/* * Copyright 2020 Broadcom * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT brcm_iproc_pax_dma_v2 #include #include #include #include #include #include #include #include #include #include #include #include #include "dma_iproc_pax_v2.h" #define LOG_LEVEL CONFIG_DMA_LOG_LEVEL #include #include LOG_MODULE_REGISTER(dma_iproc_pax_v2); /* Driver runtime data for PAX DMA and RM */ static struct dma_iproc_pax_data pax_dma_data; /** * @brief Opaque/packet id allocator, range 0 to 31 */ static inline uint32_t reset_pkt_id(struct dma_iproc_pax_ring_data *ring) { return ring->pkt_id = 0x0; } static inline uint32_t alloc_pkt_id(struct dma_iproc_pax_ring_data *ring) { ring->pkt_id = (ring->pkt_id + 1) % 32; return ring->pkt_id; } static inline uint32_t curr_pkt_id(struct dma_iproc_pax_ring_data *ring) { return ring->pkt_id; } static inline uint32_t curr_toggle_val(struct dma_iproc_pax_ring_data *ring) { return ring->curr.toggle; } /** * @brief Populate header descriptor */ static inline void rm_write_header_desc(void *desc, uint32_t toggle, uint32_t opq, uint32_t bdcount, uint64_t pci_addr) { struct rm_header *r = (struct rm_header *)desc; r->opq = opq; r->bdf = 0x0; r->res1 = 0x0; /* DMA descriptor count init value */ r->bdcount = bdcount; r->prot = 0x0; r->res2 = 0x0; /* No packet extension, start and end set to '1' */ r->start = 1; r->end = 1; /* RM header type */ r->type = PAX_DMA_TYPE_RM_HEADER; r->pcie_addr_msb = PAX_DMA_PCI_ADDR_HI_MSB8(pci_addr); r->res3 = 0x0; r->res4 = 0x0; #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE r->toggle = toggle; #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE r->toggle = 0; #endif } /** * @brief Populate pcie descriptor */ static inline void rm_write_pcie_desc(void *desc, uint32_t toggle, uint64_t pci_addr) { struct pcie_desc *pcie = (struct pcie_desc *)desc; pcie->pcie_addr_lsb = pci_addr; pcie->res1 = 0x0; /* PCIE header type */ pcie->type = PAX_DMA_TYPE_PCIE_DESC; #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE pcie->toggle = toggle; #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE pcie->toggle = 0; #endif } /** * @brief Populate src/destination descriptor */ static inline void rm_write_src_dst_desc(void *desc_ptr, bool is_mega, uint32_t toggle, uint64_t axi_addr, uint32_t size, enum pax_dma_dir direction) { struct src_dst_desc *desc; desc = (struct src_dst_desc *)desc_ptr; desc->axi_addr = axi_addr; desc->length = size; #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE desc->toggle = toggle; #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE desc->toggle = 0; #endif if (direction == CARD_TO_HOST) { desc->type = is_mega ? PAX_DMA_TYPE_MEGA_SRC_DESC : PAX_DMA_TYPE_SRC_DESC; } else { desc->type = is_mega ? PAX_DMA_TYPE_MEGA_DST_DESC : PAX_DMA_TYPE_DST_DESC; } } #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE static void init_toggle(void *desc, uint32_t toggle) { struct rm_header *r = (struct rm_header *)desc; r->toggle = toggle; } #endif /** * @brief Return current descriptor memory address and * increment to point to next descriptor memory address. */ static inline void *get_curr_desc_addr(struct dma_iproc_pax_ring_data *ring) { struct next_ptr_desc *nxt; uintptr_t curr; curr = (uintptr_t)ring->curr.write_ptr; /* if hit next table ptr, skip to next location, flip toggle */ nxt = (struct next_ptr_desc *)curr; if (nxt->type == PAX_DMA_TYPE_NEXT_PTR) { LOG_DBG("hit next_ptr@0x%lx %d, next_table@0x%lx\n", curr, nxt->toggle, (uintptr_t)nxt->addr); uintptr_t last = (uintptr_t)ring->bd + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS; nxt->toggle = ring->curr.toggle; ring->curr.toggle = (ring->curr.toggle == 0) ? 