/* * Copyright (c) 2021 ITE Corporation. All Rights Reserved. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT ite_it8xxx2_espi #include #include #include #include #include #include #include #include #include "soc_espi.h" #include "espi_utils.h" #include #include LOG_MODULE_REGISTER(espi, CONFIG_ESPI_LOG_LEVEL); #define ESPI_IT8XXX2_GET_GCTRL_BASE \ ((struct gctrl_it8xxx2_regs *)DT_REG_ADDR(DT_NODELABEL(gctrl))) #define IT8XXX2_ESPI_IRQ DT_INST_IRQ_BY_IDX(0, 0, irq) #define IT8XXX2_ESPI_VW_IRQ DT_INST_IRQ_BY_IDX(0, 1, irq) #define IT8XXX2_KBC_IBF_IRQ DT_INST_IRQ_BY_IDX(0, 2, irq) #define IT8XXX2_KBC_OBE_IRQ DT_INST_IRQ_BY_IDX(0, 3, irq) #define IT8XXX2_PMC1_IBF_IRQ DT_INST_IRQ_BY_IDX(0, 4, irq) #define IT8XXX2_PORT_80_IRQ DT_INST_IRQ_BY_IDX(0, 5, irq) #define IT8XXX2_PMC2_IBF_IRQ DT_INST_IRQ_BY_IDX(0, 6, irq) #define IT8XXX2_TRANS_IRQ DT_INST_IRQ_BY_IDX(0, 7, irq) /* General Capabilities and Configuration 1 */ #define IT8XXX2_ESPI_MAX_FREQ_MASK GENMASK(2, 0) #define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_20 0 #define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_25 1 #define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_33 2 #define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_50 3 #define IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_66 4 #define IT8XXX2_ESPI_PC_READY_MASK BIT(1) #define IT8XXX2_ESPI_VW_READY_MASK BIT(1) #define IT8XXX2_ESPI_OOB_READY_MASK BIT(1) #define IT8XXX2_ESPI_FC_READY_MASK BIT(1) #define IT8XXX2_ESPI_INTERRUPT_ENABLE BIT(7) #define IT8XXX2_ESPI_TO_WUC_ENABLE BIT(4) #define IT8XXX2_ESPI_VW_INTERRUPT_ENABLE BIT(7) #define IT8XXX2_ESPI_INTERRUPT_PUT_PC BIT(7) /* * VWCTRL2 register: * bit4 = 1b: Refers to ESPI_RESET# for PLTRST#. */ #define IT8XXX2_ESPI_VW_RESET_PLTRST BIT(4) #define IT8XXX2_ESPI_UPSTREAM_ENABLE BIT(7) #define IT8XXX2_ESPI_UPSTREAM_GO BIT(6) #define IT8XXX2_ESPI_UPSTREAM_INTERRUPT_ENABLE BIT(5) #define IT8XXX2_ESPI_UPSTREAM_CHANNEL_DISABLE BIT(2) #define IT8XXX2_ESPI_UPSTREAM_DONE BIT(1) #define IT8XXX2_ESPI_UPSTREAM_BUSY BIT(0) #define IT8XXX2_ESPI_CYCLE_TYPE_OOB 0x07 #define IT8XXX2_ESPI_PUT_OOB_STATUS BIT(7) #define IT8XXX2_ESPI_PUT_OOB_INTERRUPT_ENABLE BIT(7) #define IT8XXX2_ESPI_PUT_OOB_LEN_MASK GENMASK(6, 0) #define IT8XXX2_ESPI_INPUT_PAD_GATING BIT(6) #define IT8XXX2_ESPI_FLASH_MAX_PAYLOAD_SIZE 64 #define IT8XXX2_ESPI_PUT_FLASH_TAG_MASK GENMASK(7, 4) #define IT8XXX2_ESPI_PUT_FLASH_LEN_MASK GENMASK(6, 0) struct espi_it8xxx2_wuc { /* WUC control device structure */ const struct device *wucs; /* WUC pin mask */ uint8_t mask; }; struct espi_it8xxx2_config { uintptr_t base_espi_slave; uintptr_t base_espi_vw; uintptr_t base_espi_queue1; uintptr_t base_espi_queue0; uintptr_t base_ec2i; uintptr_t base_kbc; uintptr_t base_pmc; uintptr_t base_smfi; const struct espi_it8xxx2_wuc wuc; }; struct espi_it8xxx2_data { sys_slist_t callbacks; #ifdef CONFIG_ESPI_OOB_CHANNEL struct k_sem oob_upstream_go; #endif #ifdef CONFIG_ESPI_FLASH_CHANNEL struct k_sem flash_upstream_go; uint8_t put_flash_cycle_type; uint8_t put_flash_tag; uint8_t put_flash_len; uint8_t flash_buf[IT8XXX2_ESPI_FLASH_MAX_PAYLOAD_SIZE]; #endif }; struct vw_channel_t { uint8_t vw_index; /* VW index of signal */ uint8_t level_mask; /* level bit of signal */ uint8_t valid_mask; /* valid bit of signal */ }; struct vwidx_isr_t { void (*vwidx_isr)(const struct device *dev, uint8_t update_flag); uint8_t vw_index; }; enum espi_ch_enable_isr_type { DEASSERTED_FLAG = 0, ASSERTED_FLAG = 1, }; struct espi_isr_t { void (*espi_isr)(const struct device *dev, bool enable); enum espi_ch_enable_isr_type isr_type; }; struct espi_vw_signal_t { enum espi_vwire_signal signal; void (*vw_signal_isr)(const struct device *dev); }; /* EC2I bridge and PNPCFG devices */ static const struct ec2i_t kbc_settings[] = { /* Select logical device 06h(keyboard) */ {HOST_INDEX_LDN, LDN_KBC_KEYBOARD}, /* Set IRQ=01h for logical device */ {HOST_INDEX_IRQNUMX, 0x01}, /* Configure IRQTP for KBC. */ /* * Interrupt request type select (IRQTP) for KBC. * bit 1, 0: IRQ request is buffered and applied to SERIRQ * 1: IRQ request is inverted before being applied to SERIRQ * bit 0, 0: Edge triggered mode * 1: Level triggered mode * * This interrupt configuration should the same on both host and EC side */ {HOST_INDEX_IRQTP, 0x02}, /* Enable logical device */ {HOST_INDEX_LDA, 0x01}, #ifdef CONFIG_ESPI_IT8XXX2_PNPCFG_DEVICE_KBC_MOUSE /* Select logical device 05h(mouse) */ {HOST_INDEX_LDN, LDN_KBC_MOUSE}, /* Set IRQ=0Ch for logical device */ {HOST_INDEX_IRQNUMX, 0x0C}, /* Enable logical device */ {HOST_INDEX_LDA, 0x01}, #endif }; static const struct ec2i_t pmc1_settings[] = { /* Select logical device 11h(PM1 ACPI) */ {HOST_INDEX_LDN, LDN_PMC1}, /* Set IRQ=00h for logical device */ {HOST_INDEX_IRQNUMX, 0x00}, /* Enable logical device */ {HOST_INDEX_LDA, 0x01}, }; #ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD #define IT8XXX2_ESPI_HC_DATA_PORT_MSB \ ((CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM >> 8) & 0xff) #define IT8XXX2_ESPI_HC_DATA_PORT_LSB \ (CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM & 0xff) #define IT8XXX2_ESPI_HC_CMD_PORT_MSB \ (((CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM + 4) >> 8) & 0xff) #define IT8XXX2_ESPI_HC_CMD_PORT_LSB \ ((CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM + 4) & 0xff) static const struct ec2i_t pmc2_settings[] = { /* Select logical device 12h(PM2 host command) */ {HOST_INDEX_LDN, LDN_PMC2}, /* I/O Port Base Address (data/command ports) */ {HOST_INDEX_IOBAD0_MSB, IT8XXX2_ESPI_HC_DATA_PORT_MSB}, {HOST_INDEX_IOBAD0_LSB, IT8XXX2_ESPI_HC_DATA_PORT_LSB}, {HOST_INDEX_IOBAD1_MSB, IT8XXX2_ESPI_HC_CMD_PORT_MSB}, {HOST_INDEX_IOBAD1_LSB, IT8XXX2_ESPI_HC_CMD_PORT_LSB}, /* Set IRQ=00h for logical device */ {HOST_INDEX_IRQNUMX, 0x00}, /* Enable logical device */ {HOST_INDEX_LDA, 0x01}, }; #endif #if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) || \ defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION) /* * Host to RAM (H2RAM) memory mapping. * This feature allows host access EC's memory directly by eSPI I/O cycles. * Mapping range is 4K bytes and base address is adjustable. * Eg. the I/O cycle 800h~8ffh from host can be mapped to x800h~x8ffh. * Linker script will make the pool 4K aligned. */ #define IT8XXX2_ESPI_H2RAM_POOL_SIZE_MAX 0x1000 #define IT8XXX2_ESPI_H2RAM_OFFSET_MASK GENMASK(5, 0) #define IT8XXX2_ESPI_H2RAM_BASEADDR_MASK GENMASK(19, 0) #if defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION) #define H2RAM_ACPI_SHM_MAX ((CONFIG_ESPI_IT8XXX2_ACPI_SHM_H2RAM_SIZE) + \ (CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM)) #if (H2RAM_ACPI_SHM_MAX > IT8XXX2_ESPI_H2RAM_POOL_SIZE_MAX) #error "ACPI shared memory region out of h2ram" #endif #endif /* CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION */ #if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) #define H2RAM_EC_HOST_CMD_MAX ((CONFIG_ESPI_IT8XXX2_HC_H2RAM_SIZE) + \ (CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM)) #if (H2RAM_EC_HOST_CMD_MAX > IT8XXX2_ESPI_H2RAM_POOL_SIZE_MAX) #error "EC host command parameters out of h2ram" #endif #endif /* CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD */ #if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) && \ defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION) #if (MIN(H2RAM_ACPI_SHM_MAX, H2RAM_EC_HOST_CMD_MAX) > \ MAX(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM, \ CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM)) #error "ACPI and HC sections of h2ram overlap" #endif #endif static uint8_t h2ram_pool[MAX(H2RAM_ACPI_SHM_MAX, H2RAM_EC_HOST_CMD_MAX)] __attribute__((section(".h2ram_pool"))); #define H2RAM_WINDOW_SIZE(ram_size) ((find_msb_set((ram_size) / 16) - 1) & 0x7) static const struct ec2i_t smfi_settings[] = { /* Select logical device 0Fh(SMFI) */ {HOST_INDEX_LDN, LDN_SMFI}, /* Internal RAM base address on eSPI I/O space */ {HOST_INDEX_DSLDC6, 0x00}, /* Enable H2RAM eSPI I/O cycle */ {HOST_INDEX_DSLDC7, 0x01}, /* Enable logical device */ {HOST_INDEX_LDA, 0x01}, }; static void smfi_it8xxx2_init(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct smfi_it8xxx2_regs *const smfi_reg = (struct smfi_it8xxx2_regs *)config->base_smfi; struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE; uint8_t h2ram_offset; /* Set the host to RAM cycle address offset */ h2ram_offset = ((uint32_t)h2ram_pool & IT8XXX2_ESPI_H2RAM_BASEADDR_MASK) / IT8XXX2_ESPI_H2RAM_POOL_SIZE_MAX; gctrl->GCTRL_H2ROFSR = (gctrl->GCTRL_H2ROFSR & ~IT8XXX2_ESPI_H2RAM_OFFSET_MASK) | h2ram_offset; #ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD memset(&h2ram_pool[CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM], 0, CONFIG_ESPI_IT8XXX2_HC_H2RAM_SIZE); /* Set host RAM window 0 base address */ smfi_reg->SMFI_HRAMW0BA = (CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM >> 4) & 0xff; /* Set host RAM window 0 size. (allow R/W) */ smfi_reg->SMFI_HRAMW0AAS = H2RAM_WINDOW_SIZE(CONFIG_ESPI_IT8XXX2_HC_H2RAM_SIZE); /* Enable window 0, H2RAM through IO cycle */ smfi_reg->SMFI_HRAMWC |= (SMFI_H2RAMPS | SMFI_H2RAMW0E); #endif #ifdef CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION memset(&h2ram_pool[CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM], 0, CONFIG_ESPI_IT8XXX2_ACPI_SHM_H2RAM_SIZE); /* Set host RAM window 1 base address */ smfi_reg->SMFI_HRAMW1BA = (CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM >> 4) & 0xff; /* Set host RAM window 1 size. (read-only) */ smfi_reg->SMFI_HRAMW1AAS = H2RAM_WINDOW_SIZE(CONFIG_ESPI_IT8XXX2_ACPI_SHM_H2RAM_SIZE) | SMFI_HRAMWXWPE_ALL; /* Enable window 1, H2RAM through IO cycle */ smfi_reg->SMFI_HRAMWC |= (SMFI_H2RAMPS | SMFI_H2RAMW1E); #endif } #endif /* CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD || * CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION */ static void ec2i_it8xxx2_wait_status_cleared(const struct device *dev, uint8_t mask) { const struct espi_it8xxx2_config *const config = dev->config; struct ec2i_regs *const ec2i = (struct ec2i_regs *)config->base_ec2i; while (ec2i->IBCTL & mask) { ; } } static void ec2i_it8xxx2_write_pnpcfg(const struct device *dev, enum ec2i_access sel, uint8_t data) { const struct espi_it8xxx2_config *const config = dev->config; struct ec2i_regs *const ec2i = (struct ec2i_regs *)config->base_ec2i; /* bit0: EC to I-Bus access enabled. */ ec2i->IBCTL |= EC2I_IBCTL_CSAE; /* * Wait that both CRIB and CWIB bits in IBCTL register * are cleared. */ ec2i_it8xxx2_wait_status_cleared(dev, EC2I_IBCTL_CRWIB); /* Enable EC access to the PNPCFG registers */ ec2i->IBMAE |= EC2I_IBMAE_CFGAE; /* Set indirect host I/O offset. */ ec2i->IHIOA = sel; /* Write the data to IHD register */ ec2i->IHD = data; /* Wait the CWIB bit in IBCTL cleared. */ ec2i_it8xxx2_wait_status_cleared(dev, EC2I_IBCTL_CWIB); /* Disable EC access to the PNPCFG registers. */ ec2i->IBMAE &= ~EC2I_IBMAE_CFGAE; /* Disable EC to I-Bus access. */ ec2i->IBCTL &= ~EC2I_IBCTL_CSAE; } static void ec2i_it8xxx2_write(const struct device *dev, enum host_pnpcfg_index index, uint8_t data) { /* Set index */ ec2i_it8xxx2_write_pnpcfg(dev, EC2I_ACCESS_INDEX, index); /* Set data */ ec2i_it8xxx2_write_pnpcfg(dev, EC2I_ACCESS_DATA, data); } static void pnpcfg_it8xxx2_configure(const struct device *dev, const struct ec2i_t *settings, size_t entries) { for (size_t i = 0; i < entries; i++) { ec2i_it8xxx2_write(dev, settings[i].index_port, settings[i].data_port); } } #define PNPCFG(_s) \ pnpcfg_it8xxx2_configure(dev, _s##_settings, ARRAY_SIZE(_s##_settings)) static void pnpcfg_it8xxx2_init(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct ec2i_regs *const ec2i = (struct ec2i_regs *)config->base_ec2i; struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE; /* The register pair to access PNPCFG is 004Eh and 004Fh */ gctrl->GCTRL_BADRSEL = 0x1; /* Host access is disabled */ ec2i->LSIOHA |= 0x3; /* configure pnpcfg devices */ if (IS_ENABLED(CONFIG_ESPI_PERIPHERAL_8042_KBC)) { PNPCFG(kbc); } if (IS_ENABLED(CONFIG_ESPI_PERIPHERAL_HOST_IO)) { PNPCFG(pmc1); } #ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD PNPCFG(pmc2); #endif #if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) || \ defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION) PNPCFG(smfi); #endif } /* KBC (port 60h/64h) */ #ifdef CONFIG_ESPI_PERIPHERAL_8042_KBC static void kbc_it8xxx2_ibf_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct kbc_regs *const kbc_reg = (struct kbc_regs *)config->base_kbc; struct espi_event evt = { ESPI_BUS_PERIPHERAL_NOTIFICATION, ESPI_PERIPHERAL_8042_KBC, ESPI_PERIPHERAL_NODATA }; struct espi_evt_data_kbc *kbc_evt = (struct espi_evt_data_kbc *)&evt.evt_data; /* KBC Input Buffer Full event */ kbc_evt->evt = HOST_KBC_EVT_IBF; /* * Indicates if the host sent a command or data. * 0 = data * 1 = Command. */ kbc_evt->type = !!