/* ENC424J600 Stand-alone Ethernet Controller with SPI * * Copyright (c) 2016 Intel Corporation * Copyright (c) 2019 PHYTEC Messtechnik GmbH * Copyright (c) 2021 Laird Connectivity * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_enc424j600 #include #include #include #include #include #include #include #include #include #include #include "eth_enc424j600_priv.h" LOG_MODULE_REGISTER(ethdrv, CONFIG_ETHERNET_LOG_LEVEL); static void enc424j600_write_sbc(const struct device *dev, uint8_t cmd) { const struct enc424j600_config *config = dev->config; uint8_t buf[2] = { cmd, 0xFF }; const struct spi_buf tx_buf = { .buf = buf, .len = 1, }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; spi_write_dt(&config->spi, &tx); } static void enc424j600_write_sfru(const struct device *dev, uint8_t addr, uint16_t value) { const struct enc424j600_config *config = dev->config; uint8_t buf[4]; const struct spi_buf tx_buf = { .buf = buf, .len = sizeof(buf) }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; buf[0] = ENC424J600_NBC_WCRU; buf[1] = addr; buf[2] = value; buf[3] = value >> 8; spi_write_dt(&config->spi, &tx); } static void enc424j600_read_sfru(const struct device *dev, uint8_t addr, uint16_t *value) { const struct enc424j600_config *config = dev->config; uint8_t buf[4]; const struct spi_buf tx_buf = { .buf = buf, .len = 2 }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; struct spi_buf rx_buf = { .buf = buf, .len = sizeof(buf), }; const struct spi_buf_set rx = { .buffers = &rx_buf, .count = 1 }; buf[0] = ENC424J600_NBC_RCRU; buf[1] = addr; if (!spi_transceive_dt(&config->spi, &tx, &rx)) { *value = ((uint16_t)buf[3] << 8 | buf[2]); } else { LOG_DBG("Failure while reading register 0x%02x", addr); *value = 0U; } } static void enc424j600_modify_sfru(const struct device *dev, uint8_t opcode, uint16_t addr, uint16_t value) { const struct enc424j600_config *config = dev->config; uint8_t buf[4]; const struct spi_buf tx_buf = { .buf = buf, .len = sizeof(buf) }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; buf[0] = opcode; buf[1] = addr; buf[2] = value; buf[3] = value >> 8; spi_write_dt(&config->spi, &tx); } #define enc424j600_set_sfru(dev, addr, value) \ enc424j600_modify_sfru(dev, ENC424J600_NBC_BFSU, addr, value) #define enc424j600_clear_sfru(dev, addr, value) \ enc424j600_modify_sfru(dev, ENC424J600_NBC_BFCU, addr, value) static void enc424j600_write_phy(const struct device *dev, uint16_t addr, uint16_t data) { uint16_t mistat; enc424j600_write_sfru(dev, ENC424J600_SFR2_MIREGADRL, addr); enc424j600_write_sfru(dev, ENC424J600_SFR3_MIWRL, data); do { k_busy_wait(ENC424J600_PHY_ACCESS_DELAY); enc424j600_read_sfru(dev, ENC424J600_SFR3_MISTATL, &mistat); } while ((mistat & ENC424J600_MISTAT_BUSY)); } static void enc424j600_read_phy(const struct device *dev, uint16_t addr, uint16_t *data) { uint16_t mistat; enc424j600_write_sfru(dev, ENC424J600_SFR2_MIREGADRL, addr); enc424j600_write_sfru(dev, ENC424J600_SFR2_MICMDL, ENC424J600_MICMD_MIIRD); do { k_busy_wait(ENC424J600_PHY_ACCESS_DELAY); enc424j600_read_sfru(dev, ENC424J600_SFR3_MISTATL, &mistat); } while ((mistat & ENC424J600_MISTAT_BUSY)); enc424j600_write_sfru(dev, ENC424J600_SFR2_MICMDL, 0); enc424j600_read_sfru(dev, ENC424J600_SFR3_MIRDL, data); } static void enc424j600_write_mem(const struct device *dev, uint8_t