/* LAN9250 Stand-alone Ethernet Controller with SPI * * Copyright (c) 2024 Mario Paja * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_lan9250 #include #include #include #include #include #include #include #include #include #include #include "eth_lan9250_priv.h" LOG_MODULE_REGISTER(eth_lan9250, CONFIG_ETHERNET_LOG_LEVEL); static int lan9250_write_sys_reg(const struct device *dev, uint16_t address, uint32_t data) { const struct lan9250_config *config = dev->config; uint8_t cmd[1] = {LAN9250_SPI_INSTR_WRITE}; uint8_t addr[2]; uint8_t instr[4]; struct spi_buf tx_buf[3]; const struct spi_buf_set tx = {.buffers = tx_buf, .count = 3}; sys_put_be16(address, addr); sys_put_le32(data, instr); tx_buf[0].buf = &cmd; tx_buf[0].len = ARRAY_SIZE(cmd); tx_buf[1].buf = addr; tx_buf[1].len = ARRAY_SIZE(addr); tx_buf[2].buf = instr; tx_buf[2].len = ARRAY_SIZE(instr); return spi_write_dt(&config->spi, &tx); } static int lan9250_read_sys_reg(const struct device *dev, uint16_t address, uint32_t *value) { const struct lan9250_config *config = dev->config; uint8_t cmd[1] = {LAN9250_SPI_INSTR_READ}; uint8_t addr[2]; struct spi_buf tx_buf[3]; struct spi_buf rx_buf[3]; const struct spi_buf_set tx = {.buffers = tx_buf, .count = 3}; const struct spi_buf_set rx = {.buffers = rx_buf, .count = 3}; sys_put_be16(address, addr); tx_buf[0].buf = &cmd; tx_buf[0].len = ARRAY_SIZE(cmd); tx_buf[1].buf = addr; tx_buf[1].len = ARRAY_SIZE(addr); tx_buf[2].buf = NULL; tx_buf[2].len = sizeof(uint32_t); rx_buf[0].buf = NULL; rx_buf[0].len = 1; rx_buf[1].buf = NULL; rx_buf[1].len = 2; rx_buf[2].buf = value; rx_buf[2].len = sizeof(uint32_t); return spi_transceive_dt(&config->spi, &tx, &rx); } static int lan9250_wait_ready(const struct device *dev, uint16_t address, uint32_t mask, uint32_t expected, uint32_t m_second) { uint32_t tmp; int wait_time = 0; while (true) { lan9250_read_sys_reg(dev, address, &tmp); wait_time++; k_busy_wait(USEC_PER_MSEC * 1U); if ((tmp & mask) == expected) { return 0; } else if (wait_time == m_second) { LOG_ERR("NOT READY"); return -EIO; } } } static int lan9250_read_mac_reg(const struct device *dev, uint8_t address, uint32_t *value) { uint32_t tmp; /* Wait for MAC to be ready and send writing register command and data */ lan9250_wait_ready(dev, LAN9250_MAC_CSR_CMD, LAN9250_MAC_CSR_CMD_BUSY, 0, LAN9250_MAC_TIMEOUT); lan9250_write_sys_reg(dev, LAN9250_MAC_CSR_CMD, address | LAN9250_MAC_CSR_CMD_BUSY | LAN9250_MAC_CSR_CMD_READ); /* Wait for MAC to be ready and send writing register command and data */ lan9250_wait_ready(dev, LAN9250_MAC_CSR_CMD, LAN9250_MAC_CSR_CMD_BUSY, 0, LAN9250_MAC_TIMEOUT); lan9250_read_sys_reg(dev, LAN9250_MAC_CSR_DATA, &tmp); *value = tmp; return 0; } static int lan9250_write_mac_reg(const struct device *dev, uint8_t address, uint32_t data) { /* Wait for MAC to be ready