1 : 0; /* move to next addr, wrap around if hits end */ curr += PAX_DMA_RM_DESC_BDWIDTH; if (curr == last) { curr = (uintptr_t)ring->bd; LOG_DBG("hit end of desc:0x%lx, wrap to 0x%lx\n", last, curr); } ring->descs_inflight++; } ring->curr.write_ptr = (void *)(curr + PAX_DMA_RM_DESC_BDWIDTH); ring->descs_inflight++; return (void *)curr; } /** * @brief Populate next ptr descriptor */ static void rm_write_next_table_desc(void *desc, void *next_ptr, uint32_t toggle) { struct next_ptr_desc *nxt = (struct next_ptr_desc *)desc; nxt->addr = (uintptr_t)next_ptr; nxt->type = PAX_DMA_TYPE_NEXT_PTR; nxt->toggle = toggle; } static void prepare_ring(struct dma_iproc_pax_ring_data *ring) { uintptr_t curr, next, last; int buff_count = PAX_DMA_NUM_BD_BUFFS; #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE uint32_t toggle; #endif /* zero out descriptor area */ memset(ring->bd, 0x0, PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS); memset(ring->cmpl, 0x0, PAX_DMA_RM_CMPL_RING_SIZE); /* start with first buffer, valid toggle is 0x1 */ #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE toggle = 0x1; #endif curr = (uintptr_t)ring->bd; next = curr + PAX_DMA_RM_DESC_RING_SIZE; last = curr + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS; do { #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE init_toggle((void *)curr, toggle); /* Place next_table desc as last BD entry on each buffer */ rm_write_next_table_desc(PAX_DMA_NEXT_TBL_ADDR((void *)curr), (void *)next, toggle); #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE /* Place next_table desc as last BD entry on each buffer */ rm_write_next_table_desc(PAX_DMA_NEXT_TBL_ADDR((void *)curr), (void *)next, 0); #endif #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE /* valid toggle flips for each buffer */ toggle = toggle ? 0x0 : 0x1; #endif curr += PAX_DMA_RM_DESC_RING_SIZE; next += PAX_DMA_RM_DESC_RING_SIZE; /* last entry, chain back to first buffer */ if (next == last) { next = (uintptr_t)ring->bd; } } while (--buff_count); dma_mb(); /* start programming from first RM header */ ring->curr.write_ptr = ring->bd; /* valid toggle starts with 1 after reset */ ring->curr.toggle = 1; /* completion read offset */ ring->curr.cmpl_rd_offs = 0; /* inflight descs */ ring->descs_inflight = 0; /* init sync data for the ring */ ring->curr.sync_data.signature = PAX_DMA_WRITE_SYNC_SIGNATURE; ring->curr.sync_data.ring = ring->idx; /* pkt id for active dma xfer */ ring->curr.sync_data.opaque = 0x0; /* pkt count for active dma xfer */ ring->curr.sync_data.total_pkts = 0x0; } static int init_rm(struct dma_iproc_pax_data *pd) { int ret = -ETIMEDOUT, timeout = 1000; k_mutex_lock(&pd->dma_lock, K_FOREVER); /* Wait for Ring Manager ready */ do { LOG_DBG("Waiting for RM HW init\n"); if ((sys_read32(RM_COMM_REG(pd, RM_COMM_MAIN_HW_INIT_DONE)) & RM_COMM_MAIN_HW_INIT_DONE_MASK)) { ret = 0; break; } k_sleep(K_MSEC(1)); } while (--timeout); k_mutex_unlock(&pd->dma_lock); if (!timeout) { LOG_WRN("RM HW Init timedout!\n"); } else { LOG_INF("PAX DMA RM HW Init Done\n"); } return ret; } static void rm_cfg_start(struct dma_iproc_pax_data *pd) { uint32_t val; k_mutex_lock(&pd->dma_lock, K_FOREVER); /* set config done 0, enable toggle mode */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val &= ~RM_COMM_CONTROL_CONFIG_DONE; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); val &= ~(RM_COMM_CONTROL_MODE_MASK << RM_COMM_CONTROL_MODE_SHIFT); #ifdef CONFIG_DMA_IPROC_PAX_DOORBELL_MODE val |= (RM_COMM_CONTROL_MODE_DOORBELL << RM_COMM_CONTROL_MODE_SHIFT); #elif CONFIG_DMA_IPROC_PAX_TOGGLE_MODE val |= (RM_COMM_CONTROL_MODE_ALL_BD_TOGGLE << RM_COMM_CONTROL_MODE_SHIFT); #endif sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); sys_write32(RM_COMM_MSI_DISABLE_MASK, RM_COMM_REG(pd, RM_COMM_MSI_DISABLE)); val = sys_read32(RM_COMM_REG(pd, RM_COMM_AXI_READ_BURST_THRESHOLD)); val &= ~(RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_MASK << RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT); val |= RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT_VAL << RM_COMM_THRESHOLD_CFG_RD_FIFO_MAX_THRESHOLD_SHIFT; sys_write32(val, RM_COMM_REG(pd, RM_COMM_AXI_READ_BURST_THRESHOLD)); val = sys_read32(RM_COMM_REG(pd, RM_COMM_FIFO_FULL_THRESHOLD)); val &= ~(RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_MASK << RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_SHIFT); val |= RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_VAL << RM_COMM_PKT_ALIGNMENT_BD_FIFO_FULL_THRESHOLD_SHIFT; val &= ~(RM_COMM_BD_FIFO_FULL_THRESHOLD_MASK << RM_COMM_BD_FIFO_FULL_THRESHOLD_SHIFT); val |= RM_COMM_BD_FIFO_FULL_THRESHOLD_VAL << RM_COMM_BD_FIFO_FULL_THRESHOLD_SHIFT; sys_write32(val, RM_COMM_REG(pd, RM_COMM_FIFO_FULL_THRESHOLD)); /* Enable Line interrupt */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val |= RM_COMM_CONTROL_LINE_INTR_EN; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); /* Enable AE_TIMEOUT */ sys_write32(RM_COMM_AE_TIMEOUT_VAL, RM_COMM_REG(pd, RM_COMM_AE_TIMEOUT)); val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val |= RM_COMM_CONTROL_AE_TIMEOUT_EN; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); /* AE (Acceleration Engine) grouping to group '0' */ val = sys_read32(RM_COMM_REG(pd, RM_AE0_AE_CONTROL)); val &= ~RM_AE_CTRL_AE_GROUP_MASK; sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL)); val |= RM_AE_CONTROL_ACTIVE; sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL)); /* AXI read/write channel enable */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_AXI_CONTROL)); val |= (RM_COMM_AXI_CONTROL_RD_CH_EN | RM_COMM_AXI_CONTROL_WR_CH_EN); sys_write32(val, RM_COMM_REG(pd, RM_COMM_AXI_CONTROL)); /* Tune RM control programming for 4 rings */ sys_write32(RM_COMM_TIMER_CONTROL0_VAL, RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_0)); sys_write32(RM_COMM_TIMER_CONTROL1_VAL, RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_1)); val = sys_read32(RM_COMM_REG(pd, RM_COMM_BURST_LENGTH)); val |= RM_COMM_BD_FETCH_CACHE_ALIGNED_DISABLED; val |= RM_COMM_VALUE_FOR_DDR_ADDR_GEN_VAL << RM_COMM_VALUE_FOR_DDR_ADDR_GEN_SHIFT; val |= RM_COMM_VALUE_FOR_TOGGLE_VAL << RM_COMM_VALUE_FOR_TOGGLE_SHIFT; sys_write32(val, RM_COMM_REG(pd, RM_COMM_BURST_LENGTH)); val = sys_read32(RM_COMM_REG(pd, RM_COMM_BD_FETCH_MODE_CONTROL)); val |= RM_COMM_DISABLE_GRP_BD_FIFO_FLOW_CONTROL_FOR_PKT_ALIGNMENT; val |= RM_COMM_DISABLE_PKT_ALIGNMENT_BD_FIFO_FLOW_CONTROL; sys_write32(val, RM_COMM_REG(pd, RM_COMM_BD_FETCH_MODE_CONTROL)); /* Set Sequence max count to the max supported value */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT)); val = (val | RING_MASK_SEQ_MAX_COUNT_MASK); sys_write32(val, RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT)); k_mutex_unlock(&pd->dma_lock); } static void rm_ring_clear_stats(struct dma_iproc_pax_data *pd, enum ring_idx idx) { /* Read ring Tx, Rx, and Outstanding counts to clear */ sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_LS)); sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_MS)); sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_LS)); sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_MS)); sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_OUTSTAND)); } static void rm_cfg_finish(struct dma_iproc_pax_data *pd) { uint32_t