/* * Copyright 2020 Broadcom * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT brcm_iproc_pax_dma_v1 #include #include #include #include #include #include #include #include #include #include #include #include #include "dma_iproc_pax_v1.h" #define LOG_LEVEL CONFIG_DMA_LOG_LEVEL #include #include LOG_MODULE_REGISTER(dma_iproc_pax); /* Driver runtime data for PAX DMA and RM */ static struct dma_iproc_pax_data pax_dma_data; static inline uint32_t reset_pkt_id(struct dma_iproc_pax_ring_data *ring) { return ring->pkt_id = 0x0; } /** * @brief Opaque/packet id allocator, range 0 to 31 */ static inline uint32_t alloc_pkt_id(struct dma_iproc_pax_ring_data *ring) { ring->pkt_id = (ring->pkt_id + 1) % 32; return ring->pkt_id; } static inline uint32_t curr_pkt_id(struct dma_iproc_pax_ring_data *ring) { return ring->pkt_id; } static inline uint32_t curr_toggle_val(struct dma_iproc_pax_ring_data *ring) { return ring->curr.toggle; } /** * @brief Populate header descriptor */ static inline void rm_write_header_desc(void *desc, uint32_t toggle, uint32_t opq, uint32_t bdcount) { struct rm_header *r = (struct rm_header *)desc; r->opq = opq; /* DMA descriptor count init value */ r->bdcount = bdcount; r->prot = 0x0; /* No packet extension, start and end set to '1' */ r->start = 1; r->end = 1; r->toggle = toggle; /* RM header type */ r->type = PAX_DMA_TYPE_RM_HEADER; } /** * @brief Fill RM header descriptor for next transfer * with invalid toggle */ static inline void rm_write_header_next_desc(void *desc, struct dma_iproc_pax_ring_data *r, uint32_t opq, uint32_t bdcount) { /* Toggle bit is invalid until next payload configured */ rm_write_header_desc(desc, (r->curr.toggle == 0) ? 1 : 0, opq, bdcount); } static inline void rm_header_set_bd_count(void *desc, uint32_t bdcount) { struct rm_header *r = (struct rm_header *)desc; /* DMA descriptor count */ r->bdcount = bdcount; } static inline void rm_header_set_toggle(void *desc, uint32_t toggle) { struct rm_header *r = (struct rm_header *)desc; r->toggle = toggle; } /** * @brief Populate dma header descriptor */ static inline void rm_write_dma_header_desc(void *desc, struct dma_iproc_pax_payload *pl) { struct dma_header_desc *hdr = (struct dma_header_desc *)desc; hdr->length = pl->xfer_sz; hdr->opcode = pl->direction; /* DMA header type */ hdr->type = PAX_DMA_TYPE_DMA_DESC; } /** * @brief Populate axi address descriptor */ static inline void rm_write_axi_addr_desc(void *desc, struct dma_iproc_pax_payload *pl) { struct axi_addr_desc *axi = (struct axi_addr_desc *)desc; axi->axi_addr = pl->axi_addr; axi->type = PAX_DMA_TYPE_DMA_DESC; } /** * @brief Populate pci address descriptor */ static inline void rm_write_pci_addr_desc(void *desc, struct dma_iproc_pax_payload *pl) { struct pci_addr_desc *pci = (struct pci_addr_desc *)desc; pci->pcie_addr = pl->pci_addr >> PAX_DMA_PCI_ADDR_ALIGNMT_SHIFT; pci->type = PAX_DMA_TYPE_DMA_DESC; } /** * @brief Return's pointer to the descriptor memory to be written next, * skip next pointer descriptor address. */ static void *next_desc_addr(struct dma_iproc_pax_ring_data *ring) { struct next_ptr_desc *nxt; uintptr_t curr; curr = (uintptr_t)ring->curr.write_ptr + PAX_DMA_RM_DESC_BDWIDTH; /* if hit next table ptr, skip to next location, flip toggle */ nxt = (struct next_ptr_desc *)curr; if (nxt->type == PAX_DMA_TYPE_NEXT_PTR) { LOG_DBG("hit next_ptr@0x%lx:T%d, next_table@0x%lx\n", curr, nxt->toggle, (uintptr_t)nxt->addr); uintptr_t last = (uintptr_t)ring->bd + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS; ring->curr.toggle = (ring->curr.toggle == 0) ? 