and send writing register command and data */ lan9250_wait_ready(dev, LAN9250_MAC_CSR_CMD, LAN9250_MAC_CSR_CMD_BUSY, 0, LAN9250_MAC_TIMEOUT); lan9250_write_sys_reg(dev, LAN9250_MAC_CSR_DATA, data); lan9250_write_sys_reg(dev, LAN9250_MAC_CSR_CMD, address | LAN9250_MAC_CSR_CMD_BUSY); /* Wait until writing MAC is done */ lan9250_wait_ready(dev, LAN9250_MAC_CSR_CMD, LAN9250_MAC_CSR_CMD_BUSY, 0, LAN9250_MAC_TIMEOUT); return 0; } static int lan9250_wait_mac_ready(const struct device *dev, uint8_t address, uint32_t mask, uint32_t expected, uint32_t m_second) { uint32_t tmp; int wait_time = 0; while (true) { lan9250_read_mac_reg(dev, address, &tmp); wait_time++; k_msleep(1); if ((tmp & mask) == expected) { return 0; } else if (wait_time == m_second) { return -EIO; } } } static int lan9250_read_phy_reg(const struct device *dev, uint8_t address, uint16_t *value) { uint32_t tmp; /* Wait PHY to be ready and send reading register command */ lan9250_wait_mac_ready(dev, LAN9250_HMAC_MII_ACC, LAN9250_HMAC_MII_ACC_MIIBZY, 0, LAN9250_PHY_TIMEOUT); /* Reference: Microchip Ethernet LAN9250 * https://github.com/microchip-pic-avr-solutions/ethernet-lan9250/ * * Datasheet: * https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/00001913A.pdf * * 12.2.18 PHY REGISTERS * The PHY registers are indirectly accessed through the Host MAC MII Access Register * (HMAC_MII_ACC) and Host MAC MII Data Register (HMAC_MII_DATA). * * Write 32bit value to the indirect MAC registers * Where phy_add = 0b00001 & index = address * Data = ((phy_add & 0x1F) << 11) | ((index & 0x1F) << 6) */ lan9250_write_mac_reg(dev, LAN9250_HMAC_MII_ACC, (1 << 11) | ((address & 0x1F) << 6)); /* Wait PHY to be ready and send reading register command */ lan9250_wait_mac_ready(dev, LAN9250_HMAC_MII_ACC, LAN9250_HMAC_MII_ACC_MIIBZY, 0, LAN9250_PHY_TIMEOUT); /* Read 32bit value from the indirect MAC registers */ lan9250_read_mac_reg(dev, LAN9250_HMAC_MII_DATA, &tmp); *value = tmp; return 0; } static int lan9250_write_phy_reg(const struct device *dev, uint8_t address, uint16_t data) { /* Wait PHY to be ready and send reading register command */ lan9250_wait_mac_ready(dev, LAN9250_HMAC_MII_ACC, LAN9250_HMAC_MII_ACC_MIIBZY, 0, LAN9250_PHY_TIMEOUT); lan9250_write_mac_reg(dev, LAN9250_HMAC_MII_DATA, data); /* Reference: Microchip Ethernet LAN9250 * https://github.com/microchip-pic-avr-solutions/ethernet-lan9250/ * * Datasheet: * https://ww1.microchip.com/downloads/aemDocuments/documents/OTH/ProductDocuments/DataSheets/00001913A.pdf * * 12.2.18 PHY REGISTERS * The PHY registers are indirectly accessed through the Host MAC MII Access Register * (HMAC_MII_ACC) and Host MAC MII Data Register (HMAC_MII_DATA). * * Write 32bit value to the indirect MAC registers * Where phy_add = 0b00001 & index = address * Data = ((phy_add & 0x1F) << 11) | ((index & 