/* * Copyright 2021,2023 NXP * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nxp_imx_flexspi_mx25um51345g #include #include #include #include #include "spi_nor.h" #include "memc_mcux_flexspi.h" #ifdef CONFIG_HAS_MCUX_CACHE #include #endif #define NOR_ERASE_VALUE 0xff #ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER static uint8_t nor_write_buf[SPI_NOR_PAGE_SIZE]; #endif /* * NOTE: If CONFIG_FLASH_MCUX_FLEXSPI_XIP is selected, Any external functions * called while interacting with the flexspi MUST be relocated to SRAM or ITCM * at runtime, so that the chip does not access the flexspi to read program * instructions while it is being written to * * Additionally, no data used by this driver should be stored in flash. */ #if defined(CONFIG_FLASH_MCUX_FLEXSPI_XIP) && (CONFIG_FLASH_LOG_LEVEL > 0) #warning "Enabling flash driver logging and XIP mode simultaneously can cause \ read-while-write hazards. This configuration is not recommended." #endif /* FLASH_ENABLE_OCTAL_CMD: (01 = STR OPI Enable) , (02 = DTR OPI Enable) */ #if CONFIG_FLASH_MCUX_FLEXSPI_MX25UM51345G_OPI_DTR #define NOR_FLASH_ENABLE_OCTAL_CMD 0x2 /* In OPI DTR mode, all writes must be 2 byte aligned, and multiples of 2 bytes */ #define NOR_WRITE_SIZE 2 #else #define NOR_FLASH_ENABLE_OCTAL_CMD 0x1 #define NOR_WRITE_SIZE 1 #endif LOG_MODULE_REGISTER(flash_flexspi_nor, CONFIG_FLASH_LOG_LEVEL); enum { /* Instructions matching with XIP layout */ READ, WRITE_ENABLE_OPI, WRITE_ENABLE, ERASE_SECTOR, PAGE_PROGRAM_INPUT, PAGE_PROGRAM, READ_ID_OPI, ENTER_OPI, READ_STATUS_REG, ERASE_CHIP, }; /* Device variables used in critical sections should be in this structure */ struct flash_flexspi_nor_data { const struct device *controller; flexspi_device_config_t config; flexspi_port_t port; uint64_t size; struct flash_pages_layout layout; struct flash_parameters flash_parameters; }; static const uint32_t flash_flexspi_nor_lut[][4] = { [READ_ID_OPI] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x9F, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x60), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_DUMMY_DDR, kFLEXSPI_8PAD, 0x16), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0), }, [WRITE_ENABLE] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x06, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), }, [ENTER_OPI] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_1PAD, 0x72, kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_1PAD, 0x20), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_1PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0), }, #if (NOR_FLASH_ENABLE_OCTAL_CMD == 0x1) [READ_STATUS_REG] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x05, kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xFA), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_8PAD, 0x14), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_8PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0), }, [WRITE_ENABLE_OPI] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x06, kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xF9), }, [ERASE_SECTOR] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x21, kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xDE), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_STOP, kFLEXSPI_8PAD, 0), }, [ERASE_CHIP] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x60, kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x9F), }, [READ] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xEC, kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x13), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_DUMMY_SDR, kFLEXSPI_8PAD, 0x14), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_SDR, kFLEXSPI_8PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0), }, [PAGE_PROGRAM] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x12, kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0xED), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_SDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_WRITE_SDR, kFLEXSPI_8PAD, 