/* * Copyright (c) 2022 Intel Corporation * SPDX-License-Identifier: Apache-2.0 * * Derived from FreeBSD original driver made by Jim Harris * with contributions from Alexander Motin, Wojciech Macek, and Warner Losh */ #include LOG_MODULE_DECLARE(nvme, CONFIG_NVME_LOG_LEVEL); #include #include #include #include #include "nvme.h" #include "nvme_helpers.h" static struct nvme_prp_list prp_list_pool[CONFIG_NVME_PRP_LIST_AMOUNT]; static sys_dlist_t free_prp_list; static struct nvme_request request_pool[NVME_REQUEST_AMOUNT]; static sys_dlist_t free_request; static sys_dlist_t pending_request; static void request_timeout(struct k_work *work); static K_WORK_DELAYABLE_DEFINE(request_timer, request_timeout); #ifdef CONFIG_NVME_LOG_LEVEL_DBG struct nvme_status_string { uint16_t sc; const char *str; }; static struct nvme_status_string generic_status[] = { { NVME_SC_SUCCESS, "SUCCESS" }, { NVME_SC_INVALID_OPCODE, "INVALID OPCODE" }, { NVME_SC_INVALID_FIELD, "INVALID_FIELD" }, { NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" }, { NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" }, { NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" }, { NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" }, { NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" }, { NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" }, { NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" }, { NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" }, { NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" }, { NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" }, { NVME_SC_INVALID_SGL_SEGMENT_DESCR, "INVALID SGL SEGMENT DESCRIPTOR" }, { NVME_SC_INVALID_NUMBER_OF_SGL_DESCR, "INVALID NUMBER OF SGL DESCRIPTORS" }, { NVME_SC_DATA_SGL_LENGTH_INVALID, "DATA SGL LENGTH INVALID" }, { NVME_SC_METADATA_SGL_LENGTH_INVALID, "METADATA SGL LENGTH INVALID" }, { NVME_SC_SGL_DESCRIPTOR_TYPE_INVALID, "SGL DESCRIPTOR TYPE INVALID" }, { NVME_SC_INVALID_USE_OF_CMB, "INVALID USE OF CONTROLLER MEMORY BUFFER" }, { NVME_SC_PRP_OFFSET_INVALID, "PRP OFFSET INVALID" }, { NVME_SC_ATOMIC_WRITE_UNIT_EXCEEDED, "ATOMIC WRITE UNIT EXCEEDED" }, { NVME_SC_OPERATION_DENIED, "OPERATION DENIED" }, { NVME_SC_SGL_OFFSET_INVALID, "SGL OFFSET INVALID" }, { NVME_SC_HOST_ID_INCONSISTENT_FORMAT, "HOST IDENTIFIER INCONSISTENT FORMAT" }, { NVME_SC_KEEP_ALIVE_TIMEOUT_EXPIRED, "KEEP ALIVE TIMEOUT EXPIRED" }, { NVME_SC_KEEP_ALIVE_TIMEOUT_INVALID, "KEEP ALIVE TIMEOUT INVALID" }, { NVME_SC_ABORTED_DUE_TO_PREEMPT, "COMMAND ABORTED DUE TO PREEMPT AND ABORT" }, { NVME_SC_SANITIZE_FAILED, "SANITIZE FAILED" }, { NVME_SC_SANITIZE_IN_PROGRESS, "SANITIZE IN PROGRESS" }, { NVME_SC_SGL_DATA_BLOCK_GRAN_INVALID, "SGL_DATA_BLOCK_GRANULARITY_INVALID" }, { NVME_SC_NOT_SUPPORTED_IN_CMB, "COMMAND NOT SUPPORTED FOR QUEUE IN CMB" }, { NVME_SC_NAMESPACE_IS_WRITE_PROTECTED, "NAMESPACE IS WRITE PROTECTED" }, { NVME_SC_COMMAND_INTERRUPTED, "COMMAND INTERRUPTED" }, { NVME_SC_TRANSIENT_TRANSPORT_ERROR, "TRANSIENT TRANSPORT ERROR" }, { NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" }, { NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" }, { NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" }, { NVME_SC_RESERVATION_CONFLICT, "RESERVATION