0x1F)<< 6) | MIIWnR */ lan9250_write_mac_reg(dev, LAN9250_HMAC_MII_ACC, (1 << 11) | ((address & 0x1F) << 6) | LAN9250_HMAC_MII_ACC_MIIW_R); /* Wait PHY to be ready and send reading register command */ lan9250_wait_mac_ready(dev, LAN9250_HMAC_MII_ACC, LAN9250_HMAC_MII_ACC_MIIBZY, 0, LAN9250_PHY_TIMEOUT); return 0; } static int lan9250_set_macaddr(const struct device *dev) { struct lan9250_runtime *ctx = dev->data; lan9250_write_mac_reg(dev, LAN9250_HMAC_ADDRL, ctx->mac_address[0] | (ctx->mac_address[1] << 8) | (ctx->mac_address[2] << 16) | (ctx->mac_address[3] << 24)); lan9250_write_mac_reg(dev, LAN9250_HMAC_ADDRH, ctx->mac_address[4] | (ctx->mac_address[5] << 8)); return 0; } static int lan9250_hw_cfg_check(const struct device *dev) { uint32_t tmp; do { lan9250_read_sys_reg(dev, LAN9250_HW_CFG, &tmp); k_busy_wait(USEC_PER_MSEC * 1U); } while ((tmp & LAN9250_HW_CFG_DEVICE_READY) == 0); return 0; } static int lan9250_sw_reset(const struct device *dev) { lan9250_write_sys_reg(dev, LAN9250_RESET_CTL, LAN9250_RESET_CTL_HMAC_RST | LAN9250_RESET_CTL_PHY_RST | LAN9250_RESET_CTL_DIGITAL_RST); /* Wait until LAN9250 SPI bus is ready */ lan9250_wait_ready(dev, LAN9250_BYTE_TEST, BOTR_MASK, LAN9250_BYTE_TEST_DEFAULT, LAN9250_RESET_TIMEOUT); return 0; } static int lan9250_configure(const struct device *dev) { uint32_t tmp; lan9250_hw_cfg_check(dev); /* Read LAN9250 hardware ID */ lan9250_read_sys_reg(dev, LAN9250_ID_REV, &tmp); if ((tmp & LAN9250_ID_REV_CHIP_ID) != LAN9250_ID_REV_CHIP_ID_DEFAULT) { LOG_ERR("ERROR: Bad Rev ID: %08x\n", tmp); return -ENODEV; } /* Configure TX FIFO size mode to be 8: * * - TX data FIFO size: 7680 * - RX data FIFO size: 7680 * - TX status FIFO size: 512 * - RX status FIFO size: 512 */ lan9250_write_sys_reg(dev, LAN9250_HW_CFG, LAN9250_HW_CFG_MBO | LAN9250_HW_CFG_TX_FIF_SZ_8KB); /* Configure MAC automatic flow control: * * Reference: Microchip Ethernet LAN9250 * https://github.com/microchip-pic-avr-solutions/ethernet-lan9250/ * LAN_Regwrite32(AFC_CFG, 0x006E3741); * */ lan9250_write_sys_reg(dev, LAN9250_AFC_CFG, 0x006e3741); /* Configure interrupt: * * - Interrupt De-assertion interval: 100 * - Interrupt output to pin * - Interrupt pin active output low * - Interrupt pin push-pull driver */ lan9250_write_sys_reg(dev, LAN9250_IRQ_CFG, LAN9250_IRQ_CFG_INT_DEAS_100US | LAN9250_IRQ_CFG_IRQ_EN | LAN9250_IRQ_CFG_IRQ_TYPE_PP); /* Configure interrupt trigger source, please refer to macro * LAN9250_INT_SOURCE. */ lan9250_write_sys_reg(dev, LAN9250_INT_EN, LAN9250_INT_EN_PHY_INT_EN | LAN9250_INT_EN_RSFL_EN); /* Disable TX data FIFO available interrupt */ lan9250_write_sys_reg(dev, LAN9250_FIFO_INT, LAN9250_FIFO_INT_TX_DATA_AVAILABLE_LEVEL | LAN9250_FIFO_INT_TX_STATUS_LEVEL); /* Configure RX: * * - RX DMA counter: Ethernet maximum packet size * - RX data offset: 4, so that