0x04), }, #else [READ_STATUS_REG] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x05, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xFA), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x4), }, [WRITE_ENABLE_OPI] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x06, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xF9), }, [ERASE_SECTOR] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x21, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xDE), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_STOP, kFLEXSPI_8PAD, 0), }, [ERASE_CHIP] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x60, kFLEXSPI_Command_SDR, kFLEXSPI_8PAD, 0x9F), }, [READ] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xEE, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x11), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_DUMMY_DDR, kFLEXSPI_8PAD, 0x08), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_READ_DDR, kFLEXSPI_8PAD, 0x04, kFLEXSPI_Command_STOP, kFLEXSPI_1PAD, 0x0), }, [PAGE_PROGRAM] = { FLEXSPI_LUT_SEQ(kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0x12, kFLEXSPI_Command_DDR, kFLEXSPI_8PAD, 0xED), FLEXSPI_LUT_SEQ(kFLEXSPI_Command_RADDR_DDR, kFLEXSPI_8PAD, 0x20, kFLEXSPI_Command_WRITE_DDR, kFLEXSPI_8PAD, 0x04), }, #endif }; static int flash_flexspi_nor_get_vendor_id(const struct device *dev, uint8_t *vendor_id) { struct flash_flexspi_nor_data *data = dev->data; uint32_t buffer = 0; int ret; flexspi_transfer_t transfer = { .deviceAddress = 0, .port = data->port, .cmdType = kFLEXSPI_Read, .SeqNumber = 1, .seqIndex = READ_ID_OPI, .data = &buffer, .dataSize = 1, }; LOG_DBG("Reading id"); ret = memc_flexspi_transfer(data->controller, &transfer); *vendor_id = buffer; return ret; } static int flash_flexspi_nor_read_status(const struct device *dev, uint32_t *status) { struct flash_flexspi_nor_data *data = dev->data; flexspi_transfer_t transfer = { .deviceAddress = 0, .port = data->port, .cmdType = kFLEXSPI_Read, .SeqNumber = 1, .seqIndex = READ_STATUS_REG, .data = status, .dataSize = 1, }; LOG_DBG("Reading status register"); return memc_flexspi_transfer(data->controller, &transfer); } static int flash_flexspi_nor_write_status(const struct device *dev, uint32_t *status) { struct flash_flexspi_nor_data *data = dev->data; flexspi_transfer_t transfer = { .deviceAddress = 0, .port = data->port, .cmdType = kFLEXSPI_Write, .SeqNumber = 1, .seqIndex = ENTER_OPI, .data = status, .dataSize = 1, }; LOG_DBG("Writing status register"); return memc_flexspi_transfer(data->controller, &transfer); } static int flash_flexspi_nor_write_enable(const struct device *dev, bool enableOctal) { struct flash_flexspi_nor_data *data = dev->data; flexspi_transfer_t transfer; transfer.deviceAddress = 0; transfer.port = data->port; transfer.cmdType = kFLEXSPI_Command; transfer.SeqNumber = 1; if (enableOctal) { transfer.seqIndex = WRITE_ENABLE_OPI; } else { transfer.seqIndex = WRITE_ENABLE; } transfer.data = NULL; transfer.dataSize = 0; LOG_DBG("Enabling write"); return memc_flexspi_transfer(data->controller, &transfer); } static int flash_flexspi_nor_erase_sector(const struct device *dev, off_t offset) { struct flash_flexspi_nor_data *data = dev->data; flexspi_transfer_t transfer = { .deviceAddress = offset, .port = data->port, .cmdType = kFLEXSPI_Command, .SeqNumber = 1, .seqIndex = ERASE_SECTOR, .data = NULL, .dataSize = 0, }; LOG_DBG("Erasing sector at 0x%08zx", (ssize_t) offset); return memc_flexspi_transfer(data->controller, &transfer); } static int flash_flexspi_nor_erase_chip(const struct device *dev) { struct flash_flexspi_nor_data *data = dev->data; flexspi_transfer_t transfer = { .deviceAddress = 0, .port = data->port, .cmdType = kFLEXSPI_Command, .SeqNumber = 1, .seqIndex = ERASE_CHIP, .data = NULL, .dataSize = 0, }; LOG_DBG("Erasing chip"); return memc_flexspi_transfer(data->controller, &transfer); } static int flash_flexspi_nor_page_program(const struct device *dev, off_t offset, const void *buffer, size_t len) { struct flash_flexspi_nor_data *data = dev->data; flexspi_transfer_t transfer = { .deviceAddress = offset, .port = data->port, .cmdType = kFLEXSPI_Write, .SeqNumber = 1, .seqIndex = PAGE_PROGRAM, .data = (uint32_t *) buffer, .dataSize = len, }; LOG_DBG("Page programming %d bytes to 0x%08zx", len, (ssize_t) offset); return memc_flexspi_transfer(data->controller, &transfer); } static int flash_flexspi_nor_wait_bus_busy(const struct device *dev) { uint32_t status = 0; int ret; do { ret = flash_flexspi_nor_read_status(dev, &status); LOG_DBG("status: 0x%x", status); if (ret) { LOG_ERR("Could not read status"); return ret; } } while (status & BIT(0)); return 0; } static int flash_flexspi_enable_octal_mode(const struct device *dev) { struct flash_flexspi_nor_data *data = dev->data; /* FLASH_ENABLE_OCTAL_CMD: (01 = STR OPI Enable, 02 = DTR OPI Enable) */ uint32_t status = NOR_FLASH_ENABLE_OCTAL_CMD; flash_flexspi_nor_write_enable(dev, false); flash_flexspi_nor_write_status(dev, &status); flash_flexspi_nor_wait_bus_busy(dev); memc_flexspi_reset(data->controller); return 0; } static int flash_flexspi_nor_read(const struct device *dev, off_t offset, void *buffer, size_t len) { struct flash_flexspi_nor_data *data = dev->data; uint8_t *src = memc_flexspi_get_ahb_address(data->controller, data->port, offset); memcpy(buffer, src, len); return 0; } static int flash_flexspi_nor_write(const struct device *dev, off_t offset, const void *buffer, size_t len) { struct flash_flexspi_nor_data *data = dev->data; size_t size = len; uint8_t *src = (uint8_t *) buffer; int i; unsigned int key = 0; uint8_t *dst = memc_flexspi_get_ahb_address(data->controller, data->port, offset); if (memc_flexspi_is_running_xip(data->controller)) { /* * ==== ENTER CRITICAL SECTION ==== * No flash access should be performed in critical section. All * code and data accessed must reside in ram. */ key = irq_lock(); } if (IS_ENABLED(CONFIG_FLASH_MCUX_FLEXSPI_MX25UM51345G_OPI_DTR)) { /* Check that write size and length are even */ if ((offset & 0x1) || (len & 0x1)) { return -EINVAL; } } while (len) { /* If the offset isn't a multiple of the NOR page size, we first need * to write the remaining part that fits, otherwise the write could * be wrapped around within the same page */ i = MIN(SPI_NOR_PAGE_SIZE - (offset % SPI_NOR_PAGE_SIZE), len); #ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER memcpy(nor_write_buf, src, i); #endif flash_flexspi_nor_write_enable(dev, true); #ifdef CONFIG_FLASH_MCUX_FLEXSPI_NOR_WRITE_BUFFER flash_flexspi_nor_page_program(dev, offset, nor_write_buf, i); #else flash_flexspi_nor_page_program(dev, offset, src, i); #endif flash_flexspi_nor_wait_bus_busy(dev); memc_flexspi_reset(data->controller); src += i; offset += i; len -= i; } if (memc_flexspi_is_running_xip(data->controller)) { /* ==== EXIT CRITICAL SECTION ==== */ irq_unlock(key); } #ifdef CONFIG_HAS_MCUX_CACHE DCACHE_InvalidateByRange((uint32_t) dst, size); #endif return 0; } static int flash_flexspi_nor_erase(const struct device *dev, off_t offset, size_t size) { struct flash_flexspi_nor_data *data = dev->data; int num_sectors = size / SPI_NOR_SECTOR_SIZE; int i; unsigned int key = 0; uint8_t *dst = memc_flexspi_get_ahb_address(data->controller, data->port, offset); if (offset % SPI_NOR_SECTOR_SIZE) { LOG_ERR("Invalid offset"); return -EINVAL; } if (size % SPI_NOR_SECTOR_SIZE) { LOG_ERR("Invalid size"); return -EINVAL; } if (memc_flexspi_is_running_xip(data->controller)) { /* * ==== ENTER CRITICAL SECTION ==== * No flash access should be performed in critical section. All * code and data accessed must reside in ram. */ key = irq_lock(); } if ((offset == 0) && (size == data->config.flashSize * KB(1))) { flash_flexspi_nor_write_enable(dev, true); flash_flexspi_nor_erase_chip(dev); flash_flexspi_nor_wait_bus_busy(dev); memc_flexspi_reset(data->controller); } else { for (i = 0; i < num_sectors; i++) { flash_flexspi_nor_write_enable(dev, true); flash_flexspi_nor_erase_sector(dev, offset); flash_flexspi_nor_wait_bus_busy(dev); memc_flexspi_reset(data->controller); offset += SPI_NOR_SECTOR_SIZE; } } if (memc_flexspi_is_running_xip(data->controller)) { /* ==== EXIT CRITICAL SECTION ==== */ irq_unlock(key); } #ifdef CONFIG_HAS_MCUX_CACHE DCACHE_InvalidateByRange((uint32_t) dst, size); #endif return 0; } static const struct flash_parameters *flash_flexspi_nor_get_parameters( const struct device *dev) { struct flash_flexspi_nor_data *data = dev->data; return &data->flash_parameters; } static int flash_flexspi_nor_get_size(const struct device *dev, uint64_t *size) { const struct flash_flexspi_nor_data *data = dev->data; *size = data->size; return 0; } #if defined(CONFIG_FLASH_PAGE_LAYOUT) static void flash_flexspi_nor_pages_layout(const struct device *dev, const struct flash_pages_layout **layout, size_t *layout_size) { struct flash_flexspi_nor_data *data = dev->data; *layout = &data->layout; *layout_size = 1; } #endif /* CONFIG_FLASH_PAGE_LAYOUT */ static int flash_flexspi_nor_init(const struct device *dev) { struct flash_flexspi_nor_data *data = dev->data; uint8_t vendor_id; if (!device_is_ready(data->controller)) { LOG_ERR("Controller device not ready"); return -ENODEV; } if (memc_flexspi_is_running_xip(data->controller)) { /* Wait for bus idle before configuring */ memc_flexspi_wait_bus_idle(data->controller); } if (memc_flexspi_set_device_config(data->controller, &data->config, (const uint32_t *)flash_flexspi_nor_lut, sizeof(flash_flexspi_nor_lut) / MEMC_FLEXSPI_CMD_SIZE, data->port)) { LOG_ERR("Could not set device configuration"); return -EINVAL; } memc_flexspi_reset(data->controller); if (flash_flexspi_enable_octal_mode(dev)) { LOG_ERR("Could not enable octal mode"); return -EIO; } if (flash_flexspi_nor_get_vendor_id(dev, &vendor_id)) { LOG_ERR("Could not read vendor id"); return -EIO; } LOG_DBG("Vendor id: 0x%0x", vendor_id); return 0; } static DEVICE_API(flash, flash_flexspi_nor_api) = { .erase = flash_flexspi_nor_erase, .write = flash_flexspi_nor_write, .read = flash_flexspi_nor_read, .get_parameters = flash_flexspi_nor_get_parameters, .get_size = flash_flexspi_nor_get_size, #if defined(CONFIG_FLASH_PAGE_LAYOUT) .page_layout = flash_flexspi_nor_pages_layout, #endif }; #define CONCAT3(x, y, z) x ## y ## z #define CS_INTERVAL_UNIT(unit) \ CONCAT3(kFLEXSPI_CsIntervalUnit, unit, SckCycle) #define AHB_WRITE_WAIT_UNIT(unit) \ CONCAT3(kFLEXSPI_AhbWriteWaitUnit, unit, AhbCycle) #define FLASH_FLEXSPI_DEVICE_CONFIG(n) \ { \ .flexspiRootClk = MHZ(120), \ .flashSize = DT_INST_PROP(n, size) / 8 / KB(1), \ .CSIntervalUnit = \ CS_INTERVAL_UNIT( \ DT_INST_PROP(n, cs_interval_unit)), \ .CSInterval = DT_INST_PROP(n, cs_interval), \ .CSHoldTime = DT_INST_PROP(n, cs_hold_time), \ .CSSetupTime = DT_INST_PROP(n, cs_setup_time), \ .dataValidTime = DT_INST_PROP(n, data_valid_time), \ .columnspace = DT_INST_PROP(n, column_space), \ .enableWordAddress = DT_INST_PROP(n, word_addressable), \ .AWRSeqIndex = 0, \ .AWRSeqNumber = 0, \ .ARDSeqIndex = READ, \ .ARDSeqNumber = 1, \ .AHBWriteWaitUnit = \ AHB_WRITE_WAIT_UNIT( \ DT_INST_PROP(n, ahb_write_wait_unit)), \ .AHBWriteWaitInterval = \ DT_INST_PROP(n, ahb_write_wait_interval), \ } \ #define FLASH_FLEXSPI_NOR(n) \ static struct flash_flexspi_nor_data \ flash_flexspi_nor_data_##n = { \ .controller = DEVICE_DT_GET(DT_INST_BUS(n)), \ .config = FLASH_FLEXSPI_DEVICE_CONFIG(n), \ .port = DT_INST_REG_ADDR(n), \ .size = DT_INST_PROP(n, size) / 8, \ .layout = { \ .pages_count = DT_INST_PROP(n, size) / 8 \ / SPI_NOR_SECTOR_SIZE, \ .pages_size = SPI_NOR_SECTOR_SIZE, \ }, \ .flash_parameters = { \ .write_block_size = NOR_WRITE_SIZE, \ .erase_value = NOR_ERASE_VALUE, \ }, \ }; \ \ DEVICE_DT_INST_DEFINE(n, \ flash_flexspi_nor_init, \ NULL, \ &flash_flexspi_nor_data_##n, \ NULL, \ POST_KERNEL, \ CONFIG_FLASH_INIT_PRIORITY, \ &flash_flexspi_nor_api); DT_INST_FOREACH_STATUS_OKAY(FLASH_FLEXSPI_NOR)