CONFLICT" }, { NVME_SC_FORMAT_IN_PROGRESS, "FORMAT IN PROGRESS" }, { 0xFFFF, "GENERIC" } }; static struct nvme_status_string command_specific_status[] = { { NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" }, { NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" }, { NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" }, { NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" }, { NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" }, { NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" }, { NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" }, { NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" }, { NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" }, { NVME_SC_INVALID_FORMAT, "INVALID FORMAT" }, { NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" }, { NVME_SC_INVALID_QUEUE_DELETION, "INVALID QUEUE DELETION" }, { NVME_SC_FEATURE_NOT_SAVEABLE, "FEATURE IDENTIFIER NOT SAVEABLE" }, { NVME_SC_FEATURE_NOT_CHANGEABLE, "FEATURE NOT CHANGEABLE" }, { NVME_SC_FEATURE_NOT_NS_SPECIFIC, "FEATURE NOT NAMESPACE SPECIFIC" }, { NVME_SC_FW_ACT_REQUIRES_NVMS_RESET, "FIRMWARE ACTIVATION REQUIRES NVM SUBSYSTEM RESET" }, { NVME_SC_FW_ACT_REQUIRES_RESET, "FIRMWARE ACTIVATION REQUIRES RESET" }, { NVME_SC_FW_ACT_REQUIRES_TIME, "FIRMWARE ACTIVATION REQUIRES MAXIMUM TIME VIOLATION" }, { NVME_SC_FW_ACT_PROHIBITED, "FIRMWARE ACTIVATION PROHIBITED" }, { NVME_SC_OVERLAPPING_RANGE, "OVERLAPPING RANGE" }, { NVME_SC_NS_INSUFFICIENT_CAPACITY, "NAMESPACE INSUFFICIENT CAPACITY" }, { NVME_SC_NS_ID_UNAVAILABLE, "NAMESPACE IDENTIFIER UNAVAILABLE" }, { NVME_SC_NS_ALREADY_ATTACHED, "NAMESPACE ALREADY ATTACHED" }, { NVME_SC_NS_IS_PRIVATE, "NAMESPACE IS PRIVATE" }, { NVME_SC_NS_NOT_ATTACHED, "NS NOT ATTACHED" }, { NVME_SC_THIN_PROV_NOT_SUPPORTED, "THIN PROVISIONING NOT SUPPORTED" }, { NVME_SC_CTRLR_LIST_INVALID, "CONTROLLER LIST INVALID" }, { NVME_SC_SELF_TEST_IN_PROGRESS, "DEVICE SELF-TEST IN PROGRESS" }, { NVME_SC_BOOT_PART_WRITE_PROHIB, "BOOT PARTITION WRITE PROHIBITED" }, { NVME_SC_INVALID_CTRLR_ID, "INVALID CONTROLLER IDENTIFIER" }, { NVME_SC_INVALID_SEC_CTRLR_STATE, "INVALID SECONDARY CONTROLLER STATE" }, { NVME_SC_INVALID_NUM_OF_CTRLR_RESRC, "INVALID NUMBER OF CONTROLLER RESOURCES" }, { NVME_SC_INVALID_RESOURCE_ID, "INVALID RESOURCE IDENTIFIER" }, { NVME_SC_SANITIZE_PROHIBITED_WPMRE, "SANITIZE PROHIBITED WRITE PERSISTENT MEMORY REGION ENABLED" }, { NVME_SC_ANA_GROUP_ID_INVALID, "ANA GROUP IDENTIFIED INVALID" }, { NVME_SC_ANA_ATTACH_FAILED, "ANA ATTACH FAILED" }, { NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" }, { NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" }, { NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" }, { 0xFFFF, "COMMAND SPECIFIC" } }; static struct nvme_status_string media_error_status[] = { { NVME_SC_WRITE_FAULTS, "WRITE FAULTS" }, { NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" }, { NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" }, { NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" }, { NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" }, { NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" }, { NVME_SC_ACCESS_DENIED, "ACCESS