need read dummy before reading data */ lan9250_write_sys_reg(dev, LAN9250_RX_CFG, 0x06000000 | 0x00000400); /* Configure remote power management: * * - Auto wakeup * - Disable 1588 clock * - Disable 1588 timestamp unit clock * - Energy-detect * - Wake on * - Clear wakeon */ lan9250_write_sys_reg(dev, LAN9250_PMT_CTRL, LAN9250_PMT_CTRL_PM_WAKE | LAN9250_PMT_CTRL_1588_DIS | LAN9250_PMT_CTRL_1588_TSU_DIS | LAN9250_PMT_CTRL_WOL_EN | LAN9250_PMT_CTRL_WOL_STS); /* Configure PHY basic control: * * - Auto-Negotiation for 10/100 Mbits and Half/Full Duplex */ lan9250_write_phy_reg(dev, LAN9250_PHY_BASIC_CONTROL, LAN9250_PHY_BASIC_CONTROL_PHY_AN | LAN9250_PHY_BASIC_CONTROL_PHY_SPEED_SEL_LSB | LAN9250_PHY_BASIC_CONTROL_PHY_DUPLEX); /* Configure PHY auto-negotiation advertisement capability: * * - Asymmetric pause * - Symmetric pause * - 100Base-X half/full duplex * - 10Base-X half/full duplex * - Select IEEE802.3 */ lan9250_write_phy_reg(dev, LAN9250_PHY_AN_ADV, LAN9250_PHY_AN_ADV_ASYM_PAUSE | LAN9250_PHY_AN_ADV_SYM_PAUSE | LAN9250_PHY_AN_ADV_100BTX_HD | LAN9250_PHY_AN_ADV_100BTX_FD | LAN9250_PHY_AN_ADV_10BT_HD | LAN9250_PHY_AN_ADV_10BT_FD | LAN9250_PHY_AN_ADV_SELECTOR_DEFAULT); /* Configure PHY special mode: * * - PHY mode = 111b, enable all capable and auto-nagotiation * - PHY address = 1, default value is fixed to 1 by manufacturer */ lan9250_write_phy_reg(dev, LAN9250_PHY_SPECIAL_MODES, 0x00E0 | 1); /* Configure PHY special control or status indication: * * - Port auto-MDIX determined by bits 14 and 13 * - Auto-MDIX * - Disable SQE tests */ lan9250_write_phy_reg(dev, LAN9250_PHY_SPECIAL_CONTROL_STAT_IND, LAN9250_PHY_SPECIAL_CONTROL_STAT_IND_AMDIXCTRL | LAN9250_PHY_SPECIAL_CONTROL_STAT_IND_AMDIXEN | LAN9250_PHY_SPECIAL_CONTROL_STAT_IND_SQEOFF); /* Configure PHY interrupt source: * * - Link up * - Link down */ lan9250_write_phy_reg(dev, LAN9250_PHY_INTERRUPT_MASK, LAN9250_PHY_INTERRUPT_SOURCE_LINK_UP | LAN9250_PHY_INTERRUPT_SOURCE_LINK_DOWN); /* Configure special control or status: * * - Fixed to write 0000010b to reserved filed */ lan9250_write_phy_reg(dev, LAN9250_PHY_SPECIAL_CONTROL_STATUS, LAN9250_PHY_MODE_CONTROL_STATUS_ALTINT); /* Clear interrupt status */ lan9250_write_sys_reg(dev, LAN9250_INT_STS, 0xFFFFFFFF); /* Configure HMAC control: * * - Automatically strip the pad field on incoming packets * - TX enable * - RX enable * - Full duplex * - Promiscuous disabled */ lan9250_write_mac_reg(dev, LAN9250_HMAC_CR, LAN9250_HMAC_CR_PADSTR | LAN9250_HMAC_CR_TXEN | LAN9250_HMAC_CR_RXEN | LAN9250_HMAC_CR_FDPX); /* Configure TX: * * - TX enable */ lan9250_write_sys_reg(dev, LAN9250_TX_CFG, LAN9250_TX_CFG_TX_ON); return 0; } static int lan9250_write_buf(const struct device *dev, uint8_t *data_buffer, uint16_t buf_len) { const struct lan9250_config *config = dev->config; uint8_t