1 : 0; /* move to next addr, wrap around if hits end */ curr += PAX_DMA_RM_DESC_BDWIDTH; if (curr == last) { curr = (uintptr_t)ring->bd; LOG_DBG("hit end of desc:0x%lx, wrap to 0x%lx\n", last, curr); } } ring->curr.write_ptr = (void *)curr; return (void *)curr; } /** * @brief Populate next ptr descriptor */ static void rm_write_next_table_desc(void *desc, void *next_ptr, uint32_t toggle) { struct next_ptr_desc *nxt = (struct next_ptr_desc *)desc; nxt->addr = (uintptr_t)next_ptr; nxt->type = PAX_DMA_TYPE_NEXT_PTR; nxt->toggle = toggle; } static void prepare_ring(struct dma_iproc_pax_ring_data *ring) { uintptr_t curr, next, last; uint32_t toggle; int buff_count = PAX_DMA_NUM_BD_BUFFS; /* zero out descriptor area */ memset(ring->bd, 0x0, PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS); memset(ring->cmpl, 0x0, PAX_DMA_RM_CMPL_RING_SIZE); /* opaque/packet id value */ rm_write_header_desc(ring->bd, 0x0, reset_pkt_id(ring), PAX_DMA_RM_DESC_BDCOUNT); /* start with first buffer, valid toggle is 0x1 */ toggle = 0x1; curr = (uintptr_t)ring->bd; next = curr + PAX_DMA_RM_DESC_RING_SIZE; last = curr + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS; do { /* Place next_table desc as last BD entry on each buffer */ rm_write_next_table_desc(PAX_DMA_NEXT_TBL_ADDR((void *)curr), (void *)next, toggle); /* valid toggle flips for each buffer */ toggle = toggle ? 0x0 : 0x1; curr += PAX_DMA_RM_DESC_RING_SIZE; next += PAX_DMA_RM_DESC_RING_SIZE; /* last entry, chain back to first buffer */ if (next == last) { next = (uintptr_t)ring->bd; } } while (--buff_count); dma_mb(); /* start programming from first RM header */ ring->curr.write_ptr = ring->bd; /* valid toggle starts with 1 after reset */ ring->curr.toggle = 1; /* completion read offset */ ring->curr.cmpl_rd_offs = 0; /* init sync data for the ring */ ring->curr.sync_data.signature = PAX_DMA_WRITE_SYNC_SIGNATURE; ring->curr.sync_data.ring = ring->idx; /* pkt id for active dma xfer */ ring->curr.sync_data.opaque = 0x0; /* pkt count for active dma xfer */ ring->curr.sync_data.total_pkts = 0x0; } static int init_rm(struct dma_iproc_pax_data *pd) { int ret = -ETIMEDOUT, timeout = 1000; k_mutex_lock(&pd->dma_lock, K_FOREVER); /* Wait for Ring Manager ready */ do { LOG_DBG("Waiting for RM HW init\n"); if ((sys_read32(RM_COMM_REG(pd, RM_COMM_MAIN_HW_INIT_DONE)) & RM_COMM_MAIN_HW_INIT_DONE_MASK)) { ret = 0; break; } k_sleep(K_MSEC(1)); } while (--timeout); k_mutex_unlock(&pd->dma_lock); if (!timeout) { LOG_WRN("RM HW Init timedout!\n"); } else { LOG_INF("PAX DMA RM HW Init Done\n"); } return ret; } static void rm_cfg_start(struct dma_iproc_pax_data *pd) { uint32_t val; k_mutex_lock(&pd->dma_lock, K_FOREVER); /* set config done 0, enable toggle mode */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val &= ~RM_COMM_CONTROL_CONFIG_DONE; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); val &= ~(RM_COMM_CONTROL_MODE_MASK << RM_COMM_CONTROL_MODE_SHIFT); val |= (RM_COMM_CONTROL_MODE_TOGGLE << RM_COMM_CONTROL_MODE_SHIFT); sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); /* Disable MSI */ sys_write32(RM_COMM_MSI_DISABLE_VAL, RM_COMM_REG(pd, RM_COMM_MSI_DISABLE)); /* Enable Line interrupt */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val |= RM_COMM_CONTROL_LINE_INTR_EN; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); /* Enable AE_TIMEOUT */ sys_write32(RM_COMM_AE_TIMEOUT_VAL, RM_COMM_REG(pd, RM_COMM_AE_TIMEOUT)); val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val |= RM_COMM_CONTROL_AE_TIMEOUT_EN; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); /* AE (Acceleration Engine) grouping to group '0' */ val = sys_read32(RM_COMM_REG(pd, RM_AE0_AE_CONTROL)); val &= ~RM_AE_CTRL_AE_GROUP_MASK; sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL)); val |= RM_AE_CONTROL_ACTIVE; sys_write32(val, RM_COMM_REG(pd, RM_AE0_AE_CONTROL)); /* AXI read/write channel enable */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_AXI_CONTROL)); val |= (RM_COMM_AXI_CONTROL_RD_CH_EN | RM_COMM_AXI_CONTROL_WR_CH_EN); sys_write32(val, RM_COMM_REG(pd, RM_COMM_AXI_CONTROL)); /* Tune RM control programming for 4 rings */ sys_write32(RM_COMM_TIMER_CONTROL0_VAL, RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_0)); sys_write32(RM_COMM_TIMER_CONTROL1_VAL, RM_COMM_REG(pd, RM_COMM_TIMER_CONTROL_1)); sys_write32(RM_COMM_RM_BURST_LENGTH, RM_COMM_REG(pd, RM_COMM_RM_BURST_LENGTH)); /* Set Sequence max count to the max supported value */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT)); val = (val | RING_MASK_SEQ_MAX_COUNT_MASK); sys_write32(val, RM_COMM_REG(pd, RM_COMM_MASK_SEQUENCE_MAX_COUNT)); k_mutex_unlock(&pd->dma_lock); } static void rm_ring_clear_stats(struct dma_iproc_pax_data *pd, enum ring_idx idx) { /* Read ring Tx, Rx, and Outstanding counts to clear */ sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_LS)); sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_RECV_MS)); sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_LS)); sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_TRANS_MS)); sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_OUTSTAND)); } static void rm_cfg_finish(struct dma_iproc_pax_data *pd) { uint32_t val; k_mutex_lock(&pd->dma_lock, K_FOREVER); /* set Ring config done */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CONTROL)); val |= RM_COMM_CONTROL_CONFIG_DONE; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CONTROL)); k_mutex_unlock(&pd->dma_lock); } /* Activate/Deactivate rings */ static inline void set_ring_active(struct dma_iproc_pax_data *pd, enum ring_idx idx, bool active) { uint32_t val; val = sys_read32(RM_RING_REG(pd, idx, RING_CONTROL)); if (active) { val |= RING_CONTROL_ACTIVE; } else { val &= ~RING_CONTROL_ACTIVE; } sys_write32(val, RM_RING_REG(pd, idx, RING_CONTROL)); } static int init_ring(struct dma_iproc_pax_data *pd, enum ring_idx idx) { uint32_t val; uintptr_t desc = (uintptr_t)pd->ring[idx].bd; uintptr_t cmpl = (uintptr_t)pd->ring[idx].cmpl; int timeout = 5000, ret = 0; k_mutex_lock(&pd->dma_lock, K_FOREVER); /* Read cmpl write ptr incase previous dma stopped */ sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR)); /* Inactivate ring */ sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL)); /* Flush ring before loading new descriptor */ sys_write32(RING_CONTROL_FLUSH, RM_RING_REG(pd, idx, RING_CONTROL)); do { if (sys_read32(RM_RING_REG(pd, idx, RING_FLUSH_DONE)) & RING_FLUSH_DONE_MASK) { break; } k_busy_wait(1); } while (--timeout); if (!timeout) { LOG_WRN("Ring %d flush timedout!