DENIED" }, { NVME_SC_DEALLOCATED_OR_UNWRITTEN, "DEALLOCATED OR UNWRITTEN LOGICAL BLOCK" }, { 0xFFFF, "MEDIA ERROR" } }; static struct nvme_status_string path_related_status[] = { { NVME_SC_INTERNAL_PATH_ERROR, "INTERNAL PATH ERROR" }, { NVME_SC_ASYMMETRIC_ACCESS_PERSISTENT_LOSS, "ASYMMETRIC ACCESS PERSISTENT LOSS" }, { NVME_SC_ASYMMETRIC_ACCESS_INACCESSIBLE, "ASYMMETRIC ACCESS INACCESSIBLE" }, { NVME_SC_ASYMMETRIC_ACCESS_TRANSITION, "ASYMMETRIC ACCESS TRANSITION" }, { NVME_SC_CONTROLLER_PATHING_ERROR, "CONTROLLER PATHING ERROR" }, { NVME_SC_HOST_PATHING_ERROR, "HOST PATHING ERROR" }, { NVME_SC_COMMAND_ABORTED_BY_HOST, "COMMAND ABORTED BY HOST" }, { 0xFFFF, "PATH RELATED" }, }; static const char *get_status_string(uint16_t sct, uint16_t sc) { struct nvme_status_string *entry; switch (sct) { case NVME_SCT_GENERIC: entry = generic_status; break; case NVME_SCT_COMMAND_SPECIFIC: entry = command_specific_status; break; case NVME_SCT_MEDIA_ERROR: entry = media_error_status; break; case NVME_SCT_PATH_RELATED: entry = path_related_status; break; case NVME_SCT_VENDOR_SPECIFIC: return "VENDOR SPECIFIC"; default: return "RESERVED"; } while (entry->sc != 0xFFFF) { if (entry->sc == sc) { return entry->str; } entry++; } return entry->str; } void nvme_completion_print(const struct nvme_completion *cpl) { uint8_t sct, sc, crd, m, dnr, p; sct = NVME_STATUS_GET_SCT(cpl->status); sc = NVME_STATUS_GET_SC(cpl->status); crd = NVME_STATUS_GET_CRD(cpl->status); m = NVME_STATUS_GET_M(cpl->status); dnr = NVME_STATUS_GET_DNR(cpl->status); p = NVME_STATUS_GET_P(cpl->status); LOG_DBG("%s (%02x/%02x) crd:%x m:%x dnr:%x p:%d " "sqid:%d cid:%d cdw0:%x\n", get_status_string(sct, sc), sct, sc, crd, m, dnr, p, cpl->sqid, cpl->cid, cpl->cdw0); } #endif /* CONFIG_NVME_LOG_LEVEL_DBG */ void nvme_cmd_init(void) { int idx; sys_dlist_init(&free_request); sys_dlist_init(&pending_request); sys_dlist_init(&free_prp_list); for (idx = 0; idx < NVME_REQUEST_AMOUNT; idx++) { sys_dlist_append(&free_request, &request_pool[idx].node); } for (idx = 0; idx < CONFIG_NVME_PRP_LIST_AMOUNT; idx++) { sys_dlist_append(&free_prp_list, &prp_list_pool[idx].node); } } static struct nvme_prp_list *nvme_prp_list_alloc(void) { sys_dnode_t *node; node = sys_dlist_peek_head(&free_prp_list); if (!node) { LOG_ERR("Could not allocate PRP list"); return NULL; } sys_dlist_remove(node); return CONTAINER_OF(node, struct nvme_prp_list, node); } static void nvme_prp_list_free(struct nvme_prp_list *prp_list) { memset(prp_list, 0, sizeof(struct nvme_prp_list)); sys_dlist_append(&free_prp_list, &prp_list->node); } void nvme_cmd_request_free(struct nvme_request *request) { if (sys_dnode_is_linked(&request->node)) { sys_dlist_remove(&request->node); } if (request->prp_list != NULL) { nvme_prp_list_free(request->prp_list); } memset(request, 0, sizeof(struct nvme_request)); sys_dlist_append(&free_request, &request->node); } struct nvme_request *nvme_cmd_request_alloc(void) { sys_dnode_t *node; node = sys_dlist_peek_head(&free_request); if (!node) { LOG_ERR("Could not allocate request"); return NULL; } sys_dlist_remove(node); return CONTAINER_OF(node, struct nvme_request, node); } static void nvme_cmd_register_request(struct nvme_request *request) { sys_dlist_append(&pending_request, &request->node); request->req_start = k_uptime_get_32(); if (!k_work_delayable_remaining_get(&request_timer)) { k_work_reschedule(&request_timer, K_SECONDS(CONFIG_NVME_REQUEST_TIMEOUT)); } } static void request_timeout(struct k_work *work) { uint32_t current = k_uptime_get_32(); struct nvme_request *request, *next; ARG_UNUSED(work); SYS_DLIST_FOR_EACH_CONTAINER_SAFE(&pending_request, request, next, node) { if ((int32_t)(request->req_start + CONFIG_NVME_REQUEST_TIMEOUT - current) > 0) { break; } LOG_WRN("Request %p CID %u timed-out", request, request->cmd.cdw0.cid); /* ToDo: * - check CSTS for fatal fault * - reset hw otherwise if it's the case * - or check completion for missed interruption */ if (request->cb_fn) { request->cb_fn(request->cb_arg, NULL); } nvme_cmd_request_free(request); } if (request) { k_work_reschedule(&request_timer, K_SECONDS(request->req_start + CONFIG_NVME_REQUEST_TIMEOUT - current)); } } static bool nvme_completion_is_retry(const struct nvme_completion *cpl) { uint8_t sct, sc, dnr; sct = NVME_STATUS_GET_SCT(cpl->status); sc = NVME_STATUS_GET_SC(cpl->status); dnr = NVME_STATUS_GET_DNR(cpl->status); /* * TODO: spec is not clear how commands that are aborted due * to TLER will be marked. So for now, it seems * NAMESPACE_NOT_READY is the only case where we should * look at the DNR bit. Requests failed with ABORTED_BY_REQUEST * set the DNR bit correctly since the driver controls that. */ switch (sct) { case NVME_SCT_GENERIC: switch (sc) { case NVME_SC_ABORTED_BY_REQUEST: case NVME_SC_NAMESPACE_NOT_READY: if (dnr) { return false; } return true; case NVME_SC_INVALID_OPCODE: case NVME_SC_INVALID_FIELD: case NVME_SC_COMMAND_ID_CONFLICT: case NVME_SC_DATA_TRANSFER_ERROR: case NVME_SC_ABORTED_POWER_LOSS: case NVME_SC_INTERNAL_DEVICE_ERROR: case NVME_SC_ABORTED_SQ_DELETION: case NVME_SC_ABORTED_FAILED_FUSED: case NVME_SC_ABORTED_MISSING_FUSED: case NVME_SC_INVALID_NAMESPACE_OR_FORMAT: case NVME_SC_COMMAND_SEQUENCE_ERROR: case NVME_SC_LBA_OUT_OF_RANGE: case NVME_SC_CAPACITY_EXCEEDED: default: return false; } case NVME_SCT_COMMAND_SPECIFIC: case NVME_SCT_MEDIA_ERROR: return false; case NVME_SCT_PATH_RELATED: switch (sc) { case NVME_SC_INTERNAL_PATH_ERROR: if (dnr) { return false; } return true; default: return false; } case NVME_SCT_VENDOR_SPECIFIC: default: return false; } } static void nvme_cmd_request_complete(struct nvme_request *request, struct nvme_completion *cpl) { bool error, retriable, retry; error = nvme_completion_is_error(cpl); retriable = nvme_completion_is_retry(cpl); retry = error && retriable && request->retries < CONFIG_NVME_RETRY_COUNT; if (retry) { LOG_DBG("CMD will be retried"); request->qpair->num_retries++; } if (error && (!retriable || (request->retries >= CONFIG_NVME_RETRY_COUNT))) { LOG_DBG("CMD error"); request->qpair->num_failures++; } if (cpl->cid != request->cmd.cdw0.cid) { LOG_ERR("cpl cid != cmd cid"); } if (retry) { LOG_DBG("Retrying CMD"); /* Let's remove it from pending... */ sys_dlist_remove(&request->node); /* ...and re-submit, thus re-adding to pending */ nvme_cmd_qpair_submit_request(request->qpair, request); request->retries++; } else { LOG_DBG("Request %p CMD complete on %p/%p", request, request->cb_fn, request->cb_arg); if (request->cb_fn) { request->cb_fn(request->cb_arg, cpl); } nvme_cmd_request_free(request); } } static void nvme_cmd_qpair_process_completion(struct nvme_cmd_qpair *qpair) { struct nvme_request *request; struct nvme_completion cpl; int done = 0; if (qpair->num_intr_handler_calls == 0 && qpair->phase == 0) { LOG_WRN("Phase wrong for first interrupt call."); } qpair->num_intr_handler_calls++; while (1) { uint16_t status; status = sys_le16_to_cpu(qpair->cpl[qpair->cq_head].status); if (NVME_STATUS_GET_P(status) != qpair->phase) { break; } cpl = qpair->cpl[qpair->cq_head]; nvme_completion_swapbytes(&cpl); if (NVME_STATUS_GET_P(status) != NVME_STATUS_GET_P(cpl.status)) { LOG_WRN("Phase unexpectedly inconsistent"); } if (cpl.cid < NVME_REQUEST_AMOUNT) { request = &request_pool[cpl.cid]; } else { request = NULL; } done++; if (request != NULL) { nvme_cmd_request_complete(request, &cpl); qpair->sq_head = cpl.sqhd; } else { LOG_ERR("cpl (cid = %u) does not map to cmd", cpl.cid); } qpair->cq_head++; if (qpair->cq_head == qpair->num_entries) { qpair->cq_head = 0; qpair->phase = !qpair->phase; } } if (done != 0) { mm_reg_t regs = DEVICE_MMIO_GET(qpair->ctrlr->dev); sys_write32(qpair->cq_head, regs + qpair->cq_hdbl_off); } } static void nvme_cmd_qpair_msi_handler(const void *arg) { const struct nvme_cmd_qpair *qpair = arg; nvme_cmd_qpair_process_completion((struct nvme_cmd_qpair *)qpair); } int nvme_cmd_qpair_setup(struct nvme_cmd_qpair *qpair, struct nvme_controller *ctrlr, uint32_t id) { const struct nvme_controller_config *nvme_ctrlr_cfg = ctrlr->dev->config; qpair->ctrlr = ctrlr; qpair->id = id; qpair->vector = qpair->id; qpair->num_cmds = 0; qpair->num_intr_handler_calls = 0; qpair->num_retries = 0; qpair->num_failures = 0; qpair->num_ignored = 0; qpair->cmd_bus_addr = (uintptr_t)qpair->cmd; qpair->cpl_bus_addr = (uintptr_t)qpair->cpl; qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell) + (qpair->id << (ctrlr->dstrd + 1)); qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell) + (qpair->id << (ctrlr->dstrd + 1)) + (1 << ctrlr->dstrd); if (!pcie_msi_vector_connect(nvme_ctrlr_cfg->pcie->bdf, &ctrlr->vectors[qpair->vector], nvme_cmd_qpair_msi_handler, qpair, 0)) { LOG_ERR("Failed to connect MSI-X vector %u", qpair->id); return -EIO; } LOG_DBG("CMD Qpair created ID %u, %u entries - cmd/cpl addr " "0x%lx/0x%lx - sq/cq offsets %u/%u", qpair->id, qpair->num_entries, qpair->cmd_bus_addr, qpair->cpl_bus_addr, qpair->sq_tdbl_off, qpair->cq_hdbl_off); return 0; } void nvme_cmd_qpair_reset(struct nvme_cmd_qpair *qpair) { qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0; /* * First time through the completion queue, HW will set phase * bit on completions to 1. So set this