val; k_mutex_lock(&pd->dma_lock, K_FOREVER); /* set Ring config done */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val |= RM_COMM_CONTROL_CONFIG_DONE; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); k_mutex_unlock(&pd->dma_lock); } static inline void write_doorbell(struct dma_iproc_pax_data *pd, enum ring_idx idx) { struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]); sys_write32(ring->descs_inflight, RM_RING_REG(pd, idx, RING_DOORBELL_BD_WRITE_COUNT)); ring->descs_inflight = 0; } static inline void set_ring_active(struct dma_iproc_pax_data *pd, enum ring_idx idx, bool active) { uint32_t val; val = sys_read32(RM_RING_REG(pd, idx, RING_CONTROL)); if (active) { val |= RING_CONTROL_ACTIVE; } else { val &= ~RING_CONTROL_ACTIVE; } sys_write32(val, RM_RING_REG(pd, idx, RING_CONTROL)); } static int init_ring(struct dma_iproc_pax_data *pd, enum ring_idx idx) { uint32_t val; uintptr_t desc = (uintptr_t)pd->ring[idx].bd; uintptr_t cmpl = (uintptr_t)pd->ring[idx].cmpl; int timeout = 5000, ret = 0; k_mutex_lock(&pd->dma_lock, K_FOREVER); /* Read cmpl write ptr incase previous dma stopped */ sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR)); /* Inactivate ring */ sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL)); /* set Ring config done */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val |= RM_COMM_CONTROL_CONFIG_DONE; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); /* Flush ring before loading new descriptor */ sys_write32(RING_CONTROL_FLUSH, RM_RING_REG(pd, idx, RING_CONTROL)); do { if (sys_read32(RM_RING_REG(pd, idx, RING_FLUSH_DONE)) & RING_FLUSH_DONE_MASK) { break; } k_busy_wait(1); } while (--timeout); if (!timeout) { LOG_WRN("Ring %d flush timedout!\n", idx); ret = -ETIMEDOUT; goto err; } /* clear ring after flush */ sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL)); /* Clear Ring config done */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val &= ~(RM_COMM_CONTROL_CONFIG_DONE); sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); /* ring group id set to '0' */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx))); val &= ~RING_COMM_CTRL_AE_GROUP_MASK; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx))); /* DDR update control, set timeout value */ val = RING_DDR_CONTROL_COUNT(RING_DDR_CONTROL_COUNT_VAL) | RING_DDR_CONTROL_TIMER(RING_DDR_CONTROL_TIMER_VAL) | RING_DDR_CONTROL_ENABLE; sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL)); /* Disable Ring MSI Timeout */ sys_write32(RING_DISABLE_MSI_TIMEOUT_VALUE, RM_RING_REG(pd, idx, RING_DISABLE_MSI_TIMEOUT)); /* BD and CMPL desc queue start address */ sys_write32((uint32_t)desc, RM_RING_REG(pd, idx, RING_BD_START_ADDR)); sys_write32((uint32_t)cmpl, RM_RING_REG(pd, idx, RING_CMPL_START_ADDR)); val = sys_read32(RM_RING_REG(pd, idx, RING_BD_READ_PTR)); /* keep ring inactive after init to avoid BD poll */ #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE set_ring_active(pd, idx, false); #elif CONFIG_DMA_IPROC_PAX_DOORBELL_MODE set_ring_active(pd, idx, true); #endif #if !defined(CONFIG_DMA_IPROC_PAX_POLL_MODE) /* Enable ring completion interrupt */ sys_write32(0x0, RM_RING_REG(pd, idx, RING_COMPLETION_INTERRUPT_STAT_MASK)); #endif rm_ring_clear_stats(pd, idx); err: k_mutex_unlock(&pd->dma_lock); return ret; } static int poll_on_write_sync(const struct device *dev, struct dma_iproc_pax_ring_data *ring) { const struct dma_iproc_pax_cfg *cfg = dev->config; struct dma_iproc_pax_write_sync_data sync_rd, *recv, *sent; uint64_t pci_addr; uint32_t *pci32, *axi32; uint32_t zero_init = 0, timeout = PAX_DMA_MAX_SYNC_WAIT; int ret; recv = &sync_rd; sent = &(ring->curr.sync_data); /* form