CHILD(DT_NODELABEL(ecia), XEC_CHK_REQ_AGGR) \ 0) /* static const uint32_t xec_chk_req = (XEC_ECIA_REQUIRE_AGGR_ISR); */ #if XEC_ECIA_REQUIRE_AGGR_ISR /* * Generic ISR for aggregated GIRQ's. * GIRQ source(status) bits are latched (R/W1C). The peripheral status * connected to the GIRQ source bit must be cleared first by the callback * and this routine will clear the GIRQ source bit. If a callback was not * registered for a source the enable will also be cleared to prevent * interrupt storms. * NOTE: dev_girq is a pointer to a GIRQ child device instance. */ static void xec_girq_isr(const struct device *dev_girq) { const struct xec_girq_config *const cfg = DEV_GIRQ_CFG(dev_girq); struct xec_girq_src_data *data = DEV_GIRQ_DATA(dev_girq); struct girq_regs *girq = (struct girq_regs *)cfg->base; int girq_id = GIRQ_ID_TO_BITPOS(cfg->girq_id); uint32_t idx = 0; uint32_t result = girq->RESULT; for (int i = 0; result && i < 32; i++) { uint8_t bitpos = 31 - (__builtin_clz(result) & 0x1f); /* clear GIRQ latched status */ girq->SRC = BIT(bitpos); result &= ~BIT(bitpos); /* is it an implemented source? */ if (cfg->sources[bitpos] & BIT(7)) { /* yes, get the index by removing bit[7] flag */ idx = (uint32_t)cfg->sources[bitpos] & ~BIT(7); /* callback registered? */ if (data[idx].cb) { data[idx].cb(girq_id, bitpos, data[idx].data); } else { /* no callback, clear the enable */ girq->EN_CLR = BIT(bitpos); } } else { /* paranoia, we should not get here... */ girq->EN_CLR = BIT(bitpos); } } } #endif /** * @brief initialize XEC ECIA driver * NOTE: GIRQ22 is special used for waking the PLL from deep sleep when a * peripheral receives data from an external entity (eSPI, I2C, etc). Once * the data transfer is complete the system re-enters deep sleep unless the * peripheral was configured to wake CPU after reception of data or event. * GIRQ22 aggregated output and sources are not connected to the NVIC. * We enable GIRQ22 aggregated output to ensure clock asynchronous wake * functionality is operational. */ static int xec_ecia_init(const struct device *dev) { const struct xec_ecia_config *cfg = (const struct xec_ecia_config *const) (dev->config); const struct device *const clk_dev = DEVICE_DT_GET(DT_NODELABEL(pcr)); struct ecs_regs *const ecs = ECS_XEC_REG_BASE; struct ecia_regs *const ecia = (struct ecia_regs *)cfg->ecia_base; uint32_t n = 0, nr = 0; int ret; if (!device_is_ready(clk_dev)) { return -ENODEV; } ret = clock_control_on(clk_dev, (clock_control_subsys_t)&cfg->clk_ctrl); if (ret < 0) { return ret; } /* Enable all direct NVIC connections */ ecs->INTR_CTRL |= BIT(0); /* gate off all aggregated outputs */ ecia->BLK_EN_CLR = UINT32_MAX; /* connect aggregated only GIRQs to NVIC */ ecia->BLK_EN_SET = MCHP_ECIA_AGGR_BITMAP; /* Clear all GIRQn source enables */ for (n = 0; n < MCHP_GIRQS; n++) { ecia->GIRQ[n].EN_CLR = UINT32_MAX; } /* Clear all external NVIC enables and pending status */ nr = SCnSCB->ICTR; for (n = 0u; n <= nr; n++) { NVIC->ICER[n] = UINT32_MAX; NVIC->ICPR[n] = UINT32_MAX; } /* ecia->BLK_ACTIVE = xec_chk_req; */ return 0; } /* xec_config_girq_xxx.sources[] entries from GIRQ node */ #define XEC_GIRQ_SOURCES2(node_id, prop, idx) \ .sources[DT_PROP_BY_IDX(node_id, prop, idx)] = \ ((uint8_t)(idx) | BIT(7)), /* Parameter n is a child node-id */ #define GIRQ_XEC_DEVICE(n) \ static int xec_girq_init_##n(const struct device *dev); \ \ static struct xec_girq_src_data \ xec_data_girq_##n[DT_PROP_LEN(n, sources)]; \ \ static const struct xec_girq_config xec_config_girq_##n = { \ .base = DT_REG_ADDR(n), \ .girq_id = DT_PROP(n, girq_id), \ .num_srcs = DT_PROP_LEN(n, sources), \ DT_FOREACH_PROP_ELEM(n, sources, XEC_GIRQ_SOURCES2) \ }; \ \ DEVICE_DT_DEFINE(n, xec_girq_init_##n, \ NULL, &xec_data_girq_##n, &xec_config_girq_##n, \ PRE_KERNEL_1, CONFIG_XEC_GIRQ_INIT_PRIORITY, \ NULL); \ \ static int xec_girq_init_##n(const struct device *dev) \ { \ mchp_xec_ecia_girq_aggr_en( \ GIRQ_ID_TO_BITPOS(DT_PROP(n, girq_id)), 1); \ \ IRQ_CONNECT(DT_IRQN(n), \ DT_IRQ(n, priority), \ xec_girq_isr, \ DEVICE_DT_GET(n), 0); \ \ irq_enable(DT_IRQN(n)); \ \ return 0; \ } /* * iterate over each enabled child node of ECIA * Enable means property status = "okay" */ DT_FOREACH_CHILD_STATUS_OKAY(DT_NODELABEL(ecia), GIRQ_XEC_DEVICE) /* n = GIRQ node id */ #define XEC_GIRQ_HANDLE(n) \ .girq_node_handles[DT_PROP(n, girq_id)] = (DEVICE_DT_GET(n)), static const struct xec_ecia_config xec_config_ecia = { .ecia_base = DT_REG_ADDR(DT_NODELABEL(ecia)), .clk_ctrl = { .pcr_info = ECIA_XEC_PCR_INFO, }, DT_FOREACH_CHILD_STATUS_OKAY(DT_NODELABEL(ecia), XEC_GIRQ_HANDLE) }; DEVICE_DT_DEFINE(DT_NODELABEL(ecia), xec_ecia_init, NULL, NULL, &xec_config_ecia, PRE_KERNEL_1, CONFIG_INTC_INIT_PRIORITY, NULL); /* look up GIRQ node handle from ECIA configuration */ static const struct device *get_girq_dev(int girq_num) { if ((girq_num < MCHP_FIRST_GIRQ) || (girq_num > MCHP_LAST_GIRQ)) { return NULL; } /* safe to convert to zero based index */ girq_num -= MCHP_FIRST_GIRQ; return xec_config_ecia.girq_node_handles[girq_num]; }