/* * Copyright (c) 2024 Renesas Electronics Corporation * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT renesas_ra_ethernet /* Renesas RA ethernet driver */ #define LOG_MODULE_NAME eth_ra_ethernet #define LOG_LEVEL CONFIG_ETHERNET_LOG_LEVEL #include LOG_MODULE_REGISTER(LOG_MODULE_NAME); #include #include #include #include #include #include #include #include #include #include "r_ether.h" #include "r_ether_phy.h" /* Additional configurations to use with hal_renesas */ #define ETHER_DEFAULT NULL #define ETHER_CHANNEL0 0 #define ETHER_BUF_SIZE 1536 #define ETHER_PADDING_OFFSET 1 #define ETHER_BROADCAST_FILTER 0 #define ETHER_TOTAL_BUF_NUM (CONFIG_ETH_RENESAS_TX_BUF_NUM + CONFIG_ETH_RENESAS_RX_BUF_NUM) #define ETHER_EE_RECEIVE_EVENT_MASK (0x01070000) void ether_eint_isr(void); void renesas_ra_eth_callback(ether_callback_args_t *p_args); static void renesas_ra_eth_buffer_init(const struct device *dev); extern void ether_init_buffers(ether_instance_ctrl_t *const p_instance_ctrl); extern void ether_configure_mac(ether_instance_ctrl_t *const p_instance_ctrl, const uint8_t mac_addr[], const uint8_t mode); extern void ether_do_link(ether_instance_ctrl_t *const p_instance_ctrl, const uint8_t mode); uint8_t g_ether0_mac_address[6] = DT_INST_PROP(0, local_mac_address); struct renesas_ra_eth_context { struct net_if *iface; uint8_t mac[6]; K_KERNEL_STACK_MEMBER(thread_stack, CONFIG_ETH_RA_RX_THREAD_STACK_SIZE); struct k_thread thread; struct k_sem rx_sem; ether_instance_ctrl_t ctrl; /** pinctrl configs */ const struct pinctrl_dev_config *pcfg; }; struct renesas_ra_eth_config { const ether_cfg_t *p_cfg; const struct device *phy_dev; }; #define DECLARE_ETHER_RX_BUFFER(idx, _) \ static __aligned(32) uint8_t g_ether0_ether_rx_buffer##idx[ETHER_BUF_SIZE]; #define DECLARE_ETHER_TX_BUFFER(idx, _) \ static __aligned(32) uint8_t g_ether0_ether_tx_buffer##idx[ETHER_BUF_SIZE]; #define DECLARE_ETHER_RX_BUFFER_PTR(idx, _) (uint8_t *)&g_ether0_ether_rx_buffer##idx[0] #define DECLARE_ETHER_TX_BUFFER_PTR(idx, _) (uint8_t *)&g_ether0_ether_tx_buffer##idx[0] LISTIFY(CONFIG_ETH_RENESAS_RX_BUF_NUM, DECLARE_ETHER_RX_BUFFER, (;)); LISTIFY(CONFIG_ETH_RENESAS_TX_BUF_NUM, DECLARE_ETHER_TX_BUFFER, (;)); uint8_t *pp_g_ether0_ether_buffers[ETHER_TOTAL_BUF_NUM] = { LISTIFY(CONFIG_ETH_RENESAS_RX_BUF_NUM, DECLARE_ETHER_RX_BUFFER_PTR, (,)), LISTIFY(CONFIG_ETH_RENESAS_TX_BUF_NUM, DECLARE_ETHER_TX_BUFFER_PTR, (,)) }; static __aligned(16) ether_instance_descriptor_t g_ether0_tx_descriptors[CONFIG_ETH_RENESAS_TX_BUF_NUM]; static __aligned(16) ether_instance_descriptor_t g_ether0_rx_descriptors[CONFIG_ETH_RENESAS_RX_BUF_NUM]; const ether_extended_cfg_t g_ether0_extended_cfg_t = { .p_rx_descriptors = g_ether0_rx_descriptors, .p_tx_descriptors = g_ether0_tx_descriptors, }; /* Dummy configuration for ether phy as hal layer require */ const ether_phy_extended_cfg_t g_ether_phy0_extended_cfg = { .p_target_init = ETHER_DEFAULT, .p_target_link_partner_ability_get = ETHER_DEFAULT}; const ether_phy_cfg_t g_ether_phy0_cfg; ether_phy_instance_ctrl_t g_ether_phy0_ctrl; const ether_phy_instance_t g_ether_phy0 = {.p_ctrl = &g_ether_phy0_ctrl, .p_cfg = &g_ether_phy0_cfg, .p_api = &g_ether_phy_on_ether_phy}; const ether_cfg_t g_ether0_cfg = { .channel = ETHER_CHANNEL0, .zerocopy = ETHER_ZEROCOPY_DISABLE, .multicast = ETHER_MULTICAST_ENABLE, .promiscuous = ETHER_PROMISCUOUS_DISABLE, .flow_control = ETHER_FLOW_CONTROL_DISABLE, .padding = ETHER_PADDING_DISABLE, .padding_offset = ETHER_PADDING_OFFSET, .broadcast_filter = ETHER_BROADCAST_FILTER, .p_mac_address = g_ether0_mac_address, .num_tx_descriptors = CONFIG_ETH_RENESAS_TX_BUF_NUM, .num_rx_descriptors = CONFIG_ETH_RENESAS_RX_BUF_NUM, .pp_ether_buffers = pp_g_ether0_ether_buffers, .ether_buffer_size = ETHER_BUF_SIZE, .irq = DT_INST_IRQN(0), .interrupt_priority = DT_INST_IRQ(0, priority), .p_callback = ETHER_DEFAULT, .p_ether_phy_instance = &g_ether_phy0, .p_context = ETHER_DEFAULT, .p_extend = &g_ether0_extended_cfg_t, }; static struct renesas_ra_eth_config eth_0_config = { .p_cfg = &g_ether0_cfg, .phy_dev = DEVICE_DT_GET(DT_INST_PHANDLE(0, phy_handle))}; /* Driver functions */ static enum ethernet_hw_caps renesas_ra_eth_get_capabilities(const struct device *dev) { ARG_UNUSED(dev); return ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T; } void renesas_ra_eth_callback(ether_callback_args_t *p_args) { struct device *dev = (struct device *)p_args->p_context; struct renesas_ra_eth_context *ctx = dev->data; if (p_args->status_eesr & ETHER_EE_RECEIVE_EVENT_MASK) { k_sem_give(&ctx->rx_sem); } } static void renesas_ra_eth_buffer_init(const struct device *dev) { struct renesas_ra_eth_context *ctx = dev->data; ether_extended_cfg_t *p_ether_extended_cfg = (ether_extended_cfg_t *)ctx->ctrl.p_ether_cfg->p_extend; /* Initialize the transmit and receive descriptor */ memset(p_ether_extended_cfg->p_rx_descriptors, 0x00, sizeof(ether_instance_descriptor_t) * ctx->ctrl.p_ether_cfg->num_rx_descriptors); memset(p_ether_extended_cfg->p_tx_descriptors, 0x00, sizeof(ether_instance_descriptor_t) * ctx->ctrl.p_ether_cfg->num_tx_descriptors); ether_init_buffers(&ctx->ctrl); } static void phy_link_state_changed(const struct device *pdev, struct phy_link_state *state, void *user_data) { const struct device *dev = (struct device *)user_data; struct renesas_ra_eth_context *ctx = dev->data; R_ETHERC0_Type *p_reg_etherc; p_reg_etherc = (R_ETHERC0_Type *)ctx->ctrl.p_reg_etherc; ARG_UNUSED(pdev); if (state->is_up) { ctx->ctrl.link_change = ETHER_LINK_CHANGE_LINK_UP; ctx->ctrl.previous_link_status = ETHER_PREVIOUS_LINK_STATUS_UP; renesas_ra_eth_buffer_init(dev); /* * ETHERC and EDMAC are set after ETHERC and EDMAC are reset in software * and sending and receiving is permitted. */ ether_configure_mac(&ctx->ctrl, ctx->ctrl.p_ether_cfg->p_mac_address, 0); switch (state->speed) { /* Half duplex link */ case LINK_HALF_100BASE_T: { ctx->ctrl.link_speed_duplex = ETHER_PHY_LINK_SPEED_100H; break; } case LINK_HALF_10BASE_T: { ctx->ctrl.link_speed_duplex = ETHER_PHY_LINK_SPEED_10H; break; } /* Full duplex link */ case LINK_FULL_100BASE_T: { ctx->ctrl.link_speed_duplex = ETHER_PHY_LINK_SPEED_100F; break; } case LINK_FULL_10BASE_T: { ctx->ctrl.link_speed_duplex = ETHER_PHY_LINK_SPEED_10F; break; } default: { ctx->ctrl.link_speed_duplex = ETHER_PHY_LINK_SPEED_100F; break; } } ether_do_link(&ctx->ctrl, 0); ctx->ctrl.link_change = ETHER_LINK_CHANGE_LINK_UP; ctx->ctrl.previous_link_status = ETHER_PREVIOUS_LINK_STATUS_UP; ctx->ctrl.link_establish_status = ETHER_LINK_ESTABLISH_STATUS_UP; LOG_DBG("Link up"); net_eth_carrier_on(ctx->iface); } else { ctx->ctrl.link_change = ETHER_LINK_CHANGE_LINK_DOWN; ctx->ctrl.previous_link_status = ETHER_PREVIOUS_LINK_STATUS_DOWN; ctx->ctrl.link_establish_status = ETHER_LINK_ESTABLISH_STATUS_DOWN; net_eth_carrier_off(ctx->iface); } } static void renesas_ra_eth_initialize(struct net_if *iface) { fsp_err_t err; const struct device *dev = net_if_get_device(iface); struct renesas_ra_eth_context *ctx = dev->data; const struct renesas_ra_eth_config *cfg = dev->config; const char *phy_connection_type = DT_INST_PROP_OR(0, phy_connection_type, "rmii"); LOG_DBG("eth_initialize"); net_if_set_link_addr(iface, ctx->mac, sizeof(ctx->mac), NET_LINK_ETHERNET); if (ctx->iface == NULL) { ctx->iface = iface; } ethernet_init(iface); R_PMISC->PFENET = (uint8_t)(0x0 << R_PMISC_PFENET_PHYMODE0_Pos); if (strstr(phy_connection_type, "mii") != NULL) { /* Configure pins for MII or RMII. Set PHYMODE0 if MII is selected. */ R_PMISC->PFENET = (uint8_t)(0x1 << R_PMISC_PFENET_PHYMODE0_Pos); } else { LOG_ERR("Failed to init ether - phy-connection-type not support"); } err = R_ETHER_Open(&ctx->ctrl, cfg->p_cfg); if (err != FSP_SUCCESS) { LOG_ERR("Failed to init ether - R_ETHER_Open fail"); } err = R_ETHER_CallbackSet(&ctx->ctrl, renesas_ra_eth_callback, dev, NULL); if (err != FSP_SUCCESS) { LOG_ERR("Failed to init ether - R_ETHER_CallbackSet fail"); } phy_link_callback_set(cfg->phy_dev, &phy_link_state_changed, (void *)dev); /* Do not start the interface until PHY link is up */ net_if_carrier_off(ctx->iface); } static int renesas_ra_eth_tx(const struct device *dev, struct net_pkt *pkt) { fsp_err_t err = FSP_SUCCESS; struct renesas_ra_eth_context *ctx = dev->data; uint16_t len = net_pkt_get_len(pkt); static uint8_t tx_buf[NET_ETH_MAX_FRAME_SIZE]; if (net_pkt_read(pkt, tx_buf, len)) { goto error; } /* Check if packet length is less than minimum Ethernet frame size */ if (len < NET_ETH_MINIMAL_FRAME_SIZE) { /* Add padding to meet the minimum frame size */ memset(tx_buf + len, 0, NET_ETH_MINIMAL_FRAME_SIZE - len); len = NET_ETH_MINIMAL_FRAME_SIZE; } err = R_ETHER_Write(&ctx->ctrl, tx_buf, len); if (err != FSP_SUCCESS) { goto error; } return 0; error: LOG_ERR("Writing to FIFO failed"); return -1; } static const struct ethernet_api api_funcs = { .iface_api.init = renesas_ra_eth_initialize, .get_capabilities = renesas_ra_eth_get_capabilities, .send = renesas_ra_eth_tx, }; static void renesas_ra_eth_isr(const struct device *dev) { ARG_UNUSED(dev); ether_eint_isr(); } static struct net_pkt *renesas_ra_eth_rx(const struct device *dev) { fsp_err_t err = FSP_SUCCESS; struct renesas_ra_eth_context *ctx; struct net_pkt *pkt = NULL; uint32_t len = 0; static uint8_t rx_buf[NET_ETH_MAX_FRAME_SIZE]; __ASSERT_NO_MSG(dev != NULL); ctx = dev->data; __ASSERT_NO_MSG(ctx != NULL); err = R_ETHER_Read(&ctx->ctrl, rx_buf, &len); if ((err != FSP_SUCCESS) && (err != FSP_ERR_ETHER_ERROR_NO_DATA)) { LOG_ERR("Failed to read packets"); goto out; } pkt = net_pkt_rx_alloc_with_buffer(ctx->iface, len, AF_UNSPEC, 0, K_MSEC(100)); if (!pkt) { LOG_ERR("Failed to obtain RX buffer"); goto out; } if (net_pkt_write(pkt, rx_buf, len)) { LOG_ERR("Failed to append RX buffer to context buffer"); net_pkt_unref(pkt); pkt = NULL; goto out; } out: if (pkt == NULL) { eth_stats_update_errors_rx(ctx->iface); } return pkt; } static void renesas_ra_eth_thread(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); const struct device *dev = p1; struct net_if *iface; int res; struct net_pkt *pkt = NULL; struct renesas_ra_eth_context *ctx = dev->data; while (true) { res = k_sem_take(&ctx->rx_sem, K_MSEC(CONFIG_PHY_MONITOR_PERIOD)); if (res == 0) { pkt = renesas_ra_eth_rx(dev); if (pkt != NULL) { iface = net_pkt_iface(pkt); res = net_recv_data(iface, pkt); if (res < 0) { net_pkt_unref(pkt); } } } } } #define ELC_EVENT_EDMAC_EINT(channel) ELC_EVENT_EDMAC##channel##_EINT /* Bindings to the platform */ int renesas_ra_eth_init(const struct device *dev) { struct renesas_ra_eth_context *ctx = dev->data; R_ICU->IELSR[DT_INST_IRQN(0)] = ELC_EVENT_EDMAC_EINT(0); IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), renesas_ra_eth_isr, DEVICE_DT_INST_GET(0), 0); k_thread_create(&ctx->thread, ctx->thread_stack, CONFIG_ETH_RA_RX_THREAD_STACK_SIZE, renesas_ra_eth_thread, (void *)dev, NULL, NULL, K_PRIO_COOP(CONFIG_ETH_RA_RX_THREAD_PRIORITY), 0, K_NO_WAIT); irq_enable(DT_INST_IRQN(0)); return 0; } #define ETHER_RA_INIT(idx) \ PINCTRL_DT_INST_DEFINE(0); \ static struct renesas_ra_eth_context eth_0_context = { \ .mac = DT_INST_PROP(0, local_mac_address), \ .rx_sem = Z_SEM_INITIALIZER(eth_0_context.rx_sem, 0, UINT_MAX), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0), \ }; \ \ ETH_NET_DEVICE_DT_INST_DEFINE(0, renesas_ra_eth_init, NULL, ð_0_context, ð_0_config, \ CONFIG_ETH_INIT_PRIORITY, &api_funcs, NET_ETH_MTU /*MTU*/); DT_INST_FOREACH_STATUS_OKAY(ETHER_RA_INIT);