host pci sync address */ pci32 = (uint32_t *)&pci_addr; pci32[0] = ring->sync_pci.addr_lo; pci32[1] = ring->sync_pci.addr_hi; axi32 = (uint32_t *)&sync_rd; do { ret = pcie_ep_xfer_data_memcpy(cfg->pcie_dev, pci_addr, (uintptr_t *)axi32, 4, PCIE_OB_LOWMEM, HOST_TO_DEVICE); if (memcmp((void *)recv, (void *)sent, 4) == 0) { /* clear the sync word */ ret = pcie_ep_xfer_data_memcpy(cfg->pcie_dev, pci_addr, (uintptr_t *)&zero_init, 4, PCIE_OB_LOWMEM, DEVICE_TO_HOST); dma_mb(); ret = 0; break; } k_busy_wait(1); } while (--timeout); if (!timeout) { LOG_ERR("[ring %d]: not recvd write sync!\n", ring->idx); ret = -ETIMEDOUT; } return ret; } static int process_cmpl_event(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; uint32_t wr_offs, rd_offs, ret = 0; struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]); struct cmpl_pkt *c; uint32_t is_outstanding; /* cmpl read offset, unprocessed cmpl location */ rd_offs = ring->curr.cmpl_rd_offs; wr_offs = sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR)); /* Update read ptr to "processed" */ ring->curr.cmpl_rd_offs = wr_offs; /* * Ensure consistency of completion descriptor * The completion desc is updated by RM via AXI stream * CPU need to ensure the memory operations are completed * before reading cmpl area, by a "dsb" * If Dcache enabled, need to invalidate the cachelines to * read updated cmpl desc. The cache API also issues dsb. */ dma_mb(); /* Decode cmpl pkt id to verify */ c = (struct cmpl_pkt *)((uintptr_t)ring->cmpl + PAX_DMA_CMPL_DESC_SIZE * PAX_DMA_CURR_CMPL_IDX(wr_offs)); LOG_DBG("RING%d WR_PTR:%d opq:%d, rm_status:%x dma_status:%x\n", idx, wr_offs, c->opq, c->rm_status, c->dma_status); is_outstanding = sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_OUTSTAND)); if ((ring->curr.opq != c->opq) && (is_outstanding != 0)) { LOG_ERR("RING%d: pkt id should be %d, rcvd %d outst=%d\n", idx, ring->curr.opq, c->opq, is_outstanding); ret = -EIO; } /* check for completion AE timeout */ if (c->rm_status == RM_COMPLETION_AE_TIMEOUT) { LOG_ERR("RING%d WR_PTR:%d rm_status:%x AE Timeout!\n", idx, wr_offs, c->rm_status); /* TBD: Issue full card reset to restore operations */ LOG_ERR("Needs Card Reset to recover!\n"); ret = -ETIMEDOUT; } if (ring->dma_callback) { ring->dma_callback(dev, ring->callback_arg, idx, ret); } /* clear total packet count and non header bd count */ ring->total_pkt_count = 0; return ret; } #ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE static int peek_ring_cmpl(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; uint32_t wr_offs, rd_offs, timeout = PAX_DMA_MAX_POLL_WAIT; struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]); /* cmpl read offset, unprocessed cmpl location */ rd_offs = ring->curr.cmpl_rd_offs; /* poll write_ptr until cmpl received for all buffers */ do { wr_offs = sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR)); if (PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs) >= pl_len) { break; } k_busy_wait(1); } while (--timeout); if (timeout == 0) { LOG_ERR("RING%d timeout, rcvd %d, expected %d!\n", idx, PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs), pl_len); /* More debug info on current dma instance */ LOG_ERR("WR_PTR:%x RD_PTR%x\n", wr_offs, rd_offs); return -ETIMEDOUT; } return process_cmpl_event(dev, idx, pl_len); } #else static void rm_isr(const struct device *dev) { uint32_t status, err_stat, idx; struct dma_iproc_pax_data *pd = dev->data; err_stat = sys_read32(RM_COMM_REG(pd, RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_MASK)); sys_write32(err_stat, RM_COMM_REG(pd, RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_CLEAR)); /* alert waiting thread to process, for each completed ring */ for (idx = PAX_DMA_RING0; idx < PAX_DMA_RINGS_MAX; idx++) { status = sys_read32(RM_RING_REG(pd, idx, RING_COMPLETION_INTERRUPT_STAT)); sys_write32(status, RM_RING_REG(pd, idx, RING_COMPLETION_INTERRUPT_STAT_CLEAR)); if (status & 0x1) { k_sem_give(&pd->ring[idx].alert); } } } #endif static int dma_iproc_pax_init(const struct device *dev) { const struct dma_iproc_pax_cfg *cfg = dev->config; struct dma_iproc_pax_data *pd = dev->data; int r; uintptr_t mem_aligned; if (!device_is_ready(cfg->pcie_dev)) { LOG_ERR("PCIe device not ready"); return -ENODEV; } pd->dma_base = cfg->dma_base; pd->rm_comm_base = cfg->rm_comm_base; pd->used_rings = (cfg->use_rings < PAX_DMA_RINGS_MAX) ? cfg->use_rings : PAX_DMA_RINGS_MAX; /* dma/rm access lock */ k_mutex_init(&pd->dma_lock); /* Ring Manager H/W init */ if (init_rm(pd)) { return -ETIMEDOUT; } /* common rm config */ rm_cfg_start(pd); /* individual ring config */ for (r = 0; r < pd->used_rings; r++) { /* per-ring mutex lock */ k_mutex_init(&pd->ring[r].lock); /* Init alerts */ k_sem_init(&pd->ring[r].alert, 0, 1); pd->ring[r].idx = r; pd->ring[r].ring_base = cfg->rm_base + PAX_DMA_RING_ADDR_OFFSET(r); LOG_DBG("RING%d,VERSION:0x%x\n", pd->ring[r].idx, sys_read32(RM_RING_REG(pd, r, RING_VER))); /* Allocate for 2 BD buffers + cmpl buffer + sync location */ pd->ring[r].ring_mem = (void *)((uintptr_t)cfg->bd_memory_base + r * PAX_DMA_PER_RING_ALLOC_SIZE); if (!pd->ring[r].ring_mem) { LOG_ERR("RING%d failed to alloc desc memory!\n", r); return -ENOMEM; } /* Find 8K aligned address within allocated region */ mem_aligned = ((uintptr_t)pd->ring[r].ring_mem + PAX_DMA_RING_ALIGN - 1) & ~(PAX_DMA_RING_ALIGN - 1); pd->ring[r].cmpl = (void *)mem_aligned; pd->ring[r].bd = (void *)(mem_aligned + PAX_DMA_RM_CMPL_RING_SIZE); pd->ring[r].sync_loc = (void *)((uintptr_t)pd->ring[r].bd + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS); LOG_DBG("Ring%d,allocated Mem:0x%p Size %d\n", pd->ring[r].idx, pd->ring[r].ring_mem, PAX_DMA_PER_RING_ALLOC_SIZE); LOG_DBG("Ring%d,BD:0x%p, CMPL:0x%p, SYNC_LOC:0x%p\n", pd->ring[r].idx, pd->ring[r].bd, pd->ring[r].cmpl, pd->ring[r].sync_loc); /* Prepare ring desc table */ prepare_ring(&(pd->ring[r])); /* initialize ring */ init_ring(pd, r); } /* set ring config done */ rm_cfg_finish(pd); #ifndef CONFIG_DMA_IPROC_PAX_POLL_MODE /* Register and enable RM interrupt */ IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), rm_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(DT_INST_IRQN(0)); #else LOG_INF("%s PAX DMA rings in poll mode!\n", dev->name); #endif LOG_INF("%s RM setup %d rings\n", dev->name, pd->used_rings); return 0; } static int dma_iproc_pax_gen_desc(struct dma_iproc_pax_ring_data *ring, bool is_mega, uint64_t pci_addr, uint64_t axi_addr, uint32_t length, enum pax_dma_dir dir, uint32_t *non_hdr_bd_count) { struct rm_header *hdr; if (*non_hdr_bd_count == 0) { /* Generate Header BD */ ring->current_hdr = (uintptr_t)get_curr_desc_addr(ring); rm_write_header_desc((void *)ring->current_hdr, curr_toggle_val(ring), curr_pkt_id(ring), PAX_DMA_RM_DESC_BDCOUNT, pci_addr); ring->total_pkt_count++; } rm_write_pcie_desc(get_curr_desc_addr(ring), curr_toggle_val(ring), pci_addr); *non_hdr_bd_count = *non_hdr_bd_count + 1; rm_write_src_dst_desc(get_curr_desc_addr(ring), is_mega, curr_toggle_val(ring), axi_addr, length, dir); *non_hdr_bd_count = *non_hdr_bd_count + 1; /* Update Header BD with bd count */ hdr = (struct rm_header *)ring->current_hdr; hdr->bdcount = *non_hdr_bd_count; if (*non_hdr_bd_count == MAX_BD_COUNT_PER_HEADER) { *non_hdr_bd_count = 0; } return 0; } static int dma_iproc_pax_gen_packets(const