\n", idx); ret = -ETIMEDOUT; goto err; } /* clear ring after flush */ sys_write32(0x0, RM_RING_REG(pd, idx, RING_CONTROL)); /* ring group id set to '0' */ val = sys_read32(RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx))); val &= ~RING_COMM_CTRL_AE_GROUP_MASK; sys_write32(val, RM_COMM_REG(pd, RM_COMM_CTRL_REG(idx))); /* DDR update control, set timeout value */ val = RING_DDR_CONTROL_COUNT(RING_DDR_CONTROL_COUNT_VAL) | RING_DDR_CONTROL_TIMER(RING_DDR_CONTROL_TIMER_VAL) | RING_DDR_CONTROL_ENABLE; sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL)); val = (uint32_t)((uintptr_t)desc >> PAX_DMA_RING_BD_ALIGN_ORDER); sys_write32(val, RM_RING_REG(pd, idx, RING_BD_START_ADDR)); val = (uint32_t)((uintptr_t)cmpl >> PAX_DMA_RING_CMPL_ALIGN_ORDER); sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_START_ADDR)); val = sys_read32(RM_RING_REG(pd, idx, RING_BD_READ_PTR)); /* keep ring inactive after init to avoid BD poll */ set_ring_active(pd, idx, false); rm_ring_clear_stats(pd, idx); err: k_mutex_unlock(&pd->dma_lock); return ret; } static int poll_on_write_sync(const struct device *dev, struct dma_iproc_pax_ring_data *ring) { const struct dma_iproc_pax_cfg *cfg = dev->config; struct dma_iproc_pax_write_sync_data sync_rd, *recv, *sent; uint64_t pci_addr; uint32_t *pci32, *axi32; uint32_t zero_init = 0, timeout = PAX_DMA_MAX_SYNC_WAIT; int ret; recv = &sync_rd; sent = &(ring->curr.sync_data); /* form host pci sync address */ pci32 = (uint32_t *)&pci_addr; pci32[0] = ring->sync_pci.addr_lo; pci32[1] = ring->sync_pci.addr_hi; axi32 = (uint32_t *)&sync_rd; do { ret = pcie_ep_xfer_data_memcpy(cfg->pcie_dev, pci_addr, (uintptr_t *)axi32, 4, PCIE_OB_LOWMEM, HOST_TO_DEVICE); if (memcmp((void *)recv, (void *)sent, 4) == 0) { /* clear the sync word */ ret = pcie_ep_xfer_data_memcpy(cfg->pcie_dev, pci_addr, (uintptr_t *)&zero_init, 4, PCIE_OB_LOWMEM, DEVICE_TO_HOST); dma_mb(); ret = 0; break; } k_busy_wait(1); } while (--timeout); if (!timeout) { LOG_DBG("[ring %d]: not recvd write sync!\n", ring->idx); ret = -ETIMEDOUT; } return ret; } static int process_cmpl_event(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; uint32_t wr_offs, rd_offs, ret = DMA_STATUS_COMPLETE; struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]); struct cmpl_pkt *c; uint32_t is_outstanding; /* cmpl read offset, unprocessed cmpl location */ rd_offs = ring->curr.cmpl_rd_offs; wr_offs = sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR)); /* Update read ptr to "processed" */ ring->curr.cmpl_rd_offs = wr_offs; /* * Ensure consistency of completion descriptor * The completion desc is updated by RM via AXI stream * CPU need to ensure the memory operations are completed * before reading cmpl area, by a "dsb" * If Dcache enabled, need to invalidate the cachelines to * read updated cmpl