/* * Copyright 2024 NXP * * SPDX-License-Identifier: Apache-2.0 */ #ifndef ZEPHYR_DRIVERS_DAI_NXP_ESAI_H_ #define ZEPHYR_DRIVERS_DAI_NXP_ESAI_H_ #include #include #include #include #include LOG_MODULE_REGISTER(nxp_dai_esai); /* used for binding the driver */ #define DT_DRV_COMPAT nxp_dai_esai /* workaround the fact that device_map() doesn't exist for SoCs with no MMU */ #ifndef DEVICE_MMIO_IS_IN_RAM #define device_map(virt, phys, size, flags) *(virt) = (phys) #endif /* DEVICE_MMIO_IS_IN_RAM */ /* macros used for parsing DTS data */ #define _ESAI_FIFO_DEPTH(inst)\ FSL_FEATURE_ESAI_FIFO_SIZEn(UINT_TO_ESAI(DT_INST_REG_ADDR(inst))) /* used to fetch the depth of the FIFO. If the "fifo-depth" property is * not specified, the FIFO depth that will be reported to the upper layers * will be 128 * 4 (which is the maximum value, or, well, the actual FIFO * depth) */ #define ESAI_FIFO_DEPTH(inst)\ DT_INST_PROP_OR(inst, fifo_depth, _ESAI_FIFO_DEPTH(inst)) /* used to fetch the TX FIFO watermark value. If the "tx-fifo-watermark" * property is not specified, this will be set to half of the FIFO depth. */ #define ESAI_TX_FIFO_WATERMARK(inst)\ DT_INST_PROP_OR(inst, tx_fifo_watermark, (_ESAI_FIFO_DEPTH(inst) / 2)) /* used to fetch the RX FIFO watermark value. If the "rx-fifo-watermark" * property is not specified, this will be set to half of the FIFO depth. */ #define ESAI_RX_FIFO_WATERMARK(inst)\ DT_INST_PROP_OR(inst, rx_fifo_watermark, (_ESAI_FIFO_DEPTH(inst) / 2)) /* use to fetch the handshake value for a given direction. The handshake * is computed as follows: * handshake = CHANNEL_ID | (MUX_VALUE << 8) * The channel ID and MUX value are each encoded in 8 bits. */ #define ESAI_TX_RX_DMA_HANDSHAKE(inst, dir)\ ((DT_INST_DMAS_CELL_BY_NAME(inst, dir, channel) & GENMASK(7, 0)) |\ ((DT_INST_DMAS_CELL_BY_NAME(inst, dir, mux) << 8) & GENMASK(15, 8))) /* used to fetch the word width. If the "word-width" property is not specified, * this will default to 24. */ #define ESAI_WORD_WIDTH(inst) DT_INST_PROP_OR(inst, word_width, 24) /* utility macros */ /* convert uint to ESAI_Type * */ #define UINT_TO_ESAI(x) ((ESAI_Type *)(uintptr_t)(x)) /* invert a clock's polarity. This works because a clock's polarity * is expressed as a 0 or as a 1. */ #define ESAI_INVERT_POLARITY(polarity) (polarity) = !(polarity) #define _ESAI_SLOT_WORD_WIDTH_IS_VALID(width) (!(((width) - 8) % 4)) /* used to check if a slot/word width combination is valid */ #define ESAI_SLOT_WORD_WIDTH_IS_VALID(slot_width, word_width)\ (_ESAI_SLOT_WORD_WIDTH_IS_VALID(slot_width) && \ _ESAI_SLOT_WORD_WIDTH_IS_VALID(word_width) && \ ((word_width) < 32) && ((word_width) <= (slot_width))) /* used to convert slot/word width combination to a value that can be written * to TCR's TSWS or RCR's RSWS. */ #define ESAI_SLOT_FORMAT(s, w)\ ((w) < 24 ? ((s) - (w) + (((w) - 8) / 4)) : ((s) < 32 ? 0x1e : 0x1f)) /* used to compute the word alignment based on the word width value. * This returns a value that can be written to TFCR's TWA or RFCR's * RWA. */ #define ESAI_WORD_ALIGNMENT(word_width) ((32 - (word_width)) / 4) #define _ESAI_RX_FIFO_USAGE_EN(mask)\ (((mask) << ESAI_RFCR_RE0_SHIFT) &\ (ESAI_RFCR_RE0_MASK | ESAI_RFCR_RE1_MASK |\ ESAI_RFCR_RE2_MASK | ESAI_RFCR_RE3_MASK)) #define _ESAI_TX_FIFO_USAGE_EN(mask)\ (((mask) << ESAI_TFCR_TE0_SHIFT) &\ (ESAI_TFCR_TE0_MASK | ESAI_TFCR_TE1_MASK | ESAI_TFCR_TE2_MASK |\ ESAI_TFCR_TE3_MASK | ESAI_TFCR_TE4_MASK | ESAI_TFCR_TE5_MASK)) /* used to fetch the mask for setting TX/RX FIFO usage. By FIFO usage * we mean we allow receivers/transmitters to use the "global" TX/RX * FIFO (i.e: the FIFO that's common to all transmitters/receivers). * More specifically, this macro returns the mask required for setting * TFCR's TEx fields or RFCR's REx fields. */ #define ESAI_TX_RX_FIFO_USAGE_EN(dir, mask)\ ((dir) == DAI_DIR_TX ? _ESAI_TX_FIFO_USAGE_EN(mask) :\ _ESAI_RX_FIFO_USAGE_EN(mask)) #define _ESAI_TX_EN(mask)\ (((mask) << ESAI_TCR_TE0_SHIFT) &\ (ESAI_TCR_TE0_MASK | ESAI_TCR_TE1_MASK | ESAI_TCR_TE2_MASK |\ ESAI_TCR_TE3_MASK | ESAI_TCR_TE4_MASK | ESAI_TCR_TE5_MASK)) #define _ESAI_RX_EN(mask)\ (((mask) << ESAI_RCR_RE0_SHIFT) &\ (ESAI_RCR_RE0_MASK | ESAI_RCR_RE1_MASK | ESAI_RCR_RE2_MASK |\ ESAI_RCR_RE3_MASK)) /* used to fetch the mask for enabling transmitters/receivers. * More specifically, this refers to TCR's TEx bits or RCR's REx * bits. */ #define ESAI_TX_RX_EN(dir, mask)\ ((dir) == DAI_DIR_TX ? _ESAI_TX_EN(mask) : _ESAI_RX_EN(mask)) /* used to fetch the base address of the TX FIFO */ #define ESAI_TX_FIFO_BASE(inst)\ POINTER_TO_UINT(&(UINT_TO_ESAI(DT_INST_REG_ADDR(inst))->ETDR)) /* used to fetch the base address of the RX FIFO */ #define ESAI_RX_FIFO_BASE(inst)\ POINTER_TO_UINT(&(UINT_TO_ESAI(DT_INST_REG_ADDR(inst))->ERDR)) /* used to check if an ESAI pin is used. An ESAI pin is considered to * be used if PDC and PC bits for that pin are set (i.e: pin is in ESAI * mode). * * The ESAI pins support 4 functionalities which can be configured * via PCRC and PRRC: * 1) Disconnected * 2) GPIO input * 3) GPIO output * 4) ESAI */ #define ESAI_PIN_IS_USED(data, which)\ (((data)->pcrc & BIT(which)) && ((data->prrc) & BIT(which))) struct esai_data { mm_reg_t regmap; struct dai_config cfg; /* transmitter state */ enum dai_state tx_state; /* receiver state */ enum dai_state rx_state; /* value to be committed to PRRC. This is computed * during esai_init() and committed during config_set() * stage. */ uint32_t prrc; /* value to be committed to PCRC. Computed and committed * during the same stages as PRRC. */ uint32_t pcrc; }; struct esai_config { uint32_t regmap_phys; uint32_t regmap_size; const struct dai_properties *tx_props; const struct dai_properties *rx_props; uint32_t rx_fifo_watermark; uint32_t tx_fifo_watermark; uint32_t word_width; uint32_t *pinmodes; uint32_t pinmodes_size; uint32_t *clock_cfg; uint32_t clock_cfg_size; }; /* this needs to perfectly match SOF's struct sof_ipc_dai_esai_params */ struct esai_bespoke_config { uint32_t reserved0; uint16_t reserved1; uint16_t mclk_id; uint32_t mclk_direction; /* clock-related data */ uint32_t mclk_rate; uint32_t fsync_rate; uint32_t bclk_rate; /* TDM-related data */ uint32_t tdm_slots; uint32_t rx_slots; uint32_t tx_slots; uint16_t tdm_slot_width; uint16_t reserved2; }; struct esai_transceiver_config { /* enable/disable the HCLK prescaler */ bool hclk_prescaler_en; /* controls the divison value of HCLK (i.e: TPM0-TPM7) */ uint32_t hclk_div_ratio; /* controls the division value of HCLK before reaching * BCLK consumers (i.e: TFP0-TFP3) */ uint32_t bclk_div_ratio; /* should the HCLK divison be bypassed or not? * If in bypass, HCLK pad will be the same as EXTAL */ bool hclk_bypass; /* HCLK direction - input or output */ esai_clock_direction_t hclk_dir; /* HCLK source - EXTAL or IPG clock */ esai_hclk_source_t hclk_src; /* HCLK polarity - LOW or HIGH */ esai_clock_polarity_t hclk_polarity; /* BCLK