opcode, uint8_t *data_buffer, uint16_t buf_len) { const struct enc424j600_config *config = dev->config; uint8_t buf[1] = { opcode }; const struct spi_buf tx_buf[2] = { { .buf = buf, .len = 1 }, { .buf = data_buffer, .len = buf_len }, }; const struct spi_buf_set tx = { .buffers = tx_buf, .count = 2 }; if (spi_write_dt(&config->spi, &tx)) { LOG_ERR("Failed to write SRAM buffer"); return; } } static void enc424j600_read_mem(const struct device *dev, uint8_t opcode, uint8_t *data_buffer, uint16_t buf_len) { const struct enc424j600_config *config = dev->config; uint8_t buf[1] = { opcode }; const struct spi_buf tx_buf = { .buf = buf, .len = 1 }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; struct spi_buf rx_buf[2] = { { .buf = NULL, .len = 1 }, { .buf = data_buffer, .len = buf_len }, }; const struct spi_buf_set rx = { .buffers = rx_buf, .count = 2 }; if (spi_transceive_dt(&config->spi, &tx, &rx)) { LOG_ERR("Failed to read SRAM buffer"); return; } } static void enc424j600_gpio_callback(const struct device *dev, struct gpio_callback *cb, uint32_t pins) { struct enc424j600_runtime *context = CONTAINER_OF(cb, struct enc424j600_runtime, gpio_cb); k_sem_give(&context->int_sem); } static void enc424j600_init_filters(const struct device *dev) { uint16_t tmp; enc424j600_write_sfru(dev, ENC424J600_SFR1_ERXFCONL, ENC424J600_ERXFCON_CRCEN | ENC424J600_ERXFCON_RUNTEN | ENC424J600_ERXFCON_UCEN | ENC424J600_ERXFCON_MCEN | ENC424J600_ERXFCON_BCEN); if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_sfru(dev, ENC424J600_SFR1_ERXFCONL, &tmp); LOG_DBG("ERXFCON: 0x%04x", tmp); } } static void enc424j600_init_phy(const struct device *dev) { uint16_t tmp; enc424j600_write_phy(dev, ENC424J600_PSFR_PHANA, ENC424J600_PHANA_ADPAUS_SYMMETRIC_ONLY | ENC424J600_PHANA_AD100FD | ENC424J600_PHANA_AD100 | ENC424J600_PHANA_AD10FD | ENC424J600_PHANA_AD10 | ENC424J600_PHANA_ADIEEE_DEFAULT); if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_phy(dev, ENC424J600_PSFR_PHANA, &tmp); LOG_DBG("PHANA: 0x%04x", tmp); } enc424j600_read_phy(dev, ENC424J600_PSFR_PHCON1, &tmp); tmp |= ENC424J600_PHCON1_RENEG; LOG_DBG("PHCON1: 0x%04x", tmp); enc424j600_write_phy(dev, ENC424J600_PSFR_PHCON1, tmp); } static void enc424j600_setup_mac(const struct device *dev) { uint16_t tmp; uint16_t macon2; if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_phy(dev, ENC424J600_PSFR_PHANLPA, &tmp); LOG_DBG("PHANLPA: 0x%04x", tmp); } enc424j600_read_phy(dev, ENC424J600_PSFR_PHSTAT3, &tmp); if (tmp & ENC424J600_PHSTAT3_SPDDPX_100) { LOG_INF("100Mbps"); } else if (tmp & ENC424J600_PHSTAT3_SPDDPX_10) { LOG_INF("10Mbps"); } else { LOG_ERR("Unknown speed configuration"); } if (tmp & ENC424J600_PHSTAT3_SPDDPX_FD) { LOG_INF("full duplex"); enc424j600_read_sfru(dev, ENC424J600_SFR2_MACON2L, &macon2); macon2 |= ENC424J600_MACON2_FULDPX; enc424j600_write_sfru(dev, ENC424J600_SFR2_MACON2L, macon2); enc424j600_write_sfru(dev, ENC424J600_SFR2_MABBIPGL, ENC424J600_MABBIPG_DEFAULT); } else { LOG_INF("half duplex"); } if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_sfru(dev, ENC424J600_SFR2_MACON2L, &tmp); LOG_DBG("MACON2: 0x%04x", tmp); enc424j600_read_sfru(dev, ENC424J600_SFR2_MAMXFLL, &tmp); LOG_DBG("MAMXFL (maximum frame length): %u", tmp); } } static int enc424j600_tx(const struct device *dev, struct net_pkt *pkt) { struct enc424j600_runtime *context = dev->data; uint16_t len = net_pkt_get_len(pkt); struct net_buf *frag; uint16_t tmp; LOG_DBG("pkt %p (len %u)", pkt, len); k_sem_take(&context->tx_rx_sem, K_FOREVER); enc424j600_write_sfru(dev, ENC424J600_SFR4_EGPWRPTL, ENC424J600_TXSTART); for (frag = pkt->frags; frag; frag = frag->frags) { enc424j600_write_mem(dev, ENC424J600_NBC_WGPDATA, frag->data, frag->len); } enc424j600_write_sfru(dev, ENC424J600_SFR0_ETXSTL, ENC424J600_TXSTART); enc424j600_write_sfru(dev, ENC424J600_SFR0_ETXLENL, len); enc424j600_write_sbc(dev, ENC424J600_1BC_SETTXRTS); do { k_sleep(K_MSEC(1)); enc424j600_read_sfru(dev, ENC424J600_SFRX_ECON1L, &tmp); } while (tmp & ENC424J600_ECON1_TXRTS); if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_sfru(dev, ENC424J600_SFR0_ETXSTATL, &tmp); LOG_DBG("ETXSTAT: 0x%04x", tmp); } k_sem_give(&context->tx_rx_sem); return 0; } static int enc424j600_rx(const struct device *dev) { struct enc424j600_runtime *context = dev->data; const struct enc424j600_config *config = dev->config; uint8_t info[ENC424J600_RSV_SIZE + ENC424J600_PTR_NXP_PKT_SIZE]; struct net_buf *pkt_buf = NULL; struct net_pkt *pkt; uint16_t frm_len = 0U; uint32_t status; uint16_t tmp; k_sem_take(&context->tx_rx_sem, K_FOREVER); enc424j600_write_sfru(dev, ENC424J600_SFR4_ERXRDPTL, context->next_pkt_ptr); if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_sfru(dev, ENC424J600_SFR4_ERXRDPTL, &tmp); LOG_DBG("set ERXRDPT to 0x%04x", tmp); } enc424j600_read_mem(dev, ENC424J600_NBC_RRXDATA, info, sizeof(info)); if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_sfru(dev, ENC424J600_SFR4_ERXRDPTL, &tmp); LOG_DBG("ERXRDPT is 0x%04x now", tmp); } context->next_pkt_ptr = sys_get_le16(&info[0]); frm_len = sys_get_le16(&info[2]); status = sys_get_le32(&info[4]); LOG_DBG("npp 0x%04x, length %u, status 0x%08x", context->next_pkt_ptr, frm_len, status); /* frame length without FCS */ frm_len -= 4; if (frm_len > NET_ETH_MAX_FRAME_SIZE) { LOG_ERR("Maximum frame length exceeded"); eth_stats_update_errors_rx(context->iface); goto done; } /* Get the frame from the buffer */ pkt = net_pkt_rx_alloc_with_buffer(context->iface, frm_len, AF_UNSPEC, 0, K_MSEC(config->timeout)); if (!pkt) { LOG_ERR("Could not allocate rx buffer"); eth_stats_update_errors_rx(context->iface); goto done; } pkt_buf = pkt->buffer; do { size_t frag_len; uint8_t *data_ptr; size_t spi_frame_len; data_ptr = pkt_buf->data; /* Review the space available for the new frag */ frag_len = net_buf_tailroom(pkt_buf); if (frm_len > frag_len) { spi_frame_len = frag_len; } else { spi_frame_len = frm_len; } enc424j600_read_mem(dev, ENC424J600_NBC_RRXDATA, data_ptr, spi_frame_len); net_buf_add(pkt_buf, spi_frame_len); /* One fragment has been written via SPI */ frm_len -= spi_frame_len; pkt_buf = pkt_buf->frags; } while (frm_len > 0); if (net_recv_data(context->iface, pkt) < 0) { net_pkt_unref(pkt); } done: if (context->next_pkt_ptr == ENC424J600_RXSTART) { tmp = ENC424J600_RXEND - 1; LOG_DBG("wrap back"); } else { tmp = context->next_pkt_ptr - 2; } enc424j600_write_sfru(dev, ENC424J600_SFR0_ERXTAILL, tmp); enc424j600_write_sbc(dev, ENC424J600_1BC_SETPKTDEC); k_sem_give(&context->tx_rx_sem); return 0; } static void enc424j600_rx_thread(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); struct enc424j600_runtime *context = p1; uint16_t