to 1 here, indicating * we're looking for a 1 to know which entries have completed. * we'll toggle the bit each time when the completion queue * rolls over. */ qpair->phase = 1; memset(qpair->cmd, 0, qpair->num_entries * sizeof(struct nvme_command)); memset(qpair->cpl, 0, qpair->num_entries * sizeof(struct nvme_completion)); } static int nvme_cmd_qpair_fill_prp_list(struct nvme_cmd_qpair *qpair, struct nvme_request *request, int n_prp) { struct nvme_prp_list *prp_list; uintptr_t p_addr; int idx; prp_list = nvme_prp_list_alloc(); if (prp_list == NULL) { return -ENOMEM; } p_addr = (uintptr_t)request->payload; request->cmd.dptr.prp1 = (uint64_t)sys_cpu_to_le64(p_addr); request->cmd.dptr.prp2 = (uint64_t)sys_cpu_to_le64(&prp_list->prp); p_addr = NVME_PRP_NEXT_PAGE(p_addr); for (idx = 0; idx < n_prp; idx++) { prp_list->prp[idx] = (uint64_t)sys_cpu_to_le64(p_addr); p_addr = NVME_PRP_NEXT_PAGE(p_addr); } request->prp_list = prp_list; return 0; } static int compute_n_prp(uintptr_t addr, uint32_t size) { int n_prp; /* See Common Command Format, Data Pointer (DPTR) field */ n_prp = size / CONFIG_MMU_PAGE_SIZE; if (n_prp == 0) { n_prp = 1; } if (size != CONFIG_MMU_PAGE_SIZE) { size = size % CONFIG_MMU_PAGE_SIZE; } if (n_prp == 1) { if ((addr + (uintptr_t)size) > NVME_PRP_NEXT_PAGE(addr)) { n_prp++; } } else if (size > 0) { n_prp++; } return n_prp; } static int nvme_cmd_qpair_fill_dptr(struct nvme_cmd_qpair *qpair, struct nvme_request *request) { switch (request->type) { case NVME_REQUEST_NULL: break; case NVME_REQUEST_VADDR: int n_prp; if (request->payload_size > qpair->ctrlr->max_xfer_size) { LOG_ERR("VADDR request's payload too big"); return -EINVAL; } n_prp = compute_n_prp((uintptr_t)request->payload, request->payload_size); if (n_prp <= 2) { request->cmd.dptr.prp1 = (uint64_t)sys_cpu_to_le64(request->payload); if (n_prp == 2) { request->cmd.dptr.prp2 = (uint64_t)sys_cpu_to_le64( NVME_PRP_NEXT_PAGE( (uintptr_t)request->payload)); } else { request->cmd.dptr.prp2 = 0; } break; } return nvme_cmd_qpair_fill_prp_list(qpair, request, n_prp); default: break; } return 0; } int nvme_cmd_qpair_submit_request(struct nvme_cmd_qpair *qpair, struct nvme_request *request) { mm_reg_t regs = DEVICE_MMIO_GET(qpair->ctrlr->dev); int ret; request->qpair = qpair; request->cmd.cdw0.cid = sys_cpu_to_le16((uint16_t)(request - request_pool)); ret = nvme_cmd_qpair_fill_dptr(qpair, request); if (ret != 0) { nvme_cmd_request_free(request); return ret; } nvme_cmd_register_request(request); memcpy(&qpair->cmd[qpair->sq_tail], &request->cmd, sizeof(request->cmd)); qpair->sq_tail++; if (qpair->sq_tail == qpair->num_entries) { qpair->sq_tail = 0; } sys_write32(qpair->sq_tail, regs + qpair->sq_tdbl_off); qpair->num_cmds++; LOG_DBG("Request %p %llu submitted: CID %u - sq_tail %u", request, qpair->num_cmds, request->cmd.cdw0.cid, qpair->sq_tail - 1); return 0; } void nvme_completion_poll_cb(void *arg, const struct nvme_completion *cpl) { struct nvme_completion_poll_status *status = arg; if (cpl != NULL) { memcpy(&status->cpl, cpl, sizeof(*cpl)); } else { status->status = -ETIMEDOUT; } k_sem_give(&status->sem); }