cmd[1] = {LAN9250_SPI_INSTR_WRITE}; uint8_t instr[2] = {(LAN9250_TX_DATA_FIFO >> 8) & 0xFF, (LAN9250_TX_DATA_FIFO & 0xFF)}; struct spi_buf tx_buf[3]; const struct spi_buf_set tx = {.buffers = tx_buf, .count = 3}; tx_buf[0].buf = &cmd; tx_buf[0].len = ARRAY_SIZE(cmd); tx_buf[1].buf = &instr; tx_buf[1].len = ARRAY_SIZE(instr); tx_buf[2].buf = data_buffer; tx_buf[2].len = buf_len; return spi_transceive_dt(&config->spi, &tx, NULL); } static int lan9250_read_buf(const struct device *dev, uint8_t *data_buffer, uint16_t buf_len) { const struct lan9250_config *config = dev->config; uint8_t cmd[1] = {LAN9250_SPI_INSTR_READ}; uint8_t instr[2] = {(LAN9250_RX_DATA_FIFO >> 8) & 0xFF, (LAN9250_RX_DATA_FIFO & 0xFF)}; struct spi_buf tx_buf[3]; struct spi_buf rx_buf[3]; const struct spi_buf_set tx = {.buffers = tx_buf, .count = 3}; const struct spi_buf_set rx = {.buffers = rx_buf, .count = 3}; tx_buf[0].buf = &cmd; tx_buf[0].len = ARRAY_SIZE(cmd); tx_buf[1].buf = &instr; tx_buf[1].len = ARRAY_SIZE(instr); tx_buf[2].buf = NULL; tx_buf[2].len = buf_len; rx_buf[0].buf = NULL; rx_buf[0].len = 1; rx_buf[1].buf = NULL; rx_buf[1].len = 2; rx_buf[2].buf = data_buffer; rx_buf[2].len = buf_len; return spi_transceive_dt(&config->spi, &tx, &rx); } static int lan9250_rx(const struct device *dev) { const struct lan9250_config *config = dev->config; struct lan9250_runtime *ctx = dev->data; const uint16_t buf_rx_size = CONFIG_NET_BUF_DATA_SIZE; struct net_pkt *pkt; struct net_buf *pkt_buf; uint16_t pkt_len; uint8_t pktcnt; uint32_t tmp; /* Check valid packet count */ lan9250_read_sys_reg(dev, LAN9250_RX_FIFO_INF, &tmp); pktcnt = (tmp & 0x00ff0000) >> 16; /* Check packet length */ lan9250_read_sys_reg(dev, LAN9250_RX_STATUS_FIFO, &tmp); pkt_len = (tmp & LAN9250_RX_STS_PACKET_LEN) >> 16; if (pktcnt == 0 || pkt_len == 0) { return 0; } /* Read dummy data */ lan9250_read_sys_reg(dev, LAN9250_RX_DATA_FIFO, &tmp); pkt_len -= 4; if (pkt_len > NET_ETH_MAX_FRAME_SIZE) { LOG_ERR("Maximum frame length exceeded, it should be: %d", NET_ETH_MAX_FRAME_SIZE); eth_stats_update_errors_rx(ctx->iface); } /* Get the frame from the buffer */ pkt = net_pkt_rx_alloc_with_buffer(ctx->iface, pkt_len, AF_UNSPEC, 0, K_MSEC(config->timeout)); if (!pkt) { LOG_ERR("%s: Could not allocate rx buffer", dev->name); eth_stats_update_errors_rx(ctx->iface); return 0; } pkt_buf = pkt->buffer; do { uint8_t *data_ptr = pkt_buf->data; uint16_t data_len; if (pkt_len > buf_rx_size) { data_len = buf_rx_size; } else { data_len = pkt_len; } pkt_len -= data_len; lan9250_read_buf(dev, data_ptr, data_len); net_buf_add(pkt_buf, data_len); pkt_buf = pkt_buf->frags; } while (pkt_len > 0); lan9250_read_sys_reg(dev, LAN9250_RX_DATA_FIFO, &tmp); net_pkt_set_iface(pkt, ctx->iface); /* Feed buffer frame to IP stack */ if (net_recv_data(net_pkt_iface(pkt), pkt) < 0) { net_pkt_unref(pkt); } k_sem_give(&ctx->tx_rx_sem); return 0; } static int lan9250_tx(const struct device *dev, struct net_pkt *pkt) { struct lan9250_runtime *ctx = dev->data; size_t len = net_pkt_get_len(pkt); uint32_t regval; uint16_t free_size; uint8_t status_size; uint32_t tmp; lan9250_read_sys_reg(dev, LAN9250_TX_FIFO_INF, ®val); status_size = (regval & LAN9250_TX_FIFO_INF_TXSUSED) >> 16; free_size = regval & LAN9250_TX_FIFO_INF_TXFREE; k_sem_take(&ctx->tx_rx_sem, K_FOREVER); /* TX command 'A' */ lan9250_write_sys_reg(dev, LAN9250_TX_DATA_FIFO, LAN9250_TX_CMD_A_INT_ON_COMP | LAN9250_TX_CMD_A_BUFFER_ALIGN_4B | LAN9250_TX_CMD_A_START_OFFSET_0B | LAN9250_TX_CMD_A_FIRST_SEG | LAN9250_TX_CMD_A_LAST_SEG | len); /* TX command 'B' */ lan9250_write_sys_reg(dev, LAN9250_TX_DATA_FIFO, LAN9250_TX_CMD_B_PACKET_TAG | len); if (net_pkt_read(pkt, ctx->buf, len)) { return -EIO; } lan9250_write_buf(dev, ctx->buf, LAN9250_ALIGN(len)); for (int i = 0; i < status_size; i++) { lan9250_read_sys_reg(dev, LAN9250_TX_STATUS_FIFO, &tmp); } k_sem_give(&ctx->tx_rx_sem); return 0; } static void lan9250_gpio_callback(const struct device *dev, struct gpio_callback *cb, uint32_t pins) { struct lan9250_runtime *context = CONTAINER_OF(cb, struct lan9250_runtime, gpio_cb); k_sem_give(&context->int_sem); } static void lan9250_thread(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); struct lan9250_runtime *context = p1; uint32_t int_sts; uint16_t tmp; uint32_t ier; while (true) { k_sem_take(&context->int_sem, K_FOREVER); /* Save interrupt enable register value */ lan9250_read_sys_reg(context->dev, LAN9250_INT_EN, &ier); /* Disable interrupts to release the interrupt line */ lan9250_write_sys_reg(context->dev, LAN9250_INT_EN, 0); /* Read interrupt status register */ lan9250_read_sys_reg(context->dev, LAN9250_INT_STS, &int_sts); if ((int_sts & LAN9250_INT_STS_PHY_INT) != 0) { /* Read PHY interrupt source register */ lan9250_read_phy_reg(context->dev, LAN9250_PHY_INTERRUPT_SOURCE, &tmp); if (tmp & LAN9250_PHY_INTERRUPT_SOURCE_LINK_UP) { LOG_DBG("LINK UP"); net_eth_carrier_on(context->iface); } else if (tmp & LAN9250_PHY_INTERRUPT_SOURCE_LINK_DOWN) { LOG_DBG("LINK DOWN"); net_eth_carrier_off(context->iface); } } if ((int_sts & LAN9250_INT_STS_RSFL) != 0) { lan9250_write_sys_reg(context->dev, LAN9250_INT_STS, LAN9250_INT_STS_RSFL); lan9250_rx(context->dev); } /* Re-enable interrupts */ lan9250_write_sys_reg(context->dev, LAN9250_INT_EN, ier); } } static enum ethernet_hw_caps lan9250_get_capabilities(const struct device *dev) { ARG_UNUSED(dev); return ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T; } static void lan9250_iface_init(struct net_if *iface) { const struct device *dev = net_if_get_device(iface); struct lan9250_runtime *context = dev->data; net_if_set_link_addr(iface, context->mac_address, sizeof(context->mac_address), NET_LINK_ETHERNET); context->iface = iface; ethernet_init(iface); net_if_carrier_off(iface); } static int lan9250_set_config(const struct device *dev, enum ethernet_config_type type, const struct ethernet_config *config) { struct lan9250_runtime *ctx = dev->data; if (type == ETHERNET_CONFIG_TYPE_MAC_ADDRESS) { memcpy(ctx->mac_address, config->mac_address.addr, sizeof(ctx->mac_address)); lan9250_set_macaddr(dev); return net_if_set_link_addr(ctx->iface, ctx->mac_address, sizeof(ctx->mac_address), NET_LINK_ETHERNET); } return -ENOTSUP; } static const struct ethernet_api api_funcs = { .iface_api.init = lan9250_iface_init, .get_capabilities = lan9250_get_capabilities, .set_config = lan9250_set_config, .send = lan9250_tx, }; static int lan9250_init(const struct device *dev) { const struct lan9250_config *config = dev->config; struct lan9250_runtime *context = dev->data; context->dev = dev; /* SPI config */ if (!spi_is_ready_dt(&config->spi)) { LOG_ERR("SPI master port %s not ready", config->spi.bus->name); return -EINVAL; } /* Initialize GPIO */ if (!gpio_is_ready_dt(&config->interrupt)) { LOG_ERR("GPIO port %s not ready", config->interrupt.port->name); return -EINVAL; } if (gpio_pin_configure_dt(&config->interrupt, GPIO_INPUT)) { LOG_ERR("Unable to configure GPIO pin %u", config->interrupt.pin); return -EINVAL; } gpio_init_callback(&(context->gpio_cb), lan9250_gpio_callback, BIT(config->interrupt.pin)); if (gpio_add_callback(config->interrupt.port, &(context->gpio_cb))) { return -EINVAL; } gpio_pin_interrupt_configure_dt(&config->interrupt, GPIO_INT_EDGE_TO_ACTIVE); /* Wait until LAN9250 SPI bus is ready */ lan9250_wait_ready(dev, LAN9250_BYTE_TEST, BOTR_MASK, LAN9250_BYTE_TEST_DEFAULT, LAN9250_RESET_TIMEOUT); lan9250_sw_reset(dev); lan9250_configure(dev); lan9250_set_macaddr(dev); k_thread_create(&context->thread, context->thread_stack, CONFIG_ETH_LAN9250_RX_THREAD_STACK_SIZE, lan9250_thread, context, NULL, NULL, K_PRIO_COOP(CONFIG_ETH_LAN9250_RX_THREAD_PRIO), 0, K_NO_WAIT); LOG_INF("LAN9250 Initialized"); return 0; } #define LAN9250_DEFINE(inst) \ static struct lan9250_runtime lan9250_##inst##_runtime = { \ .mac_address = DT_INST_PROP(inst, local_mac_address), \ .tx_rx_sem = Z_SEM_INITIALIZER(lan9250_##inst##_runtime.tx_rx_sem, 1, UINT_MAX), \ .int_sem = Z_SEM_INITIALIZER(lan9250_##inst##_runtime.int_sem, 0, UINT_MAX), \ }; \ \ static const struct lan9250_config lan9250_##inst##_config = { \ .spi = SPI_DT_SPEC_INST_GET(inst, SPI_WORD_SET(8), 0), \ .interrupt = GPIO_DT_SPEC_INST_GET(inst, int_gpios), \ .timeout = CONFIG_ETH_LAN9250_BUF_ALLOC_TIMEOUT, \ }; \ \ ETH_NET_DEVICE_DT_INST_DEFINE(inst, lan9250_init, NULL, &lan9250_##inst##_runtime, \ &lan9250_##inst##_config, CONFIG_ETH_INIT_PRIORITY, \ &api_funcs, NET_ETH_MTU); DT_INST_FOREACH_STATUS_OKAY(LAN9250_DEFINE);