eir; uint16_t estat; uint8_t counter; while (true) { k_sem_take(&context->int_sem, K_FOREVER); enc424j600_write_sbc(context->dev, ENC424J600_1BC_CLREIE); enc424j600_read_sfru(context->dev, ENC424J600_SFRX_EIRL, &eir); enc424j600_read_sfru(context->dev, ENC424J600_SFRX_ESTATL, &estat); LOG_DBG("ESTAT: 0x%04x", estat); if (eir & ENC424J600_EIR_PKTIF) { counter = (uint8_t)estat; while (counter) { enc424j600_rx(context->dev); enc424j600_read_sfru(context->dev, ENC424J600_SFRX_ESTATL, &estat); counter = (uint8_t)estat; LOG_DBG("ESTAT: 0x%04x", estat); } } else if (eir & ENC424J600_EIR_LINKIF) { enc424j600_clear_sfru(context->dev, ENC424J600_SFRX_EIRL, ENC424J600_EIR_LINKIF); if (estat & ENC424J600_ESTAT_PHYLNK) { LOG_INF("Link up"); enc424j600_setup_mac(context->dev); net_eth_carrier_on(context->iface); } else { LOG_INF("Link down"); if (context->iface_initialized) { net_eth_carrier_off(context->iface); } } } else { LOG_ERR("Unknown Interrupt, EIR: 0x%04x", eir); /* * Terminate interrupt handling thread * only when debugging. */ if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { k_oops(); } } enc424j600_write_sbc(context->dev, ENC424J600_1BC_SETEIE); } } static int enc424j600_get_config(const struct device *dev, enum ethernet_config_type type, struct ethernet_config *config) { uint16_t tmp; int rc = 0; struct enc424j600_runtime *context = dev->data; if (type != ETHERNET_CONFIG_TYPE_LINK && type != ETHERNET_CONFIG_TYPE_DUPLEX) { /* Unsupported configuration query */ return -ENOTSUP; } k_sem_take(&context->tx_rx_sem, K_FOREVER); if (type == ETHERNET_CONFIG_TYPE_LINK) { /* Query active link speed */ enc424j600_read_phy(dev, ENC424J600_PSFR_PHSTAT3, &tmp); if (tmp & ENC424J600_PHSTAT3_SPDDPX_100) { /* 100Mbps link speed */ config->l.link_100bt = true; } else if (tmp & ENC424J600_PHSTAT3_SPDDPX_10) { /* 10Mbps link speed */ config->l.link_10bt = true; } else { /* Unknown link speed */ rc = -EINVAL; } } else if (type == ETHERNET_CONFIG_TYPE_DUPLEX) { /* Query if half or full duplex */ enc424j600_read_phy(dev, ENC424J600_PSFR_PHSTAT3, &tmp); /* Assume operating in half duplex mode */ config->full_duplex = false; if (tmp & ENC424J600_PHSTAT3_SPDDPX_FD) { /* Operating in full duplex mode */ config->full_duplex = true; } } k_sem_give(&context->tx_rx_sem); return rc; } static enum ethernet_hw_caps enc424j600_get_capabilities(const struct device *dev) { ARG_UNUSED(dev); return ETHERNET_LINK_10BASE_T | ETHERNET_LINK_100BASE_T; } static int enc424j600_set_config(const struct device *dev, enum ethernet_config_type type, const struct ethernet_config *config) { struct enc424j600_runtime *ctx = dev->data; uint16_t tmp; switch (type) { case ETHERNET_CONFIG_TYPE_MAC_ADDRESS: ctx->mac_address[0] = config->mac_address.addr[0]; ctx->mac_address[1] = config->mac_address.addr[1]; ctx->mac_address[2] = config->mac_address.addr[2]; ctx->mac_address[3] = config->mac_address.addr[3]; ctx->mac_address[4] = config->mac_address.addr[4]; ctx->mac_address[5] = config->mac_address.addr[5]; /* write MAC address byte 2 and 1 */ tmp = config->mac_address.addr[0] | config->mac_address.addr[1] << 8; enc424j600_write_sfru(dev, ENC424J600_SFR3_MAADR1L, tmp); /* write MAC address byte 4 and 3 */ tmp = config->mac_address.addr[2] | config->mac_address.addr[3] << 8; enc424j600_write_sfru(dev, ENC424J600_SFR3_MAADR2L, tmp); /* write MAC address byte 6 and 5 */ tmp = config->mac_address.addr[4] | config->mac_address.addr[5] << 8; enc424j600_write_sfru(dev, ENC424J600_SFR3_MAADR3L, tmp); return 0; default: return -ENOTSUP; } } static void enc424j600_iface_init(struct net_if *iface) { const struct device *dev = net_if_get_device(iface); struct enc424j600_runtime *context = dev->data; net_if_set_link_addr(iface, context->mac_address, sizeof(context->mac_address), NET_LINK_ETHERNET); context->iface = iface; ethernet_init(iface); net_if_carrier_off(iface); context->iface_initialized = true; } static int enc424j600_start_device(const struct device *dev) { struct enc424j600_runtime *context = dev->data; uint16_t tmp; if (!context->suspended) { LOG_INF("Not suspended"); return 0; } k_sem_take(&context->tx_rx_sem, K_FOREVER); enc424j600_set_sfru(dev, ENC424J600_SFR3_ECON2L, ENC424J600_ECON2_ETHEN | ENC424J600_ECON2_STRCH); enc424j600_read_phy(dev, ENC424J600_PSFR_PHCON1, &tmp); tmp &= ~ENC424J600_PHCON1_PSLEEP; enc424j600_write_phy(dev, ENC424J600_PSFR_PHCON1, tmp); enc424j600_set_sfru(dev, ENC424J600_SFRX_ECON1L, ENC424J600_ECON1_RXEN); context->suspended = false; k_sem_give(&context->tx_rx_sem); LOG_INF("started"); return 0; } static int enc424j600_stop_device(const struct device *dev) { struct enc424j600_runtime *context = dev->data; uint16_t tmp; if (context->suspended) { LOG_WRN("Already suspended"); return 0; } k_sem_take(&context->tx_rx_sem, K_FOREVER); enc424j600_clear_sfru(dev, ENC424J600_SFRX_ECON1L, ENC424J600_ECON1_RXEN); do { k_sleep(K_MSEC(10U)); enc424j600_read_sfru(dev, ENC424J600_SFRX_ESTATL, &tmp); } while (tmp & ENC424J600_ESTAT_RXBUSY); do { k_sleep(K_MSEC(10U)); enc424j600_read_sfru(dev, ENC424J600_SFRX_ECON1L, &tmp); } while (tmp & ENC424J600_ECON1_TXRTS); enc424j600_read_phy(dev, ENC424J600_PSFR_PHCON1, &tmp); tmp |= ENC424J600_PHCON1_PSLEEP; enc424j600_write_phy(dev, ENC424J600_PSFR_PHCON1, tmp); enc424j600_clear_sfru(dev, ENC424J600_SFR3_ECON2L, ENC424J600_ECON2_ETHEN | ENC424J600_ECON2_STRCH); context->suspended = true; k_sem_give(&context->tx_rx_sem); LOG_INF("stopped"); return 0; } static const struct ethernet_api api_funcs = { .iface_api.init = enc424j600_iface_init, .get_config = enc424j600_get_config, .set_config = enc424j600_set_config, .get_capabilities = enc424j600_get_capabilities, .send = enc424j600_tx, .start = enc424j600_start_device, .stop = enc424j600_stop_device, }; static int enc424j600_init(const struct device *dev) { const struct enc424j600_config *config = dev->config; struct enc424j600_runtime *context = dev->data; uint8_t retries = ENC424J600_DEFAULT_NUMOF_RETRIES; uint16_t tmp; context->dev = dev; /* SPI config */ if (!spi_is_ready_dt(&config->spi)) { LOG_ERR("SPI master port %s not ready", config->spi.bus->name); return -EINVAL; } /* Initialize GPIO */ if (!gpio_is_ready_dt(&config->interrupt)) { LOG_ERR("GPIO port %s not ready", config->interrupt.port->name); return -EINVAL; } if (gpio_pin_configure_dt(&config->interrupt, GPIO_INPUT)) { LOG_ERR("Unable to configure GPIO pin %u", config->interrupt.pin); return -EINVAL; } gpio_init_callback(&(context->gpio_cb), enc424j600_gpio_callback, BIT(config->interrupt.pin)); if (gpio_add_callback(config->interrupt.port, &(context->gpio_cb))) { return -EINVAL; } gpio_pin_interrupt_configure_dt(&config->interrupt, GPIO_INT_EDGE_TO_ACTIVE); /* Check SPI connection */ do { k_busy_wait(USEC_PER_MSEC * 1U); enc424j600_write_sfru(dev, ENC424J600_SFRX_EUDASTL, 0x4AFE); enc424j600_read_sfru(dev, ENC424J600_SFRX_EUDASTL, &tmp); retries--; } while (tmp != 0x4AFE && retries); if (tmp != 0x4AFE) { LOG_ERR("Timeout, failed to establish SPI connection"); return -EIO; } retries = ENC424J600_DEFAULT_NUMOF_RETRIES; do { k_busy_wait(USEC_PER_MSEC * 1U); enc424j600_read_sfru(dev, ENC424J600_SFRX_ESTATL, &tmp); retries--; } while (!(tmp & ENC424J600_ESTAT_CLKRDY) && retries); if (!(tmp & ENC424J600_ESTAT_CLKRDY)) { LOG_ERR("CLKRDY not set"); return -EIO; } enc424j600_write_sbc(dev, ENC424J600_1BC_SETETHRST); k_busy_wait(ENC424J600_PHY_READY_DELAY); enc424j600_read_sfru(dev, ENC424J600_SFRX_EUDASTL, &tmp); if (tmp) { LOG_ERR("Failed to initialize ENC424J600"); return -EIO; } /* Disable INTIE and setup interrupt logic */ enc424j600_write_sfru(dev, ENC424J600_SFR3_EIEL, ENC424J600_EIE_PKTIE | ENC424J600_EIE_LINKIE); if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_sfru(dev, ENC424J600_SFR3_EIEL, &tmp); LOG_DBG("EIE: 0x%04x", tmp); } /* Configure TX and RX buffer */ enc424j600_write_sfru(dev, ENC424J600_SFR0_ETXSTL, ENC424J600_TXSTART); enc424j600_write_sfru(dev, ENC424J600_SFR0_ERXSTL, ENC424J600_RXSTART); enc424j600_write_sfru(dev, ENC424J600_SFR0_ERXTAILL, (ENC424J600_RXEND - 1)); context->next_pkt_ptr = ENC424J600_RXSTART; /* Disable user-defined buffer */ enc424j600_write_sfru(dev, ENC424J600_SFRX_EUDASTL, (ENC424J600_RXEND - 1)); enc424j600_write_sfru(dev, ENC424J600_SFRX_EUDANDL, (ENC424J600_RXEND - 1)); /* read MAC address byte 2 and 1 */ enc424j600_read_sfru(dev, ENC424J600_SFR3_MAADR1L, &tmp); context->mac_address[0] = tmp; context->mac_address[1] = tmp >> 8; /* read MAC address byte 4 and 3 */ enc424j600_read_sfru(dev, ENC424J600_SFR3_MAADR2L, &tmp); context->mac_address[2] = tmp; context->mac_address[3] = tmp >> 8; /* read MAC address byte 6 and 5 */ enc424j600_read_sfru(dev, ENC424J600_SFR3_MAADR3L, &tmp); context->mac_address[4] = tmp; context->mac_address[5] = tmp >> 8; enc424j600_init_filters(dev); enc424j600_init_phy(dev); /* Enable Reception */ enc424j600_set_sfru(dev, ENC424J600_SFRX_ECON1L, ENC424J600_ECON1_RXEN); if (CONFIG_ETHERNET_LOG_LEVEL == LOG_LEVEL_DBG) { enc424j600_read_sfru(dev, ENC424J600_SFRX_ECON1L, &tmp); LOG_DBG("ECON1: 0x%04x", tmp); } /* Start interruption-poll thread */ k_thread_create(&context->thread, context->thread_stack, CONFIG_ETH_ENC424J600_RX_THREAD_STACK_SIZE, enc424j600_rx_thread, context, NULL, NULL, K_PRIO_COOP(CONFIG_ETH_ENC424J600_RX_THREAD_PRIO), 0, K_NO_WAIT); enc424j600_write_sbc(dev, ENC424J600_1BC_SETEIE); context->suspended = false; LOG_INF("ENC424J600 Initialized"); return 0; } static struct enc424j600_runtime enc424j600_0_runtime = { .tx_rx_sem = Z_SEM_INITIALIZER(enc424j600_0_runtime.tx_rx_sem, 1, UINT_MAX), .int_sem = Z_SEM_INITIALIZER(enc424j600_0_runtime.int_sem, 0, UINT_MAX), }; static const struct enc424j600_config enc424j600_0_config = { .spi = SPI_DT_SPEC_INST_GET(0, SPI_WORD_SET(8), 0), .interrupt = GPIO_DT_SPEC_INST_GET(0, int_gpios), .timeout = CONFIG_ETH_ENC424J600_TIMEOUT, }; ETH_NET_DEVICE_DT_INST_DEFINE(0, enc424j600_init, NULL, &enc424j600_0_runtime, &enc424j600_0_config, CONFIG_ETH_INIT_PRIORITY, &api_funcs, NET_ETH_MTU);