/* * Copyright (c) 2022 Leica Geosystems AG * * Copyright 2022 Google LLC * Copyright 2023 Microsoft Corporation * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT sbs_sbs_gauge_new_api #include "sbs_gauge.h" #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(sbs_gauge); static int sbs_cmd_reg_read(const struct device *dev, uint8_t reg_addr, uint16_t *val) { const struct sbs_gauge_config *cfg; uint8_t i2c_data[2]; int status; cfg = dev->config; status = i2c_burst_read_dt(&cfg->i2c, reg_addr, i2c_data, ARRAY_SIZE(i2c_data)); if (status < 0) { LOG_ERR("Unable to read register"); return status; } *val = sys_get_le16(i2c_data); return 0; } static int sbs_cmd_reg_write(const struct device *dev, uint8_t reg_addr, uint16_t val) { const struct sbs_gauge_config *config = dev->config; uint8_t buf[2]; sys_put_le16(val, buf); return i2c_burst_write_dt(&config->i2c, reg_addr, buf, sizeof(buf)); } static int sbs_cmd_buffer_read(const struct device *dev, uint8_t reg_addr, char *buffer, const uint8_t buffer_size) { const struct sbs_gauge_config *cfg; int status; cfg = dev->config; status = i2c_burst_read_dt(&cfg->i2c, reg_addr, buffer, buffer_size); if (status < 0) { LOG_ERR("Unable to read register"); return status; } return 0; } static int sbs_gauge_get_prop(const struct device *dev, fuel_gauge_prop_t prop, union fuel_gauge_prop_val *val) { int rc = 0; uint16_t tmp_val = 0; switch (prop) { case FUEL_GAUGE_AVG_CURRENT: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_AVG_CURRENT, &tmp_val); val->avg_current = tmp_val * 1000; break; case FUEL_GAUGE_CYCLE_COUNT: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_CYCLE_COUNT, &tmp_val); val->cycle_count = tmp_val; break; case FUEL_GAUGE_CURRENT: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_CURRENT, &tmp_val); val->current = (int16_t)tmp_val * 1000; break; case FUEL_GAUGE_FULL_CHARGE_CAPACITY: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_FULL_CAPACITY, &tmp_val); val->full_charge_capacity = tmp_val * 1000; break; case FUEL_GAUGE_REMAINING_CAPACITY: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_REM_CAPACITY, &tmp_val); val->remaining_capacity = tmp_val * 1000; break; case FUEL_GAUGE_RUNTIME_TO_EMPTY: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_RUNTIME2EMPTY, &tmp_val); val->runtime_to_empty = tmp_val; break; case FUEL_GAUGE_RUNTIME_TO_FULL: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_AVG_TIME2FULL, &tmp_val); val->runtime_to_full = tmp_val; break; case FUEL_GAUGE_SBS_MFR_ACCESS: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_MANUFACTURER_ACCESS, &tmp_val); val->sbs_mfr_access_word = tmp_val; break; case FUEL_GAUGE_ABSOLUTE_STATE_OF_CHARGE: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_ASOC, &tmp_val); val->absolute_state_of_charge = tmp_val; break; case FUEL_GAUGE_RELATIVE_STATE_OF_CHARGE: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_RSOC, &tmp_val); val->relative_state_of_charge = tmp_val; break; case FUEL_GAUGE_TEMPERATURE: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_TEMP, &tmp_val); val->temperature = tmp_val; break; case FUEL_GAUGE_VOLTAGE: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_VOLTAGE, &tmp_val); val->voltage = tmp_val * 1000; break; case FUEL_GAUGE_SBS_MODE: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_BATTERY_MODE, &tmp_val); val->sbs_mode = tmp_val; break; case FUEL_GAUGE_CHARGE_CURRENT: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_CHG_CURRENT, &tmp_val); val->chg_current = tmp_val * 1000; break; case FUEL_GAUGE_CHARGE_VOLTAGE: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_CHG_VOLTAGE, &tmp_val); val->chg_voltage = tmp_val * 1000; break; case FUEL_GAUGE_STATUS: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_FLAGS, &tmp_val); val->fg_status = tmp_val; break; case FUEL_GAUGE_DESIGN_CAPACITY: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_NOM_CAPACITY, &tmp_val); val->design_cap = tmp_val; break; case FUEL_GAUGE_DESIGN_VOLTAGE: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_DESIGN_VOLTAGE, &tmp_val); val->design_volt = tmp_val; break; case FUEL_GAUGE_SBS_ATRATE: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_AR, &tmp_val); val->sbs_at_rate = tmp_val; break; case FUEL_GAUGE_SBS_ATRATE_TIME_TO_FULL: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_ARTTF, &tmp_val); val->sbs_at_rate_time_to_full = tmp_val; break; case FUEL_GAUGE_SBS_ATRATE_TIME_TO_EMPTY: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_ARTTE, &tmp_val); val->sbs_at_rate_time_to_empty = tmp_val; break; case FUEL_GAUGE_SBS_ATRATE_OK: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_AROK, &tmp_val); val->sbs_at_rate_ok = tmp_val; break; case FUEL_GAUGE_SBS_REMAINING_CAPACITY_ALARM: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_REM_CAPACITY_ALARM, &tmp_val); val->sbs_remaining_capacity_alarm = tmp_val; break; case FUEL_GAUGE_SBS_REMAINING_TIME_ALARM: rc = sbs_cmd_reg_read(dev, SBS_GAUGE_CMD_REM_TIME_ALARM, &tmp_val); val->sbs_remaining_time_alarm = tmp_val; break; default: rc = -ENOTSUP; } return rc; } static int sbs_gauge_do_battery_cutoff(const struct device *dev) { int rc = -ENOTSUP; const struct sbs_gauge_config *cfg = dev->config; if (cfg->cutoff_cfg == NULL) { return -ENOTSUP; } for (int i = 0; i < cfg->cutoff_cfg->payload_size; i++) { rc = sbs_cmd_reg_write(dev, cfg->cutoff_cfg->reg, cfg->cutoff_cfg->payload[i]); if (rc != 0) { return rc; } } return rc; } static int sbs_gauge_set_prop(const struct device *dev, fuel_gauge_prop_t prop, union fuel_gauge_prop_val val) { int rc = 0; uint16_t tmp_val = 0; switch (prop) { case FUEL_GAUGE_SBS_MFR_ACCESS: rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_MANUFACTURER_ACCESS, val.sbs_mfr_access_word); val.sbs_mfr_access_word = tmp_val; break; case FUEL_GAUGE_SBS_REMAINING_CAPACITY_ALARM: rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_REM_CAPACITY_ALARM, val.sbs_remaining_capacity_alarm); val.sbs_remaining_capacity_alarm = tmp_val; break; case FUEL_GAUGE_SBS_REMAINING_TIME_ALARM: rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_REM_TIME_ALARM, val.sbs_remaining_time_alarm); val.sbs_remaining_time_alarm = tmp_val; break; case FUEL_GAUGE_SBS_MODE: rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_BATTERY_MODE, val.sbs_mode); val.sbs_mode = tmp_val; break; case FUEL_GAUGE_SBS_ATRATE: rc = sbs_cmd_reg_write(dev, SBS_GAUGE_CMD_AR, val.sbs_at_rate); val.sbs_at_rate = tmp_val; break; default: rc = -ENOTSUP; } return rc; } static int sbs_gauge_get_buffer_prop(const struct device *dev, fuel_gauge_prop_t prop_type, void *dst, size_t dst_len) { int rc = 0; switch (prop_type) { case FUEL_GAUGE_MANUFACTURER_NAME: if (dst_len == sizeof(struct sbs_gauge_manufacturer_name)) { rc = sbs_cmd_buffer_read(dev, SBS_GAUGE_CMD_MANUFACTURER_NAME, (char *)dst, dst_len); } else { rc = -EINVAL; } break; case FUEL_GAUGE_DEVICE_NAME: if (dst_len == sizeof(struct sbs_gauge_device_name)) { rc = sbs_cmd_buffer_read(dev, SBS_GAUGE_CMD_DEVICE_NAME, (char *)dst, dst_len); } else { rc = -EINVAL; } break; case FUEL_GAUGE_DEVICE_CHEMISTRY: if (dst_len == sizeof(struct sbs_gauge_device_chemistry)) { rc = sbs_cmd_buffer_read(dev, SBS_GAUGE_CMD_DEVICE_CHEMISTRY, (char *)dst, dst_len); } else { rc = -EINVAL; } break; default: rc = -ENOTSUP; } return rc; } /** * @brief initialize the fuel gauge * * @return 0 for success */ static int sbs_gauge_init(const struct device *dev) { const struct sbs_gauge_config *cfg; cfg = dev->config; if (!device_is_ready(cfg->i2c.bus)) { LOG_ERR("Bus device is not ready"); return -ENODEV; } return 0; } static DEVICE_API(fuel_gauge, sbs_gauge_driver_api) = { .get_property = &sbs_gauge_get_prop, .set_property = &sbs_gauge_set_prop, .get_buffer_property = &sbs_gauge_get_buffer_prop, .battery_cutoff = &sbs_gauge_do_battery_cutoff, }; /* Concatenates index to battery config to create unique cfg variable name per instance. */ #define _SBS_GAUGE_BATT_CUTOFF_CFG_VAR_NAME(index) sbs_gauge_batt_cutoff_cfg_##index /* Declare and define the battery config struct */ #define _SBS_GAUGE_CONFIG_DEFINE(index) \ static const struct sbs_gauge_battery_cutoff_config _SBS_GAUGE_BATT_CUTOFF_CFG_VAR_NAME( \ index) = { \ .reg = DT_INST_PROP(index, battery_cutoff_reg_addr), \ .payload = DT_INST_PROP(index, battery_cutoff_payload), \ .payload_size = DT_INST_PROP_LEN(index, battery_cutoff_payload), \ }; /* Conditionally defined battery config based on battery cutoff support */ #define SBS_GAUGE_CONFIG_DEFINE(index) \ COND_CODE_1(DT_INST_PROP(index, battery_cutoff_support), \ (_SBS_GAUGE_CONFIG_DEFINE(index)), (;)) /* Conditionally get the battery config variable name or NULL based on battery cutoff support */ #define SBS_GAUGE_GET_BATTERY_CONFIG_NAME(index) \ COND_CODE_1(DT_INST_PROP(index, battery_cutoff_support), \ (&_SBS_GAUGE_BATT_CUTOFF_CFG_VAR_NAME(index)), (NULL)) #define SBS_GAUGE_INIT(index) \ SBS_GAUGE_CONFIG_DEFINE(index); \ static const struct sbs_gauge_config sbs_gauge_config_##index = { \ .i2c = I2C_DT_SPEC_INST_GET(index), \ .cutoff_cfg = SBS_GAUGE_GET_BATTERY_CONFIG_NAME(index)}; \ \ DEVICE_DT_INST_DEFINE(index, &sbs_gauge_init, NULL, NULL, &sbs_gauge_config_##index, \ POST_KERNEL, CONFIG_FUEL_GAUGE_INIT_PRIORITY, \ &sbs_gauge_driver_api); DT_INST_FOREACH_STATUS_OKAY(SBS_GAUGE_INIT) #define CUTOFF_PAYLOAD_SIZE_ASSERT(inst) \ BUILD_ASSERT(DT_INST_PROP_LEN_OR(inst, battery_cutoff_payload, 0) <= \ SBS_GAUGE_CUTOFF_PAYLOAD_MAX_SIZE); DT_INST_FOREACH_STATUS_OKAY(CUTOFF_PAYLOAD_SIZE_ASSERT)