(kbc_reg->KBHISR & KBC_KBHISR_A2_ADDR); /* The data in KBC Input Buffer */ kbc_evt->data = kbc_reg->KBHIDIR; espi_send_callbacks(&data->callbacks, dev, evt); } static void kbc_it8xxx2_obe_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct kbc_regs *const kbc_reg = (struct kbc_regs *)config->base_kbc; struct espi_event evt = { ESPI_BUS_PERIPHERAL_NOTIFICATION, ESPI_PERIPHERAL_8042_KBC, ESPI_PERIPHERAL_NODATA }; struct espi_evt_data_kbc *kbc_evt = (struct espi_evt_data_kbc *)&evt.evt_data; /* Disable KBC OBE interrupt first */ kbc_reg->KBHICR &= ~KBC_KBHICR_OBECIE; /* Notify application that host already read out data. */ kbc_evt->evt = HOST_KBC_EVT_OBE; kbc_evt->data = 0; kbc_evt->type = 0; espi_send_callbacks(&data->callbacks, dev, evt); } static void kbc_it8xxx2_init(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct kbc_regs *const kbc_reg = (struct kbc_regs *)config->base_kbc; /* Disable KBC serirq IRQ */ kbc_reg->KBIRQR = 0; /* * bit3: Input Buffer Full CPU Interrupt Enable. * bit1: Enable the interrupt to mouse driver in the host processor via * SERIRQ when the output buffer is full. * bit0: Enable the interrupt to keyboard driver in the host processor * via SERIRQ when the output buffer is full */ kbc_reg->KBHICR |= (KBC_KBHICR_IBFCIE | KBC_KBHICR_OBFKIE | KBC_KBHICR_OBFMIE); /* Input Buffer Full CPU Interrupt Enable. */ IRQ_CONNECT(IT8XXX2_KBC_IBF_IRQ, 0, kbc_it8xxx2_ibf_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(IT8XXX2_KBC_IBF_IRQ); /* Output Buffer Empty CPU Interrupt Enable */ IRQ_CONNECT(IT8XXX2_KBC_OBE_IRQ, 0, kbc_it8xxx2_obe_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(IT8XXX2_KBC_OBE_IRQ); } #endif /* PMC 1 (APCI port 62h/66h) */ #ifdef CONFIG_ESPI_PERIPHERAL_HOST_IO static void pmc1_it8xxx2_ibf_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc; struct espi_event evt = { ESPI_BUS_PERIPHERAL_NOTIFICATION, ESPI_PERIPHERAL_HOST_IO, ESPI_PERIPHERAL_NODATA }; struct espi_evt_data_acpi *acpi_evt = (struct espi_evt_data_acpi *)&evt.evt_data; /* * Indicates if the host sent a command or data. * 0 = data * 1 = Command. */ acpi_evt->type = !!(pmc_reg->PM1STS & PMC_PM1STS_A2_ADDR); /* Set processing flag before reading command byte */ pmc_reg->PM1STS |= PMC_PM1STS_GPF; acpi_evt->data = pmc_reg->PM1DI; espi_send_callbacks(&data->callbacks, dev, evt); } static void pmc1_it8xxx2_init(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc; /* Enable pmc1 input buffer full interrupt */ pmc_reg->PM1CTL |= PMC_PM1CTL_IBFIE; IRQ_CONNECT(IT8XXX2_PMC1_IBF_IRQ, 0, pmc1_it8xxx2_ibf_isr, DEVICE_DT_INST_GET(0), 0); if (!IS_ENABLED(CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE)) { irq_enable(IT8XXX2_PMC1_IBF_IRQ); } } #endif /* Port 80 */ #ifdef CONFIG_ESPI_PERIPHERAL_DEBUG_PORT_80 static void port80_it8xxx2_isr(const struct device *dev) { struct espi_it8xxx2_data *const data = dev->data; struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE; struct espi_event evt = { ESPI_BUS_PERIPHERAL_NOTIFICATION, (ESPI_PERIPHERAL_INDEX_0 << 16) | ESPI_PERIPHERAL_DEBUG_PORT80, ESPI_PERIPHERAL_NODATA }; if (IS_ENABLED(CONFIG_ESPI_IT8XXX2_PORT_81_CYCLE)) { evt.evt_data = gctrl->GCTRL_P80HDR | (gctrl->GCTRL_P81HDR << 8); } else { evt.evt_data = gctrl->GCTRL_P80HDR; } /* Write 1 to clear this bit */ gctrl->GCTRL_P80H81HSR |= BIT(0); espi_send_callbacks(&data->callbacks, dev, evt); } static void port80_it8xxx2_init(const struct device *dev) { ARG_UNUSED(dev); struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE; /* Accept Port 80h (and 81h) Cycle */ if (IS_ENABLED(CONFIG_ESPI_IT8XXX2_PORT_81_CYCLE)) { gctrl->GCTRL_SPCTRL1 |= (IT8XXX2_GCTRL_ACP80 | IT8XXX2_GCTRL_ACP81); } else { gctrl->GCTRL_SPCTRL1 |= IT8XXX2_GCTRL_ACP80; } IRQ_CONNECT(IT8XXX2_PORT_80_IRQ, 0, port80_it8xxx2_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(IT8XXX2_PORT_80_IRQ); } #endif #ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD /* PMC 2 (Host command port CONFIG_ESPI_PERIPHERAL_HOST_CMD_DATA_PORT_NUM) */ static void pmc2_it8xxx2_ibf_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc; struct espi_event evt = { ESPI_BUS_PERIPHERAL_NOTIFICATION, ESPI_PERIPHERAL_EC_HOST_CMD, ESPI_PERIPHERAL_NODATA }; /* Set processing flag before reading command byte */ pmc_reg->PM2STS |= PMC_PM2STS_GPF; evt.evt_data = pmc_reg->PM2DI; espi_send_callbacks(&data->callbacks, dev, evt); } static void pmc2_it8xxx2_init(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc; /* Dedicated interrupt for PMC2 */ pmc_reg->MBXCTRL |= PMC_MBXCTRL_DINT; /* Enable pmc2 input buffer full interrupt */ pmc_reg->PM2CTL |= PMC_PM2CTL_IBFIE; IRQ_CONNECT(IT8XXX2_PMC2_IBF_IRQ, 0, pmc2_it8xxx2_ibf_isr, DEVICE_DT_INST_GET(0), 0); if (!IS_ENABLED(CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE)) { irq_enable(IT8XXX2_PMC2_IBF_IRQ); } } #endif /* eSPI api functions */ #define VW_CHAN(signal, index, level, valid) \ [signal] = {.vw_index = index, .level_mask = level, .valid_mask = valid} /* VW signals used in eSPI */ static const struct vw_channel_t vw_channel_list[] = { VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_S3, 0x02, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_S4, 0x02, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_S5, 0x02, BIT(2), BIT(6)), VW_CHAN(ESPI_VWIRE_SIGNAL_OOB_RST_WARN, 0x03, BIT(2), BIT(6)), VW_CHAN(ESPI_VWIRE_SIGNAL_PLTRST, 0x03, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_SUS_STAT, 0x03, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_NMIOUT, 0x07, BIT(2), BIT(6)), VW_CHAN(ESPI_VWIRE_SIGNAL_SMIOUT, 0x07, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_HOST_RST_WARN, 0x07, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_A, 0x41, BIT(3), BIT(7)), VW_CHAN(ESPI_VWIRE_SIGNAL_SUS_PWRDN_ACK, 0x41, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_SUS_WARN, 0x41, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_WLAN, 0x42, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_SLP_LAN, 0x42, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_HOST_C10, 0x47, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_DNX_WARN, 0x4a, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_PME, 0x04, BIT(3), BIT(7)), VW_CHAN(ESPI_VWIRE_SIGNAL_WAKE, 0x04, BIT(2), BIT(6)), VW_CHAN(ESPI_VWIRE_SIGNAL_OOB_RST_ACK, 0x04, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_TARGET_BOOT_STS, 0x05, BIT(3), BIT(7)), VW_CHAN(ESPI_VWIRE_SIGNAL_ERR_NON_FATAL, 0x05, BIT(2), BIT(6)), VW_CHAN(ESPI_VWIRE_SIGNAL_ERR_FATAL, 0x05, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_TARGET_BOOT_DONE, 0x05, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_HOST_RST_ACK, 0x06, BIT(3), BIT(7)), VW_CHAN(ESPI_VWIRE_SIGNAL_RST_CPU_INIT, 0x06, BIT(2), BIT(6)), VW_CHAN(ESPI_VWIRE_SIGNAL_SMI, 0x06, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_SCI, 0x06, BIT(0), BIT(4)), VW_CHAN(ESPI_VWIRE_SIGNAL_DNX_ACK, 0x40, BIT(1), BIT(5)), VW_CHAN(ESPI_VWIRE_SIGNAL_SUS_ACK, 0x40, BIT(0), BIT(4)), }; static int espi_it8xxx2_configure(const struct device *dev, struct espi_cfg *cfg) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; uint8_t capcfg1 = 0; /* Set frequency */ switch (cfg->max_freq) { case 20: capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_20; break; case 25: capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_25; break; case 33: capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_33; break; case 50: capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_50; break; case 66: capcfg1 = IT8XXX2_ESPI_CAPCFG1_MAX_FREQ_66; break; default: return -EINVAL; } slave_reg->GCAPCFG1 = (slave_reg->GCAPCFG1 & ~IT8XXX2_ESPI_MAX_FREQ_MASK) | capcfg1; /* * Configure eSPI I/O mode. (Register read only) * Supported I/O mode : single, dual and quad. */ /* Configure eSPI supported channels. (Register read only) * Supported channels: peripheral, virtual wire, OOB, and flash access. */ return 0; } static bool espi_it8xxx2_channel_ready(const struct