direction - input or output */ esai_clock_direction_t bclk_dir; /* BCLK polarity - LOW or HIGH */ esai_clock_polarity_t bclk_polarity; /* FSYNC direction - input or output */ esai_clock_direction_t fsync_dir; /* FSYNC polarity - LOW or HIGH */ esai_clock_polarity_t fsync_polarity; /* should FSYNC be bit-wide or word-wide? */ bool fsync_is_bit_wide; /* enable/disable padding word with zeros. If * disabled, pad will be done using last/first * bit - see TCR's PADC bit for more info. */ bool zero_pad_en; /* should FSYNC be asserted before MSB transmission * or alongside it? */ bool fsync_early; /* FSYNC divison value - for network mode this is * the same as the number of slots - 1. */ uint32_t fsync_div; /* slot format - see TCR's TSWS or RCR's RSWS */ esai_slot_format_t slot_format; /* mode - network or normal * TODO: at the moment, only network mode is supported. */ esai_mode_t mode; /* controls whether MSB or LSB is transmitted first */ esai_shift_direction_t data_order; /* controls the word alignment inside a slot. If enabled * word is left-aligned, otherwise it will be right-aligned. * For details, see TCR/RCR's TWA/RWA. */ bool data_left_aligned; /* TX/RX watermark value */ uint32_t watermark; /* concatenation of TSMA+TSMB/RSMA+RSMB. Controls which * slots should be High-Z or data. */ uint32_t slot_mask; /* controls the alignment of data written to FIFO. * See TFCR's TWA or RFCR's RWA for more details. */ uint32_t word_alignment; }; static int esai_parse_clock_config(const struct esai_config *cfg, struct esai_transceiver_config *tx_cfg, struct esai_transceiver_config *rx_cfg) { int i; uint32_t crt_clock, crt_dir; for (i = 0; i < cfg->clock_cfg_size; i += 2) { crt_clock = cfg->clock_cfg[i]; crt_dir = cfg->clock_cfg[i + 1]; /* sanity checks */ if (crt_clock > ESAI_CLOCK_FST) { LOG_ERR("invalid clock configuration ID: %d", crt_clock); return -EINVAL; } if (crt_dir > ESAI_CLOCK_OUTPUT) { LOG_ERR("invalid clock configuration direction: %d", crt_dir); return -EINVAL; } switch (crt_clock) { case ESAI_CLOCK_HCKT: tx_cfg->hclk_dir = crt_dir; break; case ESAI_CLOCK_HCKR: rx_cfg->hclk_dir = crt_dir; break; case ESAI_CLOCK_SCKT: tx_cfg->bclk_dir = crt_dir; break; case ESAI_CLOCK_SCKR: rx_cfg->bclk_dir = crt_dir; break; case ESAI_CLOCK_FST: tx_cfg->fsync_dir = crt_dir; break; case ESAI_CLOCK_FSR: rx_cfg->fsync_dir = crt_dir; break; } } return 0; } static int esai_parse_pinmodes(const struct esai_config *cfg, struct esai_data *data) { int i; uint32_t pin, pin_mode; /* initially, the assumption is that all pins are in ESAI mode */ data->pcrc = ESAI_PCRC_PC_MASK; data->prrc = ESAI_PRRC_PDC_MASK; for (i = 0; i < cfg->pinmodes_size; i += 2) { pin = cfg->pinmodes[i]; pin_mode = cfg->pinmodes[i + 1]; if (pin > ESAI_PIN_SDO0 || pin_mode > ESAI_PIN_ESAI) { return -EINVAL; } switch (pin_mode) { case ESAI_PIN_DISCONNECTED: data->pcrc &= ~BIT(pin); data->prrc &= ~BIT(pin); break; case ESAI_PIN_GPIO_INPUT: data->pcrc &= ~BIT(pin); break; case ESAI_PIN_GPIO_OUTPUT: data->prrc &= ~BIT(pin); break; case ESAI_PIN_ESAI: /* nothing to be done here, this is the default */ break; } } return 0; } static inline uint32_t esai_get_state(struct esai_data *data, enum dai_dir dir) { if (dir == DAI_DIR_RX) { return data->rx_state; } else { return data->tx_state; } } static inline int esai_update_state(struct esai_data *data, enum dai_dir dir, enum dai_state new_state) { enum dai_state old_state = esai_get_state(data, dir); LOG_DBG("attempting state transition from %d to %d", old_state, new_state); switch (new_state) { case DAI_STATE_NOT_READY: /* initial state, transition is not possible */ return -EPERM; case DAI_STATE_READY: if (old_state != DAI_STATE_NOT_READY && old_state != DAI_STATE_READY && old_state != DAI_STATE_STOPPING) { return -EPERM; } break; case DAI_STATE_RUNNING: if (old_state != DAI_STATE_STOPPING && old_state != DAI_STATE_READY) { return -EPERM; } break; case DAI_STATE_STOPPING: if (old_state != DAI_STATE_RUNNING) { return -EPERM; } break; default: LOG_ERR("invalid new state: %d", new_state); return -EINVAL; } if (dir == DAI_DIR_RX) { data->rx_state = new_state; } else { data->tx_state = new_state; } return 0; } static inline void esai_tx_rx_enable_disable_fifo(ESAI_Type *base, enum dai_dir dir, bool enable) { if (enable) { if (dir == DAI_DIR_RX) { base->RFCR |= ESAI_RFCR_RFE_MASK; } else { base->TFCR |= ESAI_TFCR_TFE_MASK; } } else { if (dir == DAI_DIR_RX) { base->RFCR &= ~ESAI_RFCR_RFE_MASK; } else { base->TFCR &= ~ESAI_TFCR_TFE_MASK; } } } static inline void esai_tx_rx_enable_disable(ESAI_Type *base, enum dai_dir dir, uint32_t which, bool enable) { uint32_t val = ESAI_TX_RX_EN(dir, which); if (enable) { if (dir == DAI_DIR_RX) { base->RCR |= val; } else { base->TCR |= val; } } else { if (dir == DAI_DIR_RX) { base->RCR &= ~val; } else { base->TCR &= ~val; } } } static inline void esai_tx_rx_enable_disable_fifo_usage(ESAI_Type *base, enum dai_dir dir, uint32_t which, bool enable) { uint32_t val = ESAI_TX_RX_FIFO_USAGE_EN(dir, which); if (enable) { if (dir == DAI_DIR_RX) { base->RFCR |= val; } else { base->TFCR |= val; } } else { if (dir == DAI_DIR_RX) { base->RFCR &= ~val; } else { base->TFCR &= ~val; } } } static inline void esai_dump_xceiver_config(struct esai_transceiver_config *cfg) { LOG_DBG("HCLK prescaler enable: %d", cfg->hclk_prescaler_en); LOG_DBG("HCLK divider ratio: %d", cfg->hclk_div_ratio); LOG_DBG("BCLK divider ratio: %d", cfg->bclk_div_ratio); LOG_DBG("HCLK bypass: %d", cfg->hclk_bypass); LOG_DBG("HCLK direction: %d", cfg->hclk_dir); LOG_DBG("HCLK source: %d", cfg->hclk_src); LOG_DBG("HCLK polarity: %d", cfg->hclk_polarity); LOG_DBG("BCLK direction: %d", cfg->bclk_dir); LOG_DBG("BCLK polarity: %d", cfg->bclk_polarity); LOG_DBG("FSYNC direction: %d", cfg->fsync_dir); LOG_DBG("FSYNC polarity: %d", cfg->fsync_polarity); LOG_DBG("FSYNC is bit wide: %d", cfg->fsync_is_bit_wide); LOG_DBG("zero pad enable: %d", cfg->zero_pad_en); LOG_DBG("FSYNC asserted early: %d", cfg->fsync_early); LOG_DBG("watermark: %d", cfg->watermark); LOG_DBG("slot mask: 0x%x", cfg->slot_mask); LOG_DBG("word alignment: 0x%x", cfg->word_alignment); } static inline void esai_dump_register_data(ESAI_Type *base) { LOG_DBG("ECR: 0x%x", base->ECR); LOG_DBG("ESR: 0x%x", base->ESR); LOG_DBG("TFCR: 0x%x", base->TFCR); LOG_DBG("TFSR: 0x%x", base->TFSR); LOG_DBG("RFCR: 0x%x", base->RFCR); LOG_DBG("RFSR: 0x%x", base->RFSR); LOG_DBG("TSR: 0x%x", base->TSR); LOG_DBG("SAISR: 0x%x", base->SAISR); LOG_DBG("SAICR: 0x%x", base->SAICR); LOG_DBG("TCR: 0x%x", base->TCR); LOG_DBG("TCCR: 0x%x", base->TCCR); LOG_DBG("RCR: 0x%x", base->RCR); LOG_DBG("RCCR: 0x%x", base->RCCR); LOG_DBG("TSMA: 0x%x", base->TSMA); LOG_DBG("TSMB: 0x%x", base->TSMB); LOG_DBG("RSMA: 0x%x", base->RSMA); LOG_DBG("RSMB: 0x%x", base->RSMB); LOG_DBG("PRRC: 0x%x", base->PRRC); LOG_DBG("PCRC: 0x%x", base->PCRC); } #endif /* ZEPHYR_DRIVERS_DAI_NXP_ESAI_H_ */