/* * Copyright 2024 NXP * * SPDX-License-Identifier: Apache-2.0 */ #include "esai.h" /* TODO: * 1) Some pin functions can be inferred from software ctx. For instance, * if you use more than 1 data line, it's obvious you're going * to want to keep the pins of the data lines in ESAI mode. * * 2) Add function for handling underrun/overrun. Preferably * we should do the same as we did for SAI to ease the testing * process. This approach will do for now. In the future, this * can be handled in a more sophisticated maner. * * notes: * 1) EXTAL clock is divided as follows: * a) Initial EXTAL signal is automatically divided by 2. * b) If prescaler is enabled the resulting EXTAL from a) * is divided by 8. * c) The resulting EXTAL signal from b) can be divided * by 1 up to 256 (configured via xPM0-xPM7). The resulting * signal is referred to as HCLK. * d) HCLK obtained from c) can be further divided by 1 * up to 16 (configured via xFP0-xFP3). The resulting signal is * referred to as BCLK. */ static int esai_get_clock_rate_config(uint32_t extal_rate, uint32_t hclk_rate, uint32_t bclk_rate, bool variable_hclk, bool allow_bclk_configuration, struct esai_transceiver_config *cfg) { uint32_t hclk_div_ratio, bclk_div_ratio; /* sanity checks */ if (!cfg) { LOG_ERR("got NULL clock configuration"); return -EINVAL; } if (!extal_rate || !hclk_rate || !bclk_rate) { LOG_ERR("got NULL clock rate"); return -EINVAL; } if (hclk_rate > extal_rate) { LOG_ERR("HCLK rate cannot be higher than EXTAL rate"); return -EINVAL; } if (bclk_rate > extal_rate) { LOG_ERR("BCLK rate cannot be higher than EXTAL rate"); return -EINVAL; } if (DIV_ROUND_UP(extal_rate, bclk_rate) > 2 * 8 * 256 * 16) { LOG_ERR("BCLK rate %u cannot be obtained from EXTAL rate %u", bclk_rate, extal_rate); return -EINVAL; } /* TODO: add explanation */ if (DIV_ROUND_UP(extal_rate / 2, bclk_rate) == 1) { LOG_ERR("HCLK prescaler bypass with divider bypass is not supported"); return -EINVAL; } hclk_div_ratio = 1; bclk_div_ratio = 1; /* check if HCLK is in (EXTAL_RATE / 2, EXTAL_RATE). If so, * return an error as any rates from this interval cannot be obtained. */ if (hclk_rate > extal_rate / 2 && hclk_rate < extal_rate) { LOG_ERR("HCLK rate cannot be higher than EXTAL's rate divided by 2"); return -EINVAL; } /* compute HCLK configuration - only required if HCLK pad output is used */ if (!variable_hclk) { if (extal_rate == hclk_rate) { /* HCLK rate from pad is the same as EXTAL rate */ cfg->hclk_bypass = true; } else { /* EXTAL is automatically divided by 2 */ extal_rate /= 2; /* compute prescaler divide ratio w/ prescaler bypass */ hclk_div_ratio = DIV_ROUND_UP(extal_rate, hclk_rate); if (hclk_div_ratio > 256) { /* can't obtain HCLK w/o prescaler */ cfg->hclk_prescaler_en = true; extal_rate /= 8; /* recompute ratio w/ prescaler */ hclk_div_ratio = DIV_ROUND_UP(extal_rate, hclk_rate); if (hclk_div_ratio > 256) { LOG_ERR("cannot obtain HCLK rate %u from EXTAL rate %u", hclk_rate, extal_rate); return -EINVAL; } } } } cfg->hclk_div_ratio = hclk_div_ratio; if (!allow_bclk_configuration) { return 0; } extal_rate = DIV_ROUND_UP(extal_rate, hclk_div_ratio); /* compute BCLK configuration */ if (variable_hclk || cfg->hclk_bypass) { /* attempt to find a configuration that satisfies BCLK's rate */ extal_rate /= 2; hclk_div_ratio = DIV_ROUND_UP(extal_rate, bclk_rate); /* check if prescaler is required */ if (hclk_div_ratio > 256 * 16) { extal_rate /= 8; cfg->hclk_prescaler_en = true; hclk_div_ratio = DIV_ROUND_UP(extal_rate, bclk_rate); } /* check if we really need to loop through TPM div ratios */ if (hclk_div_ratio < 256) { cfg->bclk_div_ratio = 1; cfg->hclk_div_ratio = hclk_div_ratio; return 0; } for (int i = 1; i < 256; i++) { hclk_div_ratio = DIV_ROUND_UP(extal_rate / i, bclk_rate); bclk_div_ratio = DIV_ROUND_UP(extal_rate / hclk_div_ratio, bclk_rate); if (bclk_div_ratio <= 16) { /* found valid configuration, let caller know */ cfg->bclk_div_ratio = bclk_div_ratio; cfg->hclk_div_ratio = hclk_div_ratio; return 0; } } /* no valid configuration found */ LOG_ERR("no valid configuration for BCLK rate %u and EXTAL rate %u", bclk_rate, extal_rate); return -EINVAL; } /* can the BCLK rate be obtained w/o modifying divided EXTAL? */ bclk_div_ratio = DIV_ROUND_UP(extal_rate, bclk_rate); if (bclk_div_ratio > 16) { LOG_ERR("cannot obtain BCLK rate %d from EXTAL rate %d", bclk_rate, extal_rate); return -EINVAL; } /* save ratios before returning */ cfg->bclk_div_ratio = bclk_div_ratio; cfg->hclk_div_ratio = hclk_div_ratio; return 0; } static int esai_get_clk_provider_config(const struct dai_config *cfg, struct esai_transceiver_config *xceiver_cfg) { switch (cfg->format & DAI_FORMAT_CLOCK_PROVIDER_MASK) { case DAI_CBC_CFC: /* default FSYNC and BCLK are OUTPUT */ break; case DAI_CBP_CFP: xceiver_cfg->bclk_dir = kESAI_ClockInput; xceiver_cfg->fsync_dir = kESAI_ClockInput; break; default: LOG_ERR("invalid clock provider configuration: %d", cfg->format & DAI_FORMAT_CLOCK_PROVIDER_MASK); return -EINVAL; } return 0; } static int esai_get_clk_inversion_config(const struct dai_config *cfg, struct esai_transceiver_config *xceiver_cfg) { switch (cfg->format & DAI_FORMAT_CLOCK_INVERSION_MASK) { case DAI_INVERSION_IB_IF: ESAI_INVERT_POLARITY(xceiver_cfg->bclk_polarity); ESAI_INVERT_POLARITY(xceiver_cfg->fsync_polarity); break; case DAI_INVERSION_IB_NF: ESAI_INVERT_POLARITY(xceiver_cfg->bclk_polarity); break; case DAI_INVERSION_NB_IF: ESAI_INVERT_POLARITY(xceiver_cfg->fsync_polarity); break; case DAI_INVERSION_NB_NF: /* nothing to do here */ break; default: LOG_ERR("invalid clock inversion configuration: %d", cfg->format & DAI_FORMAT_CLOCK_INVERSION_MASK); return -EINVAL; } return 0; } static int esai_get_proto_config(const struct dai_config *cfg, struct esai_transceiver_config *xceiver_cfg) { switch (cfg->format & DAI_FORMAT_PROTOCOL_MASK) { case DAI_PROTO_I2S: xceiver_cfg->bclk_polarity = kESAI_ClockActiveLow; xceiver_cfg->fsync_polarity = kESAI_ClockActiveLow; break; case DAI_PROTO_DSP_A: xceiver_cfg->bclk_polarity = kESAI_ClockActiveLow; xceiver_cfg->fsync_is_bit_wide = true; break; default: LOG_ERR("invalid DAI protocol: %d", cfg->format & DAI_FORMAT_PROTOCOL_MASK); return -EINVAL; } return 0; } static int esai_get_slot_format(uint32_t slot_width, uint32_t word_width, struct esai_transceiver_config *cfg) { /* sanity check */ if (!ESAI_SLOT_WORD_WIDTH_IS_VALID(slot_width, word_width)) { LOG_ERR("invalid slot %d word %d width configuration", slot_width, word_width); return -EINVAL; } cfg->slot_format = ESAI_SLOT_FORMAT(slot_width, word_width); return 0; } static void esai_get_xceiver_default_config(struct esai_transceiver_config *cfg) { memset(cfg, 0, sizeof(*cfg)); cfg->hclk_prescaler_en = false; cfg->hclk_div_ratio = 1; cfg->bclk_div_ratio = 1; cfg->hclk_bypass = false; cfg->hclk_src = kESAI_HckSourceExternal; cfg->hclk_dir = kESAI_ClockOutput; cfg->hclk_polarity = kESAI_ClockActiveHigh; cfg->bclk_dir = kESAI_ClockOutput; cfg->bclk_polarity = kESAI_ClockActiveHigh; cfg->fsync_dir = kESAI_ClockOutput; cfg->fsync_polarity = kESAI_ClockActiveHigh; cfg->fsync_is_bit_wide = false; cfg->zero_pad_en = true; cfg->fsync_early = true; cfg->mode = kESAI_NetworkMode; cfg->data_order = kESAI_ShifterMSB; cfg->data_left_aligned = true; } static void esai_commit_config(ESAI_Type *base, enum dai_dir dir, struct esai_transceiver_config *cfg) { if (dir == DAI_DIR_TX) { base->TCCR &= ~(ESAI_TCCR_THCKD_MASK | ESAI_TCCR_TFSD_MASK | ESAI_TCCR_TCKD_MASK | ESAI_TCCR_THCKP_MASK | ESAI_TCCR_TFSP_MASK | ESAI_TCCR_TCKP_MASK | ESAI_TCCR_TFP_MASK | ESAI_TCCR_TDC_MASK | ESAI_TCCR_TPSR_MASK | ESAI_TCCR_TPM_MASK); base->TCCR |= ESAI_TCCR_THCKD(cfg->hclk_dir) | ESAI_TCCR_TFSD(cfg->fsync_dir) | ESAI_TCCR_TCKD(cfg->bclk_dir) | ESAI_TCCR_THCKP(cfg->hclk_polarity) | ESAI_TCCR_TFSP(cfg->fsync_polarity) | ESAI_TCCR_TCKP(cfg->bclk_polarity) | ESAI_TCCR_TFP(cfg->bclk_div_ratio - 1) | ESAI_TCCR_TDC(cfg->fsync_div - 1) | ESAI_TCCR_TPSR(!cfg->hclk_prescaler_en) | ESAI_TCCR_TPM(cfg->hclk_div_ratio - 1); base->TCR &= ~(ESAI_TCR_PADC_MASK | ESAI_TCR_TFSR_MASK | ESAI_TCR_TFSL_MASK | ESAI_TCR_TMOD_MASK | ESAI_TCR_TWA_MASK | ESAI_TCR_TSHFD_MASK); base->TCR |= ESAI_TCR_PADC(cfg->zero_pad_en) | ESAI_TCR_TFSR(cfg->fsync_early) | ESAI_TCR_TFSL(cfg->fsync_is_bit_wide) | ESAI_TCR_TSWS(cfg->slot_format) | ESAI_TCR_TMOD(cfg->mode) | ESAI_TCR_TWA(!cfg->data_left_aligned) | ESAI_TCR_TSHFD(cfg->data_order); base->ECR &= ~(ESAI_ECR_ETI_MASK | ESAI_ECR_ETO_MASK); base->ECR |= ESAI_ECR_ETI(cfg->hclk_src) | ESAI_ECR_ETO(cfg->hclk_bypass); base->TFCR &= ~(ESAI_TFCR_TFWM_MASK | ESAI_TFCR_TWA_MASK); base->TFCR |= ESAI_TFCR_TFWM(cfg->watermark) | ESAI_TFCR_TWA(cfg->word_alignment); ESAI_TxSetSlotMask(base, cfg->slot_mask); } else { base->RCCR &= ~(ESAI_RCCR_RHCKD_MASK | ESAI_RCCR_RFSD_MASK | ESAI_RCCR_RCKD_MASK | ESAI_RCCR_RHCKP_MASK | ESAI_RCCR_RFSP_MASK | ESAI_RCCR_RCKP_MASK | ESAI_RCCR_RFP_MASK | ESAI_RCCR_RDC_MASK | ESAI_RCCR_RPSR_MASK | ESAI_RCCR_RPM_MASK); base->RCCR |= ESAI_RCCR_RHCKD(cfg->hclk_dir) | ESAI_RCCR_RFSD(cfg->fsync_dir) | ESAI_RCCR_RCKD(cfg->bclk_dir) | ESAI_RCCR_RHCKP(cfg->hclk_polarity) | ESAI_RCCR_RFSP(cfg->fsync_polarity) | ESAI_RCCR_RCKP(cfg->bclk_polarity) | ESAI_RCCR_RFP(cfg->bclk_div_ratio - 1) | ESAI_RCCR_RDC(cfg->fsync_div - 1) | ESAI_RCCR_RPSR(!cfg->hclk_prescaler_en) | ESAI_RCCR_RPM(cfg->hclk_div_ratio - 1); base->RCR &= ~(ESAI_RCR_RFSR_MASK | ESAI_RCR_RFSL_MASK | ESAI_RCR_RMOD_MASK | ESAI_RCR_RWA_MASK | ESAI_RCR_RSHFD_MASK); base->RCR |= ESAI_RCR_RFSR(cfg->fsync_early) | ESAI_RCR_RFSL(cfg->fsync_is_bit_wide) | ESAI_RCR_RSWS(cfg->slot_format) | ESAI_RCR_RMOD(cfg->mode) | ESAI_RCR_RWA(!cfg->data_left_aligned) | ESAI_RCR_RSHFD(cfg->data_order); base->ECR &= ~(ESAI_ECR_ERI_MASK | ESAI_ECR_ERO_MASK); base->ECR |= ESAI_ECR_ERI(cfg->hclk_src) | ESAI_ECR_ERO(cfg->hclk_bypass); base->RFCR &= ~(ESAI_RFCR_RFWM_MASK | ESAI_RFCR_RWA_MASK); base->RFCR |= ESAI_RFCR_RFWM(cfg->watermark) | ESAI_RFCR_RWA(cfg->word_alignment); EASI_RxSetSlotMask(base, cfg->slot_mask); } } static int esai_config_set(const struct device *dev, const struct dai_config *cfg, const void *bespoke_data) { const struct esai_bespoke_config *bespoke; struct esai_data *data; const struct esai_config *esai_cfg; struct esai_transceiver_config tx_config; struct esai_transceiver_config rx_config; ESAI_Type *base; int ret; if (!cfg || !bespoke_data) { return -EINVAL; } if (cfg->type != DAI_IMX_ESAI) { LOG_ERR("wrong DAI type: %d", cfg->type); return -EINVAL; } data = dev->data; esai_cfg = dev->config; bespoke = bespoke_data; base = UINT_TO_ESAI(data->regmap); /* config_set() configures both the transmitter and the receiver. * As such, the following state transitions make sure that the * directions are stopped. This means that they can be safely * reset and re-configured. */ ret = esai_update_state(data, DAI_DIR_TX, DAI_STATE_READY); if (ret < 0) { LOG_ERR("failed to update TX state"); return ret; } ret = esai_update_state(data, DAI_DIR_RX, DAI_STATE_READY); if (ret < 0) { LOG_ERR("failed to update RX state"); return ret; } ESAI_Enable(base, true); /* disconnect all ESAI pins */ base->PCRC &= ~ESAI_PCRC_PC_MASK; base->PRRC &= ~ESAI_PRRC_PDC_MASK; /* go back to known configuration through reset */ ESAI_Reset(UINT_TO_ESAI(data->regmap)); /* get default configuration */ esai_get_xceiver_default_config(&tx_config); /* TODO: for now, only network mode is supported */ tx_config.fsync_div = bespoke->tdm_slots; /* clock provider configuration */ ret = esai_get_clk_provider_config(cfg, &tx_config); if (ret < 0) { return ret; } /* protocol configuration */ ret = esai_get_proto_config(cfg, &tx_config); if (ret < 0) { return ret; } /* clock inversion configuration */ ret = esai_get_clk_inversion_config(cfg, &tx_config); if (ret < 0) { return ret; } ret = esai_get_slot_format(bespoke->tdm_slot_width, esai_cfg->word_width, &tx_config); if (ret < 0) { return ret; } tx_config.word_alignment = ESAI_WORD_ALIGNMENT(esai_cfg->word_width); /* duplicate TX configuration */ memcpy(&rx_config, &tx_config, sizeof(tx_config)); /* parse clock configuration from DTS. This will overwrite * directions set in bespoke data. */ ret = esai_parse_clock_config(esai_cfg, &tx_config, &rx_config); if (ret < 0) { return ret; } /* compute TX clock configuration */ ret = esai_get_clock_rate_config(bespoke->mclk_rate, bespoke->mclk_rate, bespoke->bclk_rate, !ESAI_PIN_IS_USED(data, ESAI_PIN_HCKT), tx_config.bclk_dir, &tx_config); if (ret < 0) { return ret; } /* compute RX clock configuration */ ret = esai_get_clock_rate_config(bespoke->mclk_rate, bespoke->mclk_rate, bespoke->bclk_rate, !ESAI_PIN_IS_USED(data, ESAI_PIN_HCKR), rx_config.bclk_dir, &rx_config); if (ret < 0) { return ret; } tx_config.watermark = esai_cfg->tx_fifo_watermark; rx_config.watermark = esai_cfg->rx_fifo_watermark; tx_config.slot_mask = bespoke->tx_slots; rx_config.slot_mask = bespoke->rx_slots; LOG_DBG("dumping TX configuration"); esai_dump_xceiver_config(&tx_config); LOG_DBG("dumping RX configuration"); esai_dump_xceiver_config(&rx_config); /* enable ESAI to allow committing the configurations */ ESAI_Enable(base, true); esai_dump_register_data(base); esai_commit_config(base, DAI_DIR_TX, &tx_config); esai_commit_config(base, DAI_DIR_RX, &rx_config); /* allow each TX data register to be initialized from TX FIFO */ base->TFCR |= ESAI_TFCR_TIEN_MASK; /* enable FIFO usage * * TODO: for now, only 1 data line per direction is supported. */ esai_tx_rx_enable_disable_fifo_usage(base, DAI_DIR_TX, BIT(0), true); esai_tx_rx_enable_disable_fifo_usage(base, DAI_DIR_RX, BIT(0), true); /* re-connect pins based on DTS pin configuration */ base->PCRC = data->pcrc; base->PRRC = data->prrc; data->cfg.rate = bespoke->fsync_rate; data->cfg.channels = bespoke->tdm_slots; esai_dump_register_data(base); return 0; } static int esai_config_get(const struct device *dev, struct dai_config *cfg, enum dai_dir dir) { struct esai_data *data = dev->data; if (!cfg) { return -EINVAL; } memcpy(cfg, &data->cfg, sizeof(*cfg)); return 0; } static int esai_trigger_start(const struct device *dev, enum dai_dir dir) { struct esai_data *data; ESAI_Type *base; int ret, i; data = dev->data; base = UINT_TO_ESAI(data->regmap); ret = esai_update_state(data, dir, DAI_STATE_RUNNING); if (ret < 0) { LOG_ERR("failed to transition to RUNNING"); return -EINVAL; } LOG_DBG("starting direction %d", dir); /* enable the FIFO */ esai_tx_rx_enable_disable_fifo(base, dir, true); /* TODO: without this, the ESAI won't enter underrun * but playing a song while doing pause-resume very * fast seems to result in a degraded sound quality? * * TODO: for multiple channels, this needs to be changed. */ if (dir == DAI_DIR_TX) { for (i = 0; i < 1; i++) { ESAI_WriteData(base, 0x0); } } /* enable the transmitter/receiver */ esai_tx_rx_enable_disable(base, dir, BIT(0), