/* * Copyright 2024 NXP * * Inspiration from phy_mii.c, which is: * Copyright (c) 2021 IP-Logix Inc. * Copyright 2022 NXP * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT qca_ar8031 #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(phy_qc_ar8031, CONFIG_PHY_LOG_LEVEL); #define AR8031_PHY_ID1 0x004DU #define PHY_READID_TIMEOUT_COUNT 1000U /* PHY Specific Status Register */ #define PHY_SPECIFIC_STATUS_REG 0x11 #define SPEC_STATUS_REG_LINK_MASK (1U << 10) #define SPEC_STATUS_REG_DUPLEX_MASK (1U << 13) #define PHY_DUPLEX_HALF (0U << 13) #define PHY_DUPLEX_FULL (1U << 13) #define SPEC_STATUS_REG_SPEED_MASK (0x3U << 14) #define PHY_SPEED_10M (0U << 14) #define PHY_SPEED_100M (1U << 14) #define PHY_SPEED_1000M (2U << 14) /* The PHY Debug port address register */ #define PHY_DEBUGPORT_ADDR_REG 0x1DU /* The PHY Debug port data register */ #define PHY_DEBUGPORT_DATA_REG 0x1EU /* PCS Register: smartEEE control 3 Register */ #define MDIO_PCS_SMARTEEE_CTRL3 0x805DU #define MDIO_PCS_SMARTEEE_CTRL3_LPI_EN (1U << 8) /* Debug port registers */ /* Analog Test Control */ #define PHY_DEBUGPORT_ANALOG_CTRL 0x0 #define PHY_DEBUGPORT_ANALOG_CTRL_RX_DELAY (1U << 15) /* SerDes Test and System Mode Control */ #define PHY_DEBUGPORT_SD_SM_CTRL 0x5 #define PHY_DEBUGPORT_SD_SM_CTRL_TX_DELAY (1U << 8) struct qc_ar8031_config { uint8_t addr; bool fixed_link; bool enable_eee; int fixed_speed; const struct device *mdio_dev; }; struct qc_ar8031_data { const struct device *dev; phy_callback_t cb; void *cb_data; struct k_work_delayable monitor_work; struct phy_link_state state; struct k_sem sem; }; static int qc_ar8031_get_link_state(const struct device *dev, struct phy_link_state *state); static int qc_ar8031_read(const struct device *dev, uint16_t reg_addr, uint32_t *data) { const struct qc_ar8031_config *config = dev->config; int ret; /* Make sure excessive bits 16-31 are reset */ *data = 0U; /* Read the PHY register */ ret = mdio_read(config->mdio_dev, config->addr, reg_addr, (uint16_t *)data); if (ret) { return ret; } return 0; } static int qc_ar8031_write(const struct device *dev, uint16_t reg_addr, uint32_t data) { const struct qc_ar8031_config *config = dev->config; int ret; ret = mdio_write(config->mdio_dev, config->addr, reg_addr, (uint16_t)data); if (ret) { return ret; } return 0; } static int qc_ar8031_mmd_set_device(const struct device *dev, uint32_t device, uint32_t addr, uint16_t mode) { uint16_t reg_value = (device & MII_MMD_ACR_DEVAD_MASK) | MII_MMD_ACR_ADDR; if (qc_ar8031_write(dev, MII_MMD_ACR, reg_value) < 0) { return -EIO; } if (qc_ar8031_write(dev, MII_MMD_AADR, addr) < 0) { return -EIO; } /* Set Function mode of data access(b01~11) and device address. */ if (qc_ar8031_write(dev, MII_MMD_ACR, (device & MII_MMD_ACR_DEVAD_MASK) | mode) < 0) { return -EIO; } return 0; } static int qc_ar8031_mmd_read(const struct device *dev, uint32_t device, uint32_t