desc. The cache API also issues dsb. */ dma_mb(); /* Decode cmpl pkt id to verify */ c = (struct cmpl_pkt *)((uintptr_t)ring->cmpl + PAX_DMA_CMPL_DESC_SIZE * PAX_DMA_CURR_CMPL_IDX(wr_offs)); LOG_DBG("RING%d WR_PTR:%d opq:%d, rm_status:%x dma_status:%x\n", idx, wr_offs, c->opq, c->rm_status, c->dma_status); is_outstanding = sys_read32(RM_RING_REG(pd, idx, RING_NUM_REQ_OUTSTAND)); if ((ring->curr.opq != c->opq) && (is_outstanding != 0)) { LOG_ERR("RING%d: pkt id should be %d, rcvd %d outst=%d\n", idx, ring->curr.opq, c->opq, is_outstanding); ret = -EIO; } /* check for completion AE timeout */ if (c->rm_status == RM_COMPLETION_AE_TIMEOUT) { LOG_ERR("RING%d WR_PTR:%d rm_status:%x AE Timeout!\n", idx, wr_offs, c->rm_status); /* TBD: Issue full card reset to restore operations */ LOG_ERR("Needs Card Reset to recover!\n"); ret = -ETIMEDOUT; } if (ring->dma_callback) { ring->dma_callback(dev, ring->callback_arg, idx, ret); } return ret; } #ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE static int peek_ring_cmpl(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; uint32_t wr_offs, rd_offs, timeout = PAX_DMA_MAX_POLL_WAIT; struct dma_iproc_pax_ring_data *ring = &(pd->ring[idx]); /* cmpl read offset, unprocessed cmpl location */ rd_offs = ring->curr.cmpl_rd_offs; /* poll write_ptr until cmpl received for all buffers */ do { wr_offs = sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WRITE_PTR)); if (PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs) >= pl_len) { break; } k_busy_wait(1); } while (--timeout); if (timeout == 0) { LOG_ERR("RING%d timeout, rcvd %d, expected %d!\n", idx, PAX_DMA_GET_CMPL_COUNT(wr_offs, rd_offs), pl_len); /* More debug info on current dma instance */ LOG_ERR("WR_PTR:%x RD_PTR%x\n", wr_offs, rd_offs); return -ETIMEDOUT; } return process_cmpl_event(dev, idx, pl_len); } #else static void rm_isr(const struct device *dev) { uint32_t status, err_stat, idx; struct dma_iproc_pax_data *pd = dev->data; /* read and clear interrupt status */ status = sys_read32(RM_COMM_REG(pd, RM_COMM_MSI_INTR_INTERRUPT_STATUS)); sys_write32(status, RM_COMM_REG(pd, RM_COMM_MSI_INTERRUPT_STATUS_CLEAR)); /* read and clear DME/AE error interrupts */ err_stat = sys_read32(RM_COMM_REG(pd, RM_COMM_DME_INTERRUPT_STATUS_MASK)); sys_write32(err_stat, RM_COMM_REG(pd, RM_COMM_DME_INTERRUPT_STATUS_CLEAR)); err_stat = sys_read32(RM_COMM_REG(pd, RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_MASK)); sys_write32(err_stat, RM_COMM_REG(pd, RM_COMM_AE_INTERFACE_GROUP_0_INTERRUPT_CLEAR)); /* alert waiting thread to process, for each completed ring */ for (idx = PAX_DMA_RING0; idx < PAX_DMA_RINGS_MAX; idx++) { if (status & (0x1 << idx)) { k_sem_give(&pd->ring[idx].alert); } } } #endif static int dma_iproc_pax_init(const struct device *dev) { const struct dma_iproc_pax_cfg *cfg = dev->config; struct dma_iproc_pax_data *pd = dev->data; int r; uintptr_t mem_aligned; if (!device_is_ready(cfg->pcie_dev)) { LOG_ERR("PCIe device not ready"); return -ENODEV; } pd->dma_base = cfg->dma_base; pd->rm_comm_base = cfg->rm_comm_base; pd->used_rings = (cfg->use_rings < PAX_DMA_RINGS_MAX) ? cfg->use_rings : PAX_DMA_RINGS_MAX; LOG_DBG("dma base:0x%x, rm comm base:0x%x, needed rings %d\n", pd->dma_base, pd->rm_comm_base, pd->used_rings); /* dma/rm access lock */ k_mutex_init(&pd->dma_lock); /* Ring Manager H/W init */ if (init_rm(pd)) { return -ETIMEDOUT; } /* common rm config */ rm_cfg_start(pd); /* individual ring config */ for (r = 0; r < pd->used_rings; r++) { /* per-ring mutex lock */ k_mutex_init(&pd->ring[r].lock); /* Init alerts */ k_sem_init(&pd->ring[r].alert, 0, 1); pd->ring[r].idx = r; pd->ring[r].ring_base = cfg->rm_base + PAX_DMA_RING_ADDR_OFFSET(r); LOG_DBG("RING%d,VERSION:0x%x\n", pd->ring[r].idx, sys_read32(RM_RING_REG(pd, r, RING_VER))); /* Allocate for 2 BD buffers + cmpl buffer + payload struct */ pd->ring[r].ring_mem = (void *)((uintptr_t)cfg->bd_memory_base + r * PAX_DMA_PER_RING_ALLOC_SIZE); if (!pd->ring[r].ring_mem) { LOG_ERR("RING%d failed to alloc desc memory!\n", r); return -ENOMEM; } /* Find 8K aligned address within allocated region */ mem_aligned = ((uintptr_t)pd->ring[r].ring_mem + PAX_DMA_RING_ALIGN - 1) & ~(PAX_DMA_RING_ALIGN - 1); pd->ring[r].cmpl = (void *)mem_aligned; pd->ring[r].bd = (void *)(mem_aligned + PAX_DMA_RM_CMPL_RING_SIZE); pd->ring[r].payload = (void *)((uintptr_t)pd->ring[r].bd + PAX_DMA_RM_DESC_RING_SIZE * PAX_DMA_NUM_BD_BUFFS); LOG_DBG("Ring%d,allocated Mem:0x%p Size %d\n", pd->ring[r].idx, pd->ring[r].ring_mem, PAX_DMA_PER_RING_ALLOC_SIZE); LOG_DBG("Ring%d,BD:0x%p, CMPL:0x%p, PL:0x%p\n", pd->ring[r].idx, pd->ring[r].bd, pd->ring[r].cmpl, pd->ring[r].payload); /* Prepare ring desc table */ prepare_ring(&(pd->ring[r])); /* initialize ring */ init_ring(pd, r); } /* set ring config done */ rm_cfg_finish(pd); #ifndef CONFIG_DMA_IPROC_PAX_POLL_MODE /* Register and enable RM interrupt */ IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), rm_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(DT_INST_IRQN(0)); #else LOG_INF("%s PAX DMA rings in poll mode!\n", dev->name); #endif LOG_INF("%s RM setup %d rings\n", dev->name, pd->used_rings); return 0; } #ifdef CONFIG_DMA_IPROC_PAX_POLL_MODE static void set_pkt_count(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { /* Nothing needs to be programmed here in poll mode */ } static int wait_for_pkt_completion(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { /* poll for completion */ return peek_ring_cmpl(dev, idx, pl_len + 1); } #else static void set_pkt_count(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; uint32_t val; /* program packet count for interrupt assertion */ val = sys_read32(RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL)); val &= ~RING_DDR_CONTROL_COUNT_MASK; val |= RING_DDR_CONTROL_COUNT(pl_len); sys_write32(val, RM_RING_REG(pd, idx, RING_CMPL_WR_PTR_DDR_CONTROL)); } static int wait_for_pkt_completion(const struct device *dev, enum ring_idx idx, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; struct dma_iproc_pax_ring_data *ring; ring = &(pd->ring[idx]); /* wait for sg dma completion alert */ if (k_sem_take(&ring->alert, K_MSEC(PAX_DMA_TIMEOUT)) != 0) { LOG_ERR("PAX DMA [ring %d] Timeout!\n", idx); return -ETIMEDOUT; } return process_cmpl_event(dev, idx, pl_len); } #endif static int dma_iproc_pax_do_xfer(const struct device *dev, enum ring_idx idx, struct dma_iproc_pax_payload *pl, uint32_t pl_len) { struct dma_iproc_pax_data *pd = dev->data; const struct dma_iproc_pax_cfg *cfg = dev->config; int ret = 0, cnt; struct dma_iproc_pax_ring_data *ring; void *hdr; uint32_t toggle_bit; struct dma_iproc_pax_payload sync_pl; struct dma_iproc_pax_addr64 sync; ring = &(pd->ring[idx]); pl = ring->payload; /* * Host sync buffer isn't ready at zephyr/driver init-time * Read the host address location once at first DMA write * on that ring. */ if ((ring->sync_pci.addr_lo == 0x0) && (ring->sync_pci.addr_hi == 0x0)) { /* populate sync data location */ LOG_DBG("sync addr loc 0x%x\n", cfg->scr_addr_loc); sync.addr_lo = sys_read32(cfg->scr_addr_loc + 4); sync.addr_hi = sys_read32(cfg->scr_addr_loc); ring->sync_pci.addr_lo = sync.addr_lo + idx * 4; ring->sync_pci.addr_hi = sync.addr_hi; LOG_DBG("ring:%d,sync addr:0x%x.0x%x\n", idx, ring->sync_pci.addr_hi, ring->sync_pci.addr_lo); } /* account extra sync packet */ ring->curr.sync_data.opaque = ring->curr.opq; ring->curr.sync_data.total_pkts = pl_len; memcpy((void *)&ring->sync_loc, (void *)&(ring->curr.sync_data), 4); sync_pl.pci_addr = ring->sync_pci.addr_lo | (uint64_t)ring->sync_pci.addr_hi << 32; sync_pl.axi_addr = (uintptr_t)&ring->sync_loc; sync_pl.xfer_sz = 4; /* 4-bytes */ sync_pl.direction = CARD_TO_HOST; /* Get descriptor write pointer for first header */ hdr = (void *)ring->curr.write_ptr; /* current toggle bit */ toggle_bit = ring->curr.toggle; /* current opq value for cmpl check */ ring->curr.opq = curr_pkt_id(ring); /* DMA desc count for first payload */ rm_header_set_bd_count(hdr, PAX_DMA_RM_DESC_BDCOUNT); /* Form dma descriptors for total sg payload */ for (cnt = 0; cnt < pl_len; cnt++) { rm_write_dma_header_desc(next_desc_addr(ring), pl + cnt); rm_write_axi_addr_desc(next_desc_addr(ring), pl + cnt); rm_write_pci_addr_desc(next_desc_addr(ring), pl + cnt); /* Toggle may flip, program updated toggle value */ rm_write_header_desc(next_desc_addr(ring), curr_toggle_val(ring), curr_pkt_id(ring), PAX_DMA_RM_DESC_BDCOUNT); } /* Append write sync payload descriptors */ rm_write_dma_header_desc(next_desc_addr(ring), &sync_pl); rm_write_axi_addr_desc(next_desc_addr(ring), &sync_pl); rm_write_pci_addr_desc(next_desc_addr(ring), &sync_pl); /* RM header for next transfer, RM wait on (invalid) toggle bit */ rm_write_header_next_desc(next_desc_addr(ring), ring, alloc_pkt_id(ring), PAX_DMA_RM_DESC_BDCOUNT); set_pkt_count(dev, idx, pl_len + 1); /* Ensure memory write before toggle flip */ dma_mb(); /* set toggle to valid in first header */ rm_header_set_toggle(hdr, toggle_bit); /* activate the ring */ set_ring_active(pd, idx, true); ret = wait_for_pkt_completion(dev, idx, pl_len + 1); if (ret) { goto err_ret; } ret = poll_on_write_sync(dev, ring); k_mutex_lock(&ring->lock, K_FOREVER); ring->ring_active = 0; k_mutex_unlock(&ring->lock); err_ret: ring->ring_active = 0; /* deactivate the ring until next active transfer */ set_ring_active(pd, idx, false); return ret; } static int dma_iproc_pax_configure(const struct device *dev, uint32_t channel, struct dma_config *cfg) { struct dma_iproc_pax_data *pd = dev->data; struct dma_iproc_pax_ring_data *ring; uint32_t xfer_sz; int ret = 0; #ifdef CONFIG_DMA_IPROC_PAX_DEBUG uint32_t *pci_addr32; uint32_t *axi_addr32; #endif if (channel >= PAX_DMA_RINGS_MAX) { LOG_ERR("Invalid ring/channel %d\n", channel); return -EINVAL; } ring = &(pd->ring[channel]); k_mutex_lock(&ring->lock, K_FOREVER); if (cfg->block_count > 1) { /* Scatter/gather list handling is not supported */ ret = -ENOTSUP; goto err; } if (ring->ring_active) { ret = -EBUSY; goto err; } ring->ring_active = 1; if (cfg->channel_direction == MEMORY_TO_PERIPHERAL) { #ifdef CONFIG_DMA_IPROC_PAX_DEBUG axi_addr32 = (uint32_t *)&cfg->head_block->source_address; pci_addr32 = (uint32_t *)&cfg->head_block->dest_address; #endif ring->payload->direction = CARD_TO_HOST; ring->payload->pci_addr = cfg->head_block->dest_address; ring->payload->axi_addr = cfg->head_block->source_address; } else if (cfg->channel_direction == PERIPHERAL_TO_MEMORY) { #ifdef CONFIG_DMA_IPROC_PAX_DEBUG axi_addr32 = (uint32_t *)&cfg->head_block->dest_address; pci_addr32 = (uint32_t *)&cfg->head_block->source_address; #endif ring->payload->direction = HOST_TO_CARD; ring->payload->pci_addr = cfg->head_block->source_address; ring->payload->axi_addr = cfg->head_block->dest_address; } else { ring->ring_active = 0; ret = -ENOTSUP; goto err; } xfer_sz = cfg->head_block->block_size; #ifdef CONFIG_DMA_IPROC_PAX_DEBUG if (xfer_sz > PAX_DMA_MAX_SIZE) { LOG_ERR("Unsupported size: %d\n", xfer_size); ring->ring_active = 0; ret = -EINVAL; goto err; } if (xfer_sz % PAX_DMA_MIN_SIZE) { LOG_ERR("Unaligned size 0x%x\n", xfer_size); ring->ring_active = 0; ret = -EINVAL; goto err; } if (pci_addr32[0] % PAX_DMA_ADDR_ALIGN) { LOG_ERR("Unaligned Host addr: 0x%x.0x%x\n", pci_addr32[1], pci_addr32[0]); ring->ring_active = 0; ret = -EINVAL; goto err; } if (axi_addr32[0] % PAX_DMA_ADDR_ALIGN) { LOG_ERR("Unaligned Card addr: 0x%x.0x%x\n", axi_addr32[1], axi_addr32[0]); ring->ring_active = 0; ret = -EINVAL; goto err; } #endif ring->payload->xfer_sz = xfer_sz; ring->dma_callback = cfg->dma_callback; ring->callback_arg = cfg->user_data; err: k_mutex_unlock(&ring->lock); return ret; } static int dma_iproc_pax_transfer_start(const struct device *dev, uint32_t channel) { int ret = 0; struct dma_iproc_pax_data *pd = dev->data; struct dma_iproc_pax_ring_data *ring; if (channel >= PAX_DMA_RINGS_MAX) { LOG_ERR("Invalid ring %d\n", channel); return -EINVAL; } ring = &(pd->ring[channel]); /* do dma transfer of single buffer */ ret = dma_iproc_pax_do_xfer(dev, channel, ring->payload, 1); return ret; } static int dma_iproc_pax_transfer_stop(const struct device *dev, uint32_t channel) { return 0; } static DEVICE_API(dma, pax_dma_driver_api) = { .config = dma_iproc_pax_configure, .start = dma_iproc_pax_transfer_start, .stop = dma_iproc_pax_transfer_stop, }; static const struct dma_iproc_pax_cfg pax_dma_cfg = { .dma_base = DT_INST_REG_ADDR_BY_NAME(0, dme_regs), .rm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_ring_regs), .rm_comm_base = DT_INST_REG_ADDR_BY_NAME(0, rm_comm_regs), .use_rings = DT_INST_PROP(0, dma_channels), .bd_memory_base = (void *)DT_INST_PROP_BY_IDX(0, bd_memory, 0), .scr_addr_loc = DT_INST_PROP(0, scr_addr_loc), .pcie_dev = DEVICE_DT_GET(DT_INST_PHANDLE(0, pcie_ep)), }; DEVICE_DT_INST_DEFINE(0, &dma_iproc_pax_init, NULL, &pax_dma_data, &pax_dma_cfg, POST_KERNEL, CONFIG_DMA_INIT_PRIORITY, &pax_dma_driver_api);