struct device *dev, struct dma_iproc_pax_ring_data *ring, uint32_t direction, struct dma_block_config *config, uint32_t *non_hdr_bd_count) { uint32_t outstanding, remaining_len; uint32_t offset, curr, mega_len; uint64_t axi_addr; uint64_t pci_addr; enum pax_dma_dir dir; switch (direction) { case MEMORY_TO_PERIPHERAL: pci_addr = config->dest_address; axi_addr = config->source_address; dir = CARD_TO_HOST; break; case PERIPHERAL_TO_MEMORY: axi_addr = config->dest_address; pci_addr = config->source_address; dir = HOST_TO_CARD; break; default: LOG_ERR("not supported transfer direction"); return -EINVAL; } outstanding = config->block_size; offset = 0; while (outstanding) { curr = MIN(outstanding, PAX_DMA_MAX_SZ_PER_BD); mega_len = curr / PAX_DMA_MEGA_LENGTH_MULTIPLE; remaining_len = curr % PAX_DMA_MEGA_LENGTH_MULTIPLE; pci_addr = pci_addr + offset; axi_addr = axi_addr + offset; if (mega_len) { dma_iproc_pax_gen_desc(ring, true, pci_addr, axi_addr, mega_len, dir, non_hdr_bd_count); offset = offset + mega_len * PAX_DMA_MEGA_LENGTH_MULTIPLE; } if (remaining_len) { pci_addr = pci_addr + offset; axi_addr = axi_addr + offset; dma_iproc_pax_gen_desc(ring, false, pci_addr, axi_addr, remaining_len, dir, non_hdr_bd_count); offset = offset + remaining_len; } outstanding = outstanding - curr; } return 0; } #ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE static void set_pkt_count(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { /* Nothing needs to be programmed here in poll mode */ } static int wait_for_pkt_completion(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { /* poll for completion */ return peek_ring_cmpl(dev, idx, pl_len); } #else static void set_pkt_count(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; uint32_t val; /* program packet count for interrupt assertion */ val = sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL)); val &= ~RING_DDR_CONTROL_COUNT_MASK; val |= RING_DDR_CONTROL_COUNT(pl_len); sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL)); } static int wait_for_pkt_completion(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; struct dma_iproc_pax_ring_data *ring; ring = &(pd->ring[idx]); /* wait for sg dma completion alert */ if (k_sem_take(&ring->alert, K_MSEC(PAX_DMA_TIMEOUT)) != 0) { LOG_ERR("PAX DMA [ring %d] Timeout!\n", idx); return -ETIMEDOUT; } return process_cmpl_event(dev, idx, pl_len); } #endif static int dma_iproc_pax_process_dma_blocks(const struct device *dev, enum ring_idx idx, struct dma_config *config) { struct dma_iproc_pax_data *pd = dev->data; const struct dma_iproc_pax_cfg *cfg = dev->config; int ret = 0; struct dma_iproc_pax_ring_data *ring; uint32_t toggle_bit, non_hdr_bd_count = 0; struct dma_block_config sync_pl; struct dma_iproc_pax_addr64 sync; struct dma_block_config *block_config = config->head_block; if (block_config == NULL) { LOG_ERR("head_block is NULL\n"); return -EINVAL; } ring = &(pd->ring[idx]); /* * Host sync buffer isn't ready at zephyr/driver init-time * Read the host address location once at first DMA write * on that ring. */ if ((ring->sync_pci.addr_lo == 0x0) && (ring->sync_pci.addr_hi == 0x0)) { /* populate sync data location */ LOG_DBG("sync addr loc 0x%x\n", cfg->scr_addr_loc); sync.addr_lo = sys_read32(cfg->scr_addr_loc + 4); sync.addr_hi = sys_read32(cfg->scr_addr_loc); ring->sync_pci.addr_lo = sync.addr_lo + idx * 4; ring->sync_pci.addr_hi = sync.addr_hi; LOG_DBG("ring:%d,sync addr:0x%x.0x%x\n", idx, ring->sync_pci.addr_hi, ring->sync_pci.addr_lo); } /* account extra sync packet */ ring->curr.sync_data.opaque = ring->curr.opq; ring->curr.sync_data.total_pkts = config->block_count; memcpy((void *)ring->sync_loc, (void *)&(ring->curr.sync_data), 4); sync_pl.dest_address = ring->sync_pci.addr_lo | (uint64_t)ring->sync_pci.addr_hi << 32; sync_pl.source_address = (uintptr_t)ring->sync_loc; sync_pl.block_size = 4; /* 4-bytes */ /* current toggle bit */ toggle_bit = ring->curr.toggle; /* current opq value for cmpl check */ ring->curr.opq = curr_pkt_id(ring); /* Form descriptors for total block counts */ while (block_config != NULL) { ret = dma_iproc_pax_gen_packets(dev, ring, config->channel_direction, block_config, &non_hdr_bd_count); if (ret) { goto err; } block_config = block_config->next_block; } /* * Write sync payload descriptors should go with separate RM header * as RM implementation allows all the BD's in a header packet should * have same data transfer direction. Setting non_hdr_bd_count to 0, * helps generate separate packet. */ ring->non_hdr_bd_count = 0; dma_iproc_pax_gen_packets(dev, ring, MEMORY_TO_PERIPHERAL, &sync_pl, &non_hdr_bd_count); alloc_pkt_id(ring); err: return ret; } static int dma_iproc_pax_configure(const struct device *dev, uint32_t channel, struct dma_config *cfg) { struct dma_iproc_pax_data *pd = dev->data; struct dma_iproc_pax_ring_data *ring; int ret = 0; if (channel >= PAX_DMA_RINGS_MAX) { LOG_ERR("Invalid ring/channel %d\n", channel); return -EINVAL; } ring = &(pd->ring[channel]); k_mutex_lock(&ring->lock, K_FOREVER); if (ring->ring_active) { ret = -EBUSY; goto err; } if (cfg->block_count >= RM_V2_MAX_BLOCK_COUNT) { LOG_ERR("Dma block count[%d] supported exceeds limit[%d]\n", cfg->block_count, RM_V2_MAX_BLOCK_COUNT); ret = -ENOTSUP; goto err; } ring->ring_active = 1; ret = dma_iproc_pax_process_dma_blocks(dev, channel, cfg); if (ret) { ring->ring_active = 0; goto err; } ring->dma_callback = cfg->dma_callback; ring->callback_arg = cfg->user_data; err: k_mutex_unlock(&ring->lock); return ret; } static int dma_iproc_pax_transfer_start(const struct device *dev, uint32_t channel) { int ret = 0; struct dma_iproc_pax_data *pd = dev->data; struct dma_iproc_pax_ring_data *ring; if (channel >= PAX_DMA_RINGS_MAX) { LOG_ERR("Invalid ring %d\n", channel); return -EINVAL; } ring = &(pd->ring[channel]); set_pkt_count(dev, channel, ring->total_pkt_count); #ifdef CONFIG_DMA_IPROC_PAX_DOORBELL_MODE write_doorbell(pd, channel); #elif CONFIG_DMA_IPROC_PAX_TOGGLE_MODE /* activate the ring */ set_ring_active(pd, channel, true); #endif ret = wait_for_pkt_completion(dev, channel, ring->total_pkt_count); if (ret) { goto err_ret; } ret = poll_on_write_sync(dev, ring); err_ret: k_mutex_lock(&ring->lock, K_FOREVER); ring->ring_active = 0; k_mutex_unlock(&ring->lock); #ifdef CONFIG_DMA_IPROC_PAX_TOGGLE_MODE /* deactivate the ring until next active transfer */ set_ring_active(pd, channel, false); #endif return ret; } static int dma_iproc_pax_transfer_stop(const struct device *dev, uint32_t channel) { return 0; } static DEVICE_API(dma, pax_dma_driver_api) = { .config = dma_iproc_pax_configure, .start = dma_iproc_pax_transfer_start, .stop = dma_iproc_pax_transfer_stop, }; static const struct dma_iproc_pax_cfg pax_dma_cfg = { .dma_base = DT_INST_REG_ADDR_BY_NAME(0, dme_regs), .rm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_ring_regs), .rm_comm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_comm_regs), .use_rings = DT_INST_PROP(0, dma_channels), .bd_memory_base = (void *)DT_INST_PROP_BY_IDX(0, bd_memory, 0), .scr_addr_loc = DT_INST_PROP(0, scr_addr_loc), .pcie_dev = DEVICE_DT_GET(DT_INST_PHANDLE(0, pcie_ep)), }; DEVICE_DT_INST_DEFINE(0, &dma_iproc_pax_init, NULL, &pax_dma_data, &pax_dma_cfg, POST_KERNEL, CONFIG_DMA_IPROC_PAX_V2_INIT_PRIORITY, &pax_dma_driver_api);