device *dev, enum espi_channel ch) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; bool sts = false; switch (ch) { case ESPI_CHANNEL_PERIPHERAL: sts = slave_reg->CH_PC_CAPCFG3 & IT8XXX2_ESPI_PC_READY_MASK; break; case ESPI_CHANNEL_VWIRE: sts = slave_reg->CH_VW_CAPCFG3 & IT8XXX2_ESPI_VW_READY_MASK; break; case ESPI_CHANNEL_OOB: sts = slave_reg->CH_OOB_CAPCFG3 & IT8XXX2_ESPI_OOB_READY_MASK; break; case ESPI_CHANNEL_FLASH: sts = slave_reg->CH_FLASH_CAPCFG3 & IT8XXX2_ESPI_FC_READY_MASK; break; default: break; } return sts; } static int espi_it8xxx2_send_vwire(const struct device *dev, enum espi_vwire_signal signal, uint8_t level) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_vw_regs *const vw_reg = (struct espi_vw_regs *)config->base_espi_vw; uint8_t vw_index = vw_channel_list[signal].vw_index; uint8_t level_mask = vw_channel_list[signal].level_mask; uint8_t valid_mask = vw_channel_list[signal].valid_mask; if (signal > ARRAY_SIZE(vw_channel_list)) { return -EIO; } if (level) { vw_reg->VW_INDEX[vw_index] |= level_mask; } else { vw_reg->VW_INDEX[vw_index] &= ~level_mask; } vw_reg->VW_INDEX[vw_index] |= valid_mask; return 0; } static int espi_it8xxx2_receive_vwire(const struct device *dev, enum espi_vwire_signal signal, uint8_t *level) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_vw_regs *const vw_reg = (struct espi_vw_regs *)config->base_espi_vw; uint8_t vw_index = vw_channel_list[signal].vw_index; uint8_t level_mask = vw_channel_list[signal].level_mask; uint8_t valid_mask = vw_channel_list[signal].valid_mask; if (signal > ARRAY_SIZE(vw_channel_list)) { return -EIO; } if (IS_ENABLED(CONFIG_ESPI_VWIRE_VALID_BIT_CHECK)) { if (vw_reg->VW_INDEX[vw_index] & valid_mask) { *level = !!(vw_reg->VW_INDEX[vw_index] & level_mask); } else { /* Not valid */ *level = 0; } } else { *level = !!(vw_reg->VW_INDEX[vw_index] & level_mask); } return 0; } #ifdef CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE static void host_custom_opcode_enable_interrupts(void) { if (IS_ENABLED(CONFIG_ESPI_PERIPHERAL_HOST_IO)) { irq_enable(IT8XXX2_PMC1_IBF_IRQ); } if (IS_ENABLED(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD)) { irq_enable(IT8XXX2_PMC2_IBF_IRQ); } } static void host_custom_opcode_disable_interrupts(void) { if (IS_ENABLED(CONFIG_ESPI_PERIPHERAL_HOST_IO)) { irq_disable(IT8XXX2_PMC1_IBF_IRQ); } if (IS_ENABLED(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD)) { irq_disable(IT8XXX2_PMC2_IBF_IRQ); } } #endif /* CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE */ static int espi_it8xxx2_manage_callback(const struct device *dev, struct espi_callback *callback, bool set) { struct espi_it8xxx2_data *const data = dev->data; return espi_manage_callback(&data->callbacks, callback, set); } static int espi_it8xxx2_read_lpc_request(const struct device *dev, enum lpc_peripheral_opcode op, uint32_t *data) { const struct espi_it8xxx2_config *const config = dev->config; if (op >= E8042_START_OPCODE && op <= E8042_MAX_OPCODE) { struct kbc_regs *const kbc_reg = (struct kbc_regs *)config->base_kbc; switch (op) { case E8042_OBF_HAS_CHAR: /* EC has written data back to host. OBF is * automatically cleared after host reads * the data */ *data = !!(kbc_reg->KBHISR & KBC_KBHISR_OBF); break; case E8042_IBF_HAS_CHAR: *data = !!(kbc_reg->KBHISR & KBC_KBHISR_IBF); break; case E8042_READ_KB_STS: *data = kbc_reg->KBHISR; break; default: return -EINVAL; } } else if (op >= EACPI_START_OPCODE && op <= EACPI_MAX_OPCODE) { struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc; switch (op) { case EACPI_OBF_HAS_CHAR: /* EC has written data back to host. OBF is * automatically cleared after host reads * the data */ *data = !!(pmc_reg->PM1STS & PMC_PM1STS_OBF); break; case EACPI_IBF_HAS_CHAR: *data = !!(pmc_reg->PM1STS & PMC_PM1STS_IBF); break; case EACPI_READ_STS: *data = pmc_reg->PM1STS; break; #ifdef CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION case EACPI_GET_SHARED_MEMORY: *data = (uint32_t)&h2ram_pool[ CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION_PORT_NUM]; break; #endif /* CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION */ default: return -EINVAL; } } #ifdef CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE else if (op >= ECUSTOM_START_OPCODE && op <= ECUSTOM_MAX_OPCODE) { switch (op) { case ECUSTOM_HOST_CMD_GET_PARAM_MEMORY: *data = (uint32_t)&h2ram_pool[ CONFIG_ESPI_PERIPHERAL_HOST_CMD_PARAM_PORT_NUM]; break; case ECUSTOM_HOST_CMD_GET_PARAM_MEMORY_SIZE: *data = CONFIG_ESPI_IT8XXX2_HC_H2RAM_SIZE; break; default: return -EINVAL; } } #endif /* CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE */ else { return -ENOTSUP; } return 0; } static int espi_it8xxx2_write_lpc_request(const struct device *dev, enum lpc_peripheral_opcode op, uint32_t *data) { const struct espi_it8xxx2_config *const config = dev->config; if (op >= E8042_START_OPCODE && op <= E8042_MAX_OPCODE) { struct kbc_regs *const kbc_reg = (struct kbc_regs *)config->base_kbc; switch (op) { case E8042_WRITE_KB_CHAR: kbc_reg->KBHIKDOR = (*data & 0xff); /* * Enable OBE interrupt after putting data in * data register. */ kbc_reg->KBHICR |= KBC_KBHICR_OBECIE; break; case E8042_WRITE_MB_CHAR: kbc_reg->KBHIMDOR = (*data & 0xff); /* * Enable OBE interrupt after putting data in * data register. */ kbc_reg->KBHICR |= KBC_KBHICR_OBECIE; break; case E8042_RESUME_IRQ: /* Enable KBC IBF interrupt */ irq_enable(IT8XXX2_KBC_IBF_IRQ); break; case E8042_PAUSE_IRQ: /* Disable KBC IBF interrupt */ irq_disable(IT8XXX2_KBC_IBF_IRQ); break; case E8042_CLEAR_OBF: volatile uint8_t _kbhicr __unused; /* * After enabling IBF/OBF clear mode, we have to make * sure that IBF interrupt is not triggered before * disabling the clear mode. Or the interrupt will keep * triggering until the watchdog is reset. */ unsigned int key = irq_lock(); /* * When IBFOBFCME is enabled, write 1 to COBF bit to * clear KBC OBF. */ kbc_reg->KBHICR |= KBC_KBHICR_IBFOBFCME; kbc_reg->KBHICR |= KBC_KBHICR_COBF; kbc_reg->KBHICR &= ~KBC_KBHICR_COBF; /* Disable clear mode */ kbc_reg->KBHICR &= ~KBC_KBHICR_IBFOBFCME; /* * I/O access synchronization, this load operation will * guarantee the above modification of SOC's register * can be seen by any following instructions. */ _kbhicr = kbc_reg->KBHICR; irq_unlock(key); break; case E8042_SET_FLAG: kbc_reg->KBHISR |= (*data & 0xff); break; case E8042_CLEAR_FLAG: kbc_reg->KBHISR &= ~(*data & 0xff); break; default: return -EINVAL; } } else if (op >= EACPI_START_OPCODE && op <= EACPI_MAX_OPCODE) { struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc; switch (op) { case EACPI_WRITE_CHAR: pmc_reg->PM1DO = (*data & 0xff); break; case EACPI_WRITE_STS: pmc_reg->PM1STS = (*data & 0xff); break; default: return -EINVAL; } } #ifdef CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE else if (op >= ECUSTOM_START_OPCODE && op <= ECUSTOM_MAX_OPCODE) { struct pmc_regs *const pmc_reg = (struct pmc_regs *)config->base_pmc; switch (op) { /* Enable/Disable PMCx interrupt */ case ECUSTOM_HOST_SUBS_INTERRUPT_EN: if (*data) { host_custom_opcode_enable_interrupts(); } else { host_custom_opcode_disable_interrupts(); } break; case ECUSTOM_HOST_CMD_SEND_RESULT: /* Write result to data output port (set OBF status) */ pmc_reg->PM2DO = (*data & 0xff); /* Clear processing flag */ pmc_reg->PM2STS &= ~PMC_PM2STS_GPF; break; default: return -EINVAL; } } #endif /* CONFIG_ESPI_PERIPHERAL_CUSTOM_OPCODE */ else { return -ENOTSUP; } return 0; } #ifdef CONFIG_ESPI_OOB_CHANNEL /* eSPI cycle type field */ #define ESPI_OOB_CYCLE_TYPE 0x21 #define ESPI_OOB_TAG 0x00 #define ESPI_OOB_TIMEOUT_MS 200 /* eSPI tag + len[11:8] field */ #define ESPI_TAG_LEN_FIELD(tag, len) \ ((((tag) & 0xF) << 4) | (((len) >> 8) & 0xF)) struct espi_oob_msg_packet { FLEXIBLE_ARRAY_DECLARE(uint8_t, data_byte); }; static int espi_it8xxx2_send_oob(const struct device *dev, struct espi_oob_packet *pckt) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; struct espi_queue1_regs *const queue1_reg = (struct espi_queue1_regs *)config->base_espi_queue1; struct espi_oob_msg_packet *oob_pckt = (struct espi_oob_msg_packet *)pckt->buf; if (!(slave_reg->CH_OOB_CAPCFG3 & IT8XXX2_ESPI_OOB_READY_MASK)) { LOG_ERR("%s: OOB channel isn't ready", __func__); return -EIO; } if (slave_reg->ESUCTRL0 & IT8XXX2_ESPI_UPSTREAM_BUSY) { LOG_ERR("%s: OOB upstream busy", __func__); return -EIO; } if (pckt->len > ESPI_IT8XXX2_OOB_MAX_PAYLOAD_SIZE) { LOG_ERR("%s: Out of OOB queue space", __func__); return -EINVAL; } /* Set cycle type */ slave_reg->ESUCTRL1 = IT8XXX2_ESPI_CYCLE_TYPE_OOB; /* Set tag and length[11:8] */ slave_reg->ESUCTRL2 = ESPI_TAG_LEN_FIELD(0, pckt->len); /* Set length [7:0] */ slave_reg->ESUCTRL3 = pckt->len & 0xff; /* Set data byte */ for (int i = 0; i < pckt->len; i++) { queue1_reg->UPSTREAM_DATA[i] = oob_pckt->data_byte[i]; } /* Set upstream enable */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_ENABLE; /* Set upstream go */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_GO; return 0; } static int espi_it8xxx2_receive_oob(const struct device *dev, struct espi_oob_packet *pckt) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; struct espi_queue0_regs *const queue0_reg = (struct espi_queue0_regs *)config->base_espi_queue0; struct espi_oob_msg_packet *oob_pckt = (struct espi_oob_msg_packet *)pckt->buf; uint8_t oob_len; if (!(slave_reg->CH_OOB_CAPCFG3 & IT8XXX2_ESPI_OOB_READY_MASK)) { LOG_ERR("%s: OOB channel isn't ready", __func__); return -EIO; } #ifndef CONFIG_ESPI_OOB_CHANNEL_RX_ASYNC struct espi_it8xxx2_data *const data = dev->data; int ret; /* Wait until receive OOB message or timeout */ ret = k_sem_take(&data->oob_upstream_go, K_MSEC(ESPI_OOB_TIMEOUT_MS)); if (ret == -EAGAIN) { LOG_ERR("%s: Timeout", __func__); return -ETIMEDOUT; } #endif /* Get length */ oob_len = (slave_reg->ESOCTRL4 & IT8XXX2_ESPI_PUT_OOB_LEN_MASK); /* * Buffer passed to driver isn't enough. * The first three bytes of buffer are cycle type, tag, and length. */ if (oob_len > pckt->len) { LOG_ERR("%s: Out of rx buf %d vs %d", __func__, oob_len, pckt->len); return -EINVAL; } pckt->len = oob_len; /* Get data byte */ for (int i = 0; i < oob_len; i++) { oob_pckt->data_byte[i] = queue0_reg->PUT_OOB_DATA[i]; } return 0; } static void espi_it8xxx2_oob_init(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; #ifndef CONFIG_ESPI_OOB_CHANNEL_RX_ASYNC struct espi_it8xxx2_data *const data = dev->data; k_sem_init(&data->oob_upstream_go, 0, 1); #endif /* Upstream interrupt enable */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_INTERRUPT_ENABLE; /* PUT_OOB interrupt enable */ slave_reg->ESOCTRL1 |= IT8XXX2_ESPI_PUT_OOB_INTERRUPT_ENABLE; } #endif #ifdef CONFIG_ESPI_FLASH_CHANNEL #define ESPI_FLASH_TAG 0x01 #define ESPI_FLASH_READ_TIMEOUT_MS 200 #define ESPI_FLASH_WRITE_TIMEOUT_MS 500 #define ESPI_FLASH_ERASE_TIMEOUT_MS 1000 /* Successful completion without data */ #define ESPI_IT8XXX2_PUT_FLASH_C_SCWOD 0 /* Successful completion with data */ #define ESPI_IT8XXX2_PUT_FLASH_C_SCWD 4 enum espi_flash_cycle_type { IT8XXX2_ESPI_CYCLE_TYPE_FLASH_READ = 0x08, IT8XXX2_ESPI_CYCLE_TYPE_FLASH_WRITE = 0x09, IT8XXX2_ESPI_CYCLE_TYPE_FLASH_ERASE = 0x0A, }; static int espi_it8xxx2_flash_trans(const struct device *dev, struct espi_flash_packet *pckt, enum espi_flash_cycle_type tran) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; struct espi_queue1_regs *const queue1_reg = (struct espi_queue1_regs *)config->base_espi_queue1; if (!(slave_reg->CH_FLASH_CAPCFG3 & IT8XXX2_ESPI_FC_READY_MASK)) { LOG_ERR("%s: Flash channel isn't ready (tran:%d)", __func__, tran); return -EIO; } if (slave_reg->ESUCTRL0 & IT8XXX2_ESPI_UPSTREAM_BUSY) { LOG_ERR("%s: Upstream busy (tran:%d)", __func__, tran); return -EIO; } if (pckt->len > IT8XXX2_ESPI_FLASH_MAX_PAYLOAD_SIZE) { LOG_ERR("%s: Invalid size request (tran:%d)", __func__, tran); return -EINVAL; } /* Set cycle type */ slave_reg->ESUCTRL1 = tran; /* Set tag and length[11:8] */ slave_reg->ESUCTRL2 = (ESPI_FLASH_TAG << 4); /* * Set length [7:0] * Note: for erasing, the least significant 3 bit of the length field * specifies the size of the block to be erased: * 001b: 4 Kbytes * 010b: 64Kbytes * 100b: 128 Kbytes * 101b: 256 Kbytes */ slave_reg->ESUCTRL3 = pckt->len; /* Set flash address */ queue1_reg->UPSTREAM_DATA[0] = (pckt->flash_addr >> 24) & 0xff; queue1_reg->UPSTREAM_DATA[1] = (pckt->flash_addr >> 16) & 0xff; queue1_reg->UPSTREAM_DATA[2] = (pckt->flash_addr >> 8) & 0xff; queue1_reg->UPSTREAM_DATA[3] = pckt->flash_addr & 0xff; return 0; } static int espi_it8xxx2_flash_read(const struct device *dev, struct espi_flash_packet *pckt) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; int ret; ret = espi_it8xxx2_flash_trans(dev, pckt, IT8XXX2_ESPI_CYCLE_TYPE_FLASH_READ); if (ret) { return ret; } /* Set upstream enable */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_ENABLE; /* Set upstream go */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_GO; /* Wait until upstream done or timeout */ ret = k_sem_take(&data->flash_upstream_go, K_MSEC(ESPI_FLASH_READ_TIMEOUT_MS)); if (ret == -EAGAIN) { LOG_ERR("%s: Timeout", __func__); return -ETIMEDOUT; } if (data->put_flash_cycle_type != ESPI_IT8XXX2_PUT_FLASH_C_SCWD) { LOG_ERR("%s: Unsuccessful completion", __func__); return -EIO; } memcpy(pckt->buf, data->flash_buf, pckt->len); LOG_INF("%s: read (%d) bytes from flash over espi", __func__, data->put_flash_len); return 0; } static int espi_it8xxx2_flash_write(const struct device *dev, struct espi_flash_packet *pckt) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; struct espi_queue1_regs *const queue1_reg = (struct espi_queue1_regs *)config->base_espi_queue1; int ret; ret = espi_it8xxx2_flash_trans(dev, pckt, IT8XXX2_ESPI_CYCLE_TYPE_FLASH_WRITE); if (ret) { return ret; } /* Set data byte */ for (int i = 0; i < pckt->len; i++) { queue1_reg->UPSTREAM_DATA[4 + i] = pckt->buf[i]; } /* Set upstream enable */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_ENABLE; /* Set upstream go */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_GO; /* Wait until upstream done or timeout */ ret = k_sem_take(&data->flash_upstream_go, K_MSEC(ESPI_FLASH_WRITE_TIMEOUT_MS)); if (ret == -EAGAIN) { LOG_ERR("%s: Timeout", __func__); return -ETIMEDOUT; } if (data->put_flash_cycle_type != ESPI_IT8XXX2_PUT_FLASH_C_SCWOD) { LOG_ERR("%s: Unsuccessful completion", __func__); return -EIO; } return 0; } static int espi_it8xxx2_flash_erase(const struct device *dev, struct espi_flash_packet *pckt) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; int ret; ret = espi_it8xxx2_flash_trans(dev, pckt, IT8XXX2_ESPI_CYCLE_TYPE_FLASH_ERASE); if (ret) { return ret; } /* Set upstream enable */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_ENABLE; /* Set upstream go */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_GO; /* Wait until upstream done or timeout */ ret = k_sem_take(&data->flash_upstream_go, K_MSEC(ESPI_FLASH_ERASE_TIMEOUT_MS)); if (ret == -EAGAIN) { LOG_ERR("%s: Timeout", __func__); return -ETIMEDOUT; } if (data->put_flash_cycle_type != ESPI_IT8XXX2_PUT_FLASH_C_SCWOD) { LOG_ERR("%s: Unsuccessful completion", __func__); return -EIO; } return 0; } static void espi_it8xxx2_flash_upstream_done_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; struct espi_queue1_regs *const queue1_reg = (struct espi_queue1_regs *)config->base_espi_queue1; data->put_flash_cycle_type = slave_reg->ESUCTRL6; data->put_flash_tag = slave_reg->ESUCTRL7 & IT8XXX2_ESPI_PUT_FLASH_TAG_MASK; data->put_flash_len = slave_reg->ESUCTRL8 & IT8XXX2_ESPI_PUT_FLASH_LEN_MASK; if (slave_reg->ESUCTRL1 == IT8XXX2_ESPI_CYCLE_TYPE_FLASH_READ) { if (data->put_flash_len > IT8XXX2_ESPI_FLASH_MAX_PAYLOAD_SIZE) { LOG_ERR("%s: Invalid size (%d)", __func__, data->put_flash_len); } else { for (int i = 0; i < data->put_flash_len; i++) { data->flash_buf[i] = queue1_reg->UPSTREAM_DATA[i]; } } } k_sem_give(&data->flash_upstream_go); } static void espi_it8xxx2_flash_init(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; k_sem_init(&data->flash_upstream_go, 0, 1); /* Upstream interrupt enable */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_INTERRUPT_ENABLE; } #endif /* CONFIG_ESPI_FLASH_CHANNEL */ /* eSPI driver registration */ static int espi_it8xxx2_init(const struct device *dev); static DEVICE_API(espi, espi_it8xxx2_driver_api) = { .config = espi_it8xxx2_configure, .get_channel_status = espi_it8xxx2_channel_ready, .send_vwire = espi_it8xxx2_send_vwire, .receive_vwire = espi_it8xxx2_receive_vwire, .manage_callback = espi_it8xxx2_manage_callback, .read_lpc_request = espi_it8xxx2_read_lpc_request, .write_lpc_request = espi_it8xxx2_write_lpc_request, #ifdef CONFIG_ESPI_OOB_CHANNEL .send_oob = espi_it8xxx2_send_oob, .receive_oob = espi_it8xxx2_receive_oob, #endif #ifdef CONFIG_ESPI_FLASH_CHANNEL .flash_read = espi_it8xxx2_flash_read, .flash_write = espi_it8xxx2_flash_write, .flash_erase = espi_it8xxx2_flash_erase, #endif }; static void espi_it8xxx2_vw_notify_system_state(const struct device *dev, enum espi_vwire_signal signal) { struct espi_it8xxx2_data *const data = dev->data; struct espi_event evt = {ESPI_BUS_EVENT_VWIRE_RECEIVED, 0, 0}; uint8_t level = 0; espi_it8xxx2_receive_vwire(dev, signal, &level); evt.evt_details = signal; evt.evt_data = level; espi_send_callbacks(&data->callbacks, dev, evt); } static void espi_vw_signal_no_isr(const struct device *dev) { ARG_UNUSED(dev); } static const struct espi_vw_signal_t vwidx2_signals[] = { {ESPI_VWIRE_SIGNAL_SLP_S3, NULL}, {ESPI_VWIRE_SIGNAL_SLP_S4, NULL}, {ESPI_VWIRE_SIGNAL_SLP_S5, NULL}, }; static void espi_it8xxx2_vwidx2_isr(const struct device *dev, uint8_t updated_flag) { for (int i = 0; i < ARRAY_SIZE(vwidx2_signals); i++) { enum espi_vwire_signal vw_signal = vwidx2_signals[i].signal; if (updated_flag & vw_channel_list[vw_signal].level_mask) { espi_it8xxx2_vw_notify_system_state(dev, vw_signal); } } } static void espi_vw_oob_rst_warn_isr(const struct device *dev) { uint8_t level = 0; espi_it8xxx2_receive_vwire(dev, ESPI_VWIRE_SIGNAL_OOB_RST_WARN, &level); espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_OOB_RST_ACK, level); } static void espi_vw_pltrst_isr(const struct device *dev) { uint8_t pltrst = 0; espi_it8xxx2_receive_vwire(dev, ESPI_VWIRE_SIGNAL_PLTRST, &pltrst); if (pltrst) { espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_SMI, 1); espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_SCI, 1); espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_HOST_RST_ACK, 1); espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_RST_CPU_INIT, 1); } LOG_INF("VW PLTRST_L %sasserted", pltrst ? "de" : ""); } static const struct espi_vw_signal_t vwidx3_signals[] = { {ESPI_VWIRE_SIGNAL_OOB_RST_WARN, espi_vw_oob_rst_warn_isr}, {ESPI_VWIRE_SIGNAL_PLTRST, espi_vw_pltrst_isr}, }; static void espi_it8xxx2_vwidx3_isr(const struct device *dev, uint8_t updated_flag) { for (int i = 0; i < ARRAY_SIZE(vwidx3_signals); i++) { enum espi_vwire_signal vw_signal = vwidx3_signals[i].signal; if (updated_flag & vw_channel_list[vw_signal].level_mask) { vwidx3_signals[i].vw_signal_isr(dev); espi_it8xxx2_vw_notify_system_state(dev, vw_signal); } } } static void espi_vw_host_rst_warn_isr(const struct device *dev) { uint8_t level = 0; espi_it8xxx2_receive_vwire(dev, ESPI_VWIRE_SIGNAL_HOST_RST_WARN, &level); espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_HOST_RST_ACK, level); } static const struct espi_vw_signal_t vwidx7_signals[] = { {ESPI_VWIRE_SIGNAL_HOST_RST_WARN, espi_vw_host_rst_warn_isr}, }; static void espi_it8xxx2_vwidx7_isr(const struct device *dev, uint8_t updated_flag) { for (int i = 0; i < ARRAY_SIZE(vwidx7_signals); i++) { enum espi_vwire_signal vw_signal = vwidx7_signals[i].signal; if (updated_flag & vw_channel_list[vw_signal].level_mask) { vwidx7_signals[i].vw_signal_isr(dev); espi_it8xxx2_vw_notify_system_state(dev, vw_signal); } } } static void espi_vw_sus_warn_isr(const struct device *dev) { uint8_t level = 0; espi_it8xxx2_receive_vwire(dev, ESPI_VWIRE_SIGNAL_SUS_WARN, &level); espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_SUS_ACK, level); } static const struct espi_vw_signal_t vwidx41_signals[] = { {ESPI_VWIRE_SIGNAL_SUS_WARN, espi_vw_sus_warn_isr}, {ESPI_VWIRE_SIGNAL_SUS_PWRDN_ACK, espi_vw_signal_no_isr}, {ESPI_VWIRE_SIGNAL_SLP_A, espi_vw_signal_no_isr}, }; static void espi_it8xxx2_vwidx41_isr(const struct device *dev, uint8_t updated_flag) { for (int i = 0; i < ARRAY_SIZE(vwidx41_signals); i++) { enum espi_vwire_signal vw_signal = vwidx41_signals[i].signal; if (updated_flag & vw_channel_list[vw_signal].level_mask) { vwidx41_signals[i].vw_signal_isr(dev); espi_it8xxx2_vw_notify_system_state(dev, vw_signal); } } } static const struct espi_vw_signal_t vwidx42_signals[] = { {ESPI_VWIRE_SIGNAL_SLP_LAN, NULL}, {ESPI_VWIRE_SIGNAL_SLP_WLAN, NULL}, }; static void espi_it8xxx2_vwidx42_isr(const struct device *dev, uint8_t updated_flag) { for (int i = 0; i < ARRAY_SIZE(vwidx42_signals); i++) { enum espi_vwire_signal vw_signal = vwidx42_signals[i].signal; if (updated_flag & vw_channel_list[vw_signal].level_mask) { espi_it8xxx2_vw_notify_system_state(dev, vw_signal); } } } static void espi_it8xxx2_vwidx43_isr(const struct device *dev, uint8_t updated_flag) { ARG_UNUSED(dev); /* * We haven't send callback to system because there is no index 43 * virtual wire signal is listed in enum espi_vwire_signal. */ LOG_INF("vw isr %s is ignored!", __func__); } static void espi_it8xxx2_vwidx44_isr(const struct device *dev, uint8_t updated_flag) { ARG_UNUSED(dev); /* * We haven't send callback to system because there is no index 44 * virtual wire signal is listed in enum espi_vwire_signal. */ LOG_INF("vw isr %s is ignored!", __func__); } static const struct espi_vw_signal_t vwidx47_signals[] = { {ESPI_VWIRE_SIGNAL_HOST_C10, NULL}, }; static void espi_it8xxx2_vwidx47_isr(const struct device *dev, uint8_t updated_flag) { for (int i = 0; i < ARRAY_SIZE(vwidx47_signals); i++) { enum espi_vwire_signal vw_signal = vwidx47_signals[i].signal; if (updated_flag & vw_channel_list[vw_signal].level_mask) { espi_it8xxx2_vw_notify_system_state(dev, vw_signal); } } } /* * The ISR of espi VW interrupt in array needs to match bit order in * ESPI VW VWCTRL1 register. */ static const struct vwidx_isr_t vwidx_isr_list[] = { [0] = {espi_it8xxx2_vwidx2_isr, 0x02}, [1] = {espi_it8xxx2_vwidx3_isr, 0x03}, [2] = {espi_it8xxx2_vwidx7_isr, 0x07}, [3] = {espi_it8xxx2_vwidx41_isr, 0x41}, [4] = {espi_it8xxx2_vwidx42_isr, 0x42}, [5] = {espi_it8xxx2_vwidx43_isr, 0x43}, [6] = {espi_it8xxx2_vwidx44_isr, 0x44}, [7] = {espi_it8xxx2_vwidx47_isr, 0x47}, }; /* * This is used to record the previous VW valid/level field state to discover * changes. Then do following sequence only when state is changed. */ static uint8_t vwidx_cached_flag[ARRAY_SIZE(vwidx_isr_list)]; static void espi_it8xxx2_reset_vwidx_cache(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_vw_regs *const vw_reg = (struct espi_vw_regs *)config->base_espi_vw; /* reset vwidx_cached_flag */ for (int i = 0; i < ARRAY_SIZE(vwidx_isr_list); i++) { vwidx_cached_flag[i] = vw_reg->VW_INDEX[vwidx_isr_list[i].vw_index]; } } static void espi_it8xxx2_vw_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_vw_regs *const vw_reg = (struct espi_vw_regs *)config->base_espi_vw; uint8_t vwidx_updated = vw_reg->VWCTRL1; /* write-1 to clear */ vw_reg->VWCTRL1 = vwidx_updated; for (int i = 0; i < ARRAY_SIZE(vwidx_isr_list); i++) { if (vwidx_updated & BIT(i)) { uint8_t vw_flag; vw_flag = vw_reg->VW_INDEX[vwidx_isr_list[i].vw_index]; vwidx_isr_list[i].vwidx_isr(dev, vwidx_cached_flag[i] ^ vw_flag); vwidx_cached_flag[i] = vw_flag; } } } static void espi_it8xxx2_ch_notify_system_state(const struct device *dev, enum espi_channel ch, bool en) { struct espi_it8xxx2_data *const data = dev->data; struct espi_event evt = { .evt_type = ESPI_BUS_EVENT_CHANNEL_READY, .evt_details = ch, .evt_data = en, }; espi_send_callbacks(&data->callbacks, dev, evt); } /* * Peripheral channel enable asserted flag. * A 0-to-1 or 1-to-0 transition on "Peripheral Channel Enable" bit. */ static void espi_it8xxx2_peripheral_ch_en_isr(const struct device *dev, bool enable) { espi_it8xxx2_ch_notify_system_state(dev, ESPI_CHANNEL_PERIPHERAL, enable); } /* * VW channel enable asserted flag. * A 0-to-1 or 1-to-0 transition on "Virtual Wire Channel Enable" bit. */ static void espi_it8xxx2_vw_ch_en_isr(const struct device *dev, bool enable) { espi_it8xxx2_ch_notify_system_state(dev, ESPI_CHANNEL_VWIRE, enable); } /* * OOB message channel enable asserted flag. * A 0-to-1 or 1-to-0 transition on "OOB Message Channel Enable" bit. */ static void espi_it8xxx2_oob_ch_en_isr(const struct device *dev, bool enable) { espi_it8xxx2_ch_notify_system_state(dev, ESPI_CHANNEL_OOB, enable); } /* * Flash channel enable asserted flag. * A 0-to-1 or 1-to-0 transition on "Flash Access Channel Enable" bit. */ static void espi_it8xxx2_flash_ch_en_isr(const struct device *dev, bool enable) { if (enable) { espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_TARGET_BOOT_STS, 1); espi_it8xxx2_send_vwire(dev, ESPI_VWIRE_SIGNAL_TARGET_BOOT_DONE, 1); } espi_it8xxx2_ch_notify_system_state(dev, ESPI_CHANNEL_FLASH, enable); } static void espi_it8xxx2_put_pc_status_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; /* * TODO: To check cycle type (bit[3-0] at ESPCTRL0) and make * corresponding modification if needed. */ LOG_INF("isr %s is ignored!", __func__); /* write-1-clear to release PC_FREE */ slave_reg->ESPCTRL0 = IT8XXX2_ESPI_INTERRUPT_PUT_PC; } #ifdef CONFIG_ESPI_OOB_CHANNEL static void espi_it8xxx2_upstream_channel_disable_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; LOG_INF("isr %s is ignored!", __func__); /* write-1 to clear this bit */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_CHANNEL_DISABLE; } static void espi_it8xxx2_put_oob_status_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_it8xxx2_data *const data = dev->data; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; #ifdef CONFIG_ESPI_OOB_CHANNEL_RX_ASYNC struct espi_event evt = { .evt_type = ESPI_BUS_EVENT_OOB_RECEIVED, .evt_details = 0, .evt_data = 0 }; #endif /* Write-1 to clear this bit for the next coming posted transaction. */ slave_reg->ESOCTRL0 |= IT8XXX2_ESPI_PUT_OOB_STATUS; #ifndef CONFIG_ESPI_OOB_CHANNEL_RX_ASYNC k_sem_give(&data->oob_upstream_go); #else /* Additional detail is length field of PUT_OOB message packet. */ evt.evt_details = (slave_reg->ESOCTRL4 & IT8XXX2_ESPI_PUT_OOB_LEN_MASK); espi_send_callbacks(&data->callbacks, dev, evt); #endif } #endif #if defined(CONFIG_ESPI_OOB_CHANNEL) || defined(CONFIG_ESPI_FLASH_CHANNEL) static void espi_it8xxx2_upstream_done_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; #ifdef CONFIG_ESPI_FLASH_CHANNEL /* cycle type is flash read, write, or erase */ if (slave_reg->ESUCTRL1 != IT8XXX2_ESPI_CYCLE_TYPE_OOB) { espi_it8xxx2_flash_upstream_done_isr(dev); } #endif /* write-1 to clear this bit */ slave_reg->ESUCTRL0 |= IT8XXX2_ESPI_UPSTREAM_DONE; /* upstream disable */ slave_reg->ESUCTRL0 &= ~IT8XXX2_ESPI_UPSTREAM_ENABLE; } #endif /* * The ISR of espi interrupt event in array need to be matched bit order in * IT8XXX2 ESPI ESGCTRL0 register. */ static const struct espi_isr_t espi_isr_list[] = { [0] = {espi_it8xxx2_peripheral_ch_en_isr, ASSERTED_FLAG}, [1] = {espi_it8xxx2_vw_ch_en_isr, ASSERTED_FLAG}, [2] = {espi_it8xxx2_oob_ch_en_isr, ASSERTED_FLAG}, [3] = {espi_it8xxx2_flash_ch_en_isr, ASSERTED_FLAG}, [4] = {espi_it8xxx2_peripheral_ch_en_isr, DEASSERTED_FLAG}, [5] = {espi_it8xxx2_vw_ch_en_isr, DEASSERTED_FLAG}, [6] = {espi_it8xxx2_oob_ch_en_isr, DEASSERTED_FLAG}, [7] = {espi_it8xxx2_flash_ch_en_isr, DEASSERTED_FLAG}, }; static void espi_it8xxx2_isr(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; /* get espi interrupt events */ uint8_t espi_event = slave_reg->ESGCTRL0; #if defined(CONFIG_ESPI_OOB_CHANNEL) || defined(CONFIG_ESPI_FLASH_CHANNEL) uint8_t espi_upstream = slave_reg->ESUCTRL0; #endif /* write-1 to clear */ slave_reg->ESGCTRL0 = espi_event; /* process espi interrupt events */ for (int i = 0; i < ARRAY_SIZE(espi_isr_list); i++) { if (espi_event & BIT(i)) { espi_isr_list[i].espi_isr(dev, espi_isr_list[i].isr_type); } } /* * bit7: the peripheral has received a peripheral posted/completion. * This bit indicates the peripheral has received a packet from eSPI * peripheral channel. */ if (slave_reg->ESPCTRL0 & IT8XXX2_ESPI_INTERRUPT_PUT_PC) { espi_it8xxx2_put_pc_status_isr(dev); } #ifdef CONFIG_ESPI_OOB_CHANNEL /* * The corresponding channel of the eSPI upstream transaction is * disabled. */ if (espi_upstream & IT8XXX2_ESPI_UPSTREAM_CHANNEL_DISABLE) { espi_it8xxx2_upstream_channel_disable_isr(dev); } /* The eSPI slave has received a PUT_OOB message. */ if (slave_reg->ESOCTRL0 & IT8XXX2_ESPI_PUT_OOB_STATUS) { espi_it8xxx2_put_oob_status_isr(dev); } #endif /* eSPI oob and flash channels use the same interrupt of upstream. */ #if defined(CONFIG_ESPI_OOB_CHANNEL) || defined(CONFIG_ESPI_FLASH_CHANNEL) /* The eSPI upstream transaction is done. */ if (espi_upstream & IT8XXX2_ESPI_UPSTREAM_DONE) { espi_it8xxx2_upstream_done_isr(dev); } #endif } void espi_it8xxx2_enable_pad_ctrl(const struct device *dev, bool enable) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; if (enable) { /* Enable eSPI pad. */ slave_reg->ESGCTRL2 &= ~IT8XXX2_ESPI_INPUT_PAD_GATING; } else { /* Disable eSPI pad. */ slave_reg->ESGCTRL2 |= IT8XXX2_ESPI_INPUT_PAD_GATING; } } void espi_it8xxx2_enable_trans_irq(const struct device *dev, bool enable) { const struct espi_it8xxx2_config *const config = dev->config; if (enable) { irq_enable(IT8XXX2_TRANS_IRQ); } else { irq_disable(IT8XXX2_TRANS_IRQ); /* Clear pending interrupt */ it8xxx2_wuc_clear_status(config->wuc.wucs, config->wuc.mask); } } static void espi_it8xxx2_trans_isr(const struct device *dev) { /* * This interrupt is only used to wake up CPU, there is no need to do * anything in the isr in addition to disable interrupt. */ espi_it8xxx2_enable_trans_irq(dev, false); } void espi_it8xxx2_espi_reset_isr(const struct device *port, struct gpio_callback *cb, uint32_t pins) { struct espi_it8xxx2_data *const data = ESPI_IT8XXX2_SOC_DEV->data; struct espi_event evt = {ESPI_BUS_RESET, 0, 0}; bool espi_reset = gpio_pin_get(port, (find_msb_set(pins) - 1)); if (!(espi_reset)) { /* Reset vwidx_cached_flag[] when espi_reset# asserted. */ espi_it8xxx2_reset_vwidx_cache(ESPI_IT8XXX2_SOC_DEV); } evt.evt_data = espi_reset; espi_send_callbacks(&data->callbacks, ESPI_IT8XXX2_SOC_DEV, evt); LOG_INF("eSPI reset %sasserted", espi_reset ? "de" : ""); } /* eSPI reset# is enabled on GPD2 */ #define ESPI_IT8XXX2_ESPI_RESET_PORT DEVICE_DT_GET(DT_NODELABEL(gpiod)) #define ESPI_IT8XXX2_ESPI_RESET_PIN 2 static void espi_it8xxx2_enable_reset(void) { struct gpio_it8xxx2_regs *const gpio_regs = GPIO_IT8XXX2_REG_BASE; static struct gpio_callback espi_reset_cb; /* eSPI reset is enabled on GPD2 */ gpio_regs->GPIO_GCR = (gpio_regs->GPIO_GCR & ~IT8XXX2_GPIO_GCR_ESPI_RST_EN_MASK) | (IT8XXX2_GPIO_GCR_ESPI_RST_D2 << IT8XXX2_GPIO_GCR_ESPI_RST_POS); /* enable eSPI reset isr */ gpio_init_callback(&espi_reset_cb, espi_it8xxx2_espi_reset_isr, BIT(ESPI_IT8XXX2_ESPI_RESET_PIN)); gpio_add_callback(ESPI_IT8XXX2_ESPI_RESET_PORT, &espi_reset_cb); gpio_pin_interrupt_configure(ESPI_IT8XXX2_ESPI_RESET_PORT, ESPI_IT8XXX2_ESPI_RESET_PIN, GPIO_INT_MODE_EDGE | GPIO_INT_TRIG_BOTH); } static struct espi_it8xxx2_data espi_it8xxx2_data_0; static const struct espi_it8xxx2_config espi_it8xxx2_config_0 = { .base_espi_slave = DT_INST_REG_ADDR_BY_IDX(0, 0), .base_espi_vw = DT_INST_REG_ADDR_BY_IDX(0, 1), .base_espi_queue0 = DT_INST_REG_ADDR_BY_IDX(0, 2), .base_espi_queue1 = DT_INST_REG_ADDR_BY_IDX(0, 3), .base_ec2i = DT_INST_REG_ADDR_BY_IDX(0, 4), .base_kbc = DT_INST_REG_ADDR_BY_IDX(0, 5), .base_pmc = DT_INST_REG_ADDR_BY_IDX(0, 6), .base_smfi = DT_INST_REG_ADDR_BY_IDX(0, 7), .wuc = IT8XXX2_DT_WUC_ITEMS_FUNC(0, 0), }; DEVICE_DT_INST_DEFINE(0, &espi_it8xxx2_init, NULL, &espi_it8xxx2_data_0, &espi_it8xxx2_config_0, PRE_KERNEL_2, CONFIG_ESPI_INIT_PRIORITY, &espi_it8xxx2_driver_api); static int espi_it8xxx2_init(const struct device *dev) { const struct espi_it8xxx2_config *const config = dev->config; struct espi_vw_regs *const vw_reg = (struct espi_vw_regs *)config->base_espi_vw; struct espi_slave_regs *const slave_reg = (struct espi_slave_regs *)config->base_espi_slave; struct gctrl_it8xxx2_regs *const gctrl = ESPI_IT8XXX2_GET_GCTRL_BASE; /* configure VCC detector */ gctrl->GCTRL_RSTS = (gctrl->GCTRL_RSTS & ~(IT8XXX2_GCTRL_VCCDO_MASK | IT8XXX2_GCTRL_HGRST)) | (IT8XXX2_GCTRL_VCCDO_VCC_ON | IT8XXX2_GCTRL_GRST); /* enable PNPCFG devices */ pnpcfg_it8xxx2_init(dev); #ifdef CONFIG_ESPI_PERIPHERAL_8042_KBC /* enable kbc port (60h/64h) */ kbc_it8xxx2_init(dev); #endif #ifdef CONFIG_ESPI_PERIPHERAL_HOST_IO /* enable pmc1 for ACPI port (62h/66h) */ pmc1_it8xxx2_init(dev); #endif #ifdef CONFIG_ESPI_PERIPHERAL_DEBUG_PORT_80 /* Accept Port 80h Cycle */ port80_it8xxx2_init(dev); #endif #if defined(CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD) || \ defined(CONFIG_ESPI_PERIPHERAL_ACPI_SHM_REGION) smfi_it8xxx2_init(dev); #endif #ifdef CONFIG_ESPI_PERIPHERAL_EC_HOST_CMD /* enable pmc2 for host command port */ pmc2_it8xxx2_init(dev); #endif /* Reset vwidx_cached_flag[] at initialization */ espi_it8xxx2_reset_vwidx_cache(dev); /* Enable espi vw interrupt */ vw_reg->VWCTRL0 |= IT8XXX2_ESPI_VW_INTERRUPT_ENABLE; IRQ_CONNECT(IT8XXX2_ESPI_VW_IRQ, 0, espi_it8xxx2_vw_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(IT8XXX2_ESPI_VW_IRQ); /* Reset PLTRST# virtual wire signal during eSPI reset */ vw_reg->VWCTRL2 |= IT8XXX2_ESPI_VW_RESET_PLTRST; #ifdef CONFIG_ESPI_OOB_CHANNEL espi_it8xxx2_oob_init(dev); #endif #ifdef CONFIG_ESPI_FLASH_CHANNEL espi_it8xxx2_flash_init(dev); #endif /* Enable espi interrupt */ slave_reg->ESGCTRL1 |= IT8XXX2_ESPI_INTERRUPT_ENABLE; IRQ_CONNECT(IT8XXX2_ESPI_IRQ, 0, espi_it8xxx2_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(IT8XXX2_ESPI_IRQ); /* enable interrupt and reset from eSPI_reset# */ espi_it8xxx2_enable_reset(); /* * Enable eSPI to WUC. * If an eSPI transaction is accepted, WU42 interrupt will be asserted. */ slave_reg->ESGCTRL2 |= IT8XXX2_ESPI_TO_WUC_ENABLE; /* Enable WU42 of WUI */ it8xxx2_wuc_clear_status(config->wuc.wucs, config->wuc.mask); it8xxx2_wuc_enable(config->wuc.wucs, config->wuc.mask); /* * Only register isr here, the interrupt only need to be enabled * before CPU and RAM clocks gated in the idle function. */ IRQ_CONNECT(IT8XXX2_TRANS_IRQ, 0, espi_it8xxx2_trans_isr, DEVICE_DT_INST_GET(0), 0); return 0; }