addr, uint32_t *data) { int ret; *data = 0U; ret = qc_ar8031_mmd_set_device(dev, device, addr, MII_MMD_ACR_DATA_NO_POS_INC); if (ret) { return -EIO; } ret = qc_ar8031_read(dev, MII_MMD_AADR, data); return ret; } static int qc_ar8031_mmd_write(const struct device *dev, uint32_t device, uint32_t addr, uint32_t data) { int ret; ret = qc_ar8031_mmd_set_device(dev, device, addr, MII_MMD_ACR_DATA_NO_POS_INC); if (ret) { return -EIO; } ret = qc_ar8031_write(dev, MII_MMD_AADR, data); return ret; } static int qc_ar8031_update_link_state(const struct device *dev) { const struct qc_ar8031_config *const cfg = dev->config; struct qc_ar8031_data *const data = dev->data; bool link_up; uint32_t reg_value; uint16_t speed, duplex; if (qc_ar8031_read(dev, PHY_SPECIFIC_STATUS_REG, ®_value) < 0) { return -EIO; } link_up = (uint16_t)reg_value & SPEC_STATUS_REG_LINK_MASK; /* If there is no change in link state don't proceed. */ if (link_up == data->state.is_up) { return -EAGAIN; } data->state.is_up = link_up; /* If link is down, there is nothing more to be done */ if (data->state.is_up == false) { return 0; } if (qc_ar8031_read(dev, PHY_SPECIFIC_STATUS_REG, ®_value) < 0) { return -EIO; } speed = reg_value & SPEC_STATUS_REG_SPEED_MASK; duplex = reg_value & SPEC_STATUS_REG_DUPLEX_MASK; switch (speed | duplex) { case PHY_SPEED_10M | PHY_DUPLEX_FULL: data->state.speed = LINK_FULL_10BASE_T; break; case PHY_SPEED_10M | PHY_DUPLEX_HALF: data->state.speed = LINK_HALF_10BASE_T; break; case PHY_SPEED_100M | PHY_DUPLEX_FULL: data->state.speed = LINK_FULL_100BASE_T; break; case PHY_SPEED_100M | PHY_DUPLEX_HALF: data->state.speed = LINK_HALF_100BASE_T; break; case PHY_SPEED_1000M | PHY_DUPLEX_FULL: data->state.speed = LINK_FULL_1000BASE_T; break; case PHY_SPEED_1000M | PHY_DUPLEX_HALF: data->state.speed = LINK_HALF_1000BASE_T; break; } LOG_DBG("PHY (%d) Link speed %s Mb, %s duplex", cfg->addr, PHY_LINK_IS_SPEED_1000M(data->state.speed) ? "1000" : (PHY_LINK_IS_SPEED_100M(data->state.speed) ? "100" : "10"), PHY_LINK_IS_FULL_DUPLEX(data->state.speed) ? "full" : "half"); return 0; } static void invoke_link_cb(const struct device *dev) { struct qc_ar8031_data *const data = dev->data; struct phy_link_state state; if (data->cb == NULL) { return; } qc_ar8031_get_link_state(dev, &state); data->cb(data->dev, &state, data->cb_data); } static void monitor_work_handler(struct k_work *work) { struct k_work_delayable *dwork = k_work_delayable_from_work(work); struct qc_ar8031_data *const data = CONTAINER_OF(dwork, struct qc_ar8031_data, monitor_work); const struct device *dev = data->dev; int rc; k_sem_take(&data->sem, K_FOREVER); rc = qc_ar8031_update_link_state(dev); k_sem_give(&data->sem); /* If link state has changed and a callback is set, invoke callback */ if (rc == 0) { invoke_link_cb(dev); } /* Submit delayed work */ k_work_reschedule(&data->monitor_work, K_MSEC(CONFIG_PHY_MONITOR_PERIOD)); } static int qc_ar8031_cfg_link(const struct device *dev, enum phy_link_speed adv_speeds) { uint32_t anar_reg; uint32_t bmcr_reg; uint32_t c1kt_reg; if (qc_ar8031_read(dev, MII_ANAR, &anar_reg) < 0) { return -EIO; } if (qc_ar8031_read(dev, MII_BMCR, &bmcr_reg) < 0) { return -EIO; } if (qc_ar8031_read(dev, MII_1KTCR, &c1kt_reg) < 0) { return -EIO; } if (adv_speeds & LINK_FULL_10BASE_T) { anar_reg |= MII_ADVERTISE_10_FULL; } else { anar_reg &= ~MII_ADVERTISE_10_FULL; } if (adv_speeds & LINK_HALF_10BASE_T) { anar_reg |= MII_ADVERTISE_10_HALF; } else { anar_reg &= ~MII_ADVERTISE_10_HALF; } if (adv_speeds & LINK_FULL_100BASE_T) { anar_reg |= MII_ADVERTISE_100_FULL; } else { anar_reg &= ~MII_ADVERTISE_100_FULL; } if (adv_speeds & LINK_HALF_100BASE_T) { anar_reg |= MII_ADVERTISE_100_HALF; } else { anar_reg &= ~MII_ADVERTISE_100_HALF; } if (adv_speeds & LINK_FULL_1000BASE_T) { c1kt_reg |= MII_ADVERTISE_1000_FULL; } else { c1kt_reg &= ~MII_ADVERTISE_1000_FULL; } if (adv_speeds & LINK_HALF_1000BASE_T) { c1kt_reg |= MII_ADVERTISE_1000_HALF; } else { c1kt_reg &= ~MII_ADVERTISE_1000_HALF; } if (qc_ar8031_write(dev, MII_1KTCR, c1kt_reg) < 0) { return -EIO; } bmcr_reg |= MII_BMCR_AUTONEG_ENABLE | MII_BMCR_AUTONEG_RESTART; if (qc_ar8031_write(dev, MII_ANAR, anar_reg) < 0) { return -EIO; } if (qc_ar8031_write(dev, MII_BMCR, bmcr_reg) < 0) { return -EIO; } return 0; } static int qc_ar8031_get_link_state(const struct device *dev, struct phy_link_state *state) { struct qc_ar8031_data *const data = dev->data; k_sem_take(&data->sem, K_FOREVER); memcpy(state, &data->state, sizeof(struct phy_link_state)); k_sem_give(&data->sem); return 0; } static int qc_ar8031_link_cb_set(const struct device *dev, phy_callback_t cb, void *user_data) { struct qc_ar8031_data *const data = dev->data; data->cb = cb; data->cb_data = user_data; /** * Immediately invoke the callback to notify the caller of the * current link status. */ invoke_link_cb(dev); return 0; } static int qc_ar8031_init(const struct device *dev) { const struct qc_ar8031_config *const cfg = dev->config; struct qc_ar8031_data *const data = dev->data; uint32_t counter = PHY_READID_TIMEOUT_COUNT; uint32_t reg_value = 0; int ret; k_sem_init(&data->sem, 1, 1); mdio_bus_enable(cfg->mdio_dev); data->state.is_up = false; data->dev = dev; data->cb = NULL; do { if (qc_ar8031_read(dev, MII_PHYID1R, ®_value) < 0) { return -EIO; } } while (reg_value != AR8031_PHY_ID1 && counter-- > 0); if (counter == 0U) { LOG_ERR("PHY (%d) can't read ID", cfg->addr); return -EIO; } /* Reset PHY */ ret = qc_ar8031_write(dev, MII_BMCR, MII_BMCR_RESET); if (ret) { return -EIO; } /* Close smartEEE */ ret = qc_ar8031_mmd_set_device(dev, MDIO_MMD_PCS, MDIO_PCS_SMARTEEE_CTRL3, MII_MMD_ACR_DATA_NO_POS_INC); if (ret) { return -EIO; } ret = qc_ar8031_read(dev, MII_MMD_AADR, ®_value); if (ret) { return -EIO; } ret = qc_ar8031_write(dev, MII_MMD_AADR, reg_value & ~(MDIO_PCS_SMARTEEE_CTRL3_LPI_EN)); if (ret) { return -EIO; } /* Enable Tx clock delay */ ret = qc_ar8031_write(dev, PHY_DEBUGPORT_ADDR_REG, PHY_DEBUGPORT_SD_SM_CTRL); if (ret) { return -EIO; } ret = qc_ar8031_read(dev, PHY_DEBUGPORT_DATA_REG, ®_value); if (ret) { return -EIO; } ret = qc_ar8031_write(dev, PHY_DEBUGPORT_DATA_REG, reg_value | PHY_DEBUGPORT_SD_SM_CTRL_TX_DELAY); if (ret) { return -EIO; } /* Enable Rx clock delay */ ret = qc_ar8031_write(dev, PHY_DEBUGPORT_ADDR_REG, PHY_DEBUGPORT_ANALOG_CTRL); if (ret) { return -EIO; } ret = qc_ar8031_read(dev, PHY_DEBUGPORT_DATA_REG, ®_value); if (ret) { return -EIO; } ret = qc_ar8031_write(dev, PHY_DEBUGPORT_DATA_REG, reg_value | PHY_DEBUGPORT_ANALOG_CTRL_RX_DELAY); if (ret) { return -EIO; } /* Energy Efficient Ethernet configuration */ if (cfg->enable_eee) { ret = qc_ar8031_mmd_read(dev, MDIO_MMD_PCS, MDIO_PCS_EEE_CAP, ®_value); if (ret) { return -EIO; } ret = qc_ar8031_mmd_write(dev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, reg_value & (MDIO_AN_EEE_ADV_1000T | MDIO_AN_EEE_ADV_100TX)); if (ret) { return -EIO; } } else { ret = qc_ar8031_mmd_write(dev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, 0); if (ret) { return -EIO; } } /* Fixed Link */ if (cfg->fixed_link) { /* Disable isolate */ ret = qc_ar8031_read(dev, MII_BMCR, ®_value); if (ret) { return -EIO; } reg_value &= ~MII_BMCR_ISOLATE; ret = qc_ar8031_write(dev, MII_BMCR, reg_value); if (ret) { return -EIO; } const static int speed_to_phy_link_speed[] = { LINK_HALF_10BASE_T, LINK_FULL_10BASE_T, LINK_HALF_100BASE_T, LINK_FULL_100BASE_T, LINK_HALF_1000BASE_T, LINK_FULL_1000BASE_T, }; data->state.speed = speed_to_phy_link_speed[cfg->fixed_speed]; data->state.is_up = true; } else { /* Auto negotiation */ /* Advertise all speeds */ qc_ar8031_cfg_link(dev, LINK_HALF_10BASE_T | LINK_FULL_10BASE_T | LINK_HALF_100BASE_T | LINK_FULL_100BASE_T | LINK_HALF_1000BASE_T | LINK_FULL_1000BASE_T); k_work_init_delayable(&data->monitor_work, monitor_work_handler); monitor_work_handler(&data->monitor_work.work); } return 0; } static DEVICE_API(ethphy, ar8031_driver_api) = { .get_link = qc_ar8031_get_link_state, .cfg_link = qc_ar8031_cfg_link, .link_cb_set = qc_ar8031_link_cb_set, .read = qc_ar8031_read, .write = qc_ar8031_write, }; #define AR8031_CONFIG(n) \ static const struct qc_ar8031_config qc_ar8031_config_##n = { \ .addr = DT_INST_REG_ADDR(n), \ .fixed_link = DT_INST_NODE_HAS_PROP(n, fixed_link), \ .fixed_speed = DT_INST_ENUM_IDX_OR(n, fixed_link, 0), \ .mdio_dev = DEVICE_DT_GET(DT_INST_BUS(n)), \ .enable_eee = DT_INST_NODE_HAS_PROP(n, eee_en), \ }; #define AR8031_DEVICE(n) \ AR8031_CONFIG(n); \ static struct qc_ar8031_data qc_ar8031_data_##n; \ DEVICE_DT_INST_DEFINE(n, &qc_ar8031_init, NULL, &qc_ar8031_data_##n, \ &qc_ar8031_config_##n, POST_KERNEL, CONFIG_PHY_INIT_PRIORITY, \ &ar8031_driver_api); DT_INST_FOREACH_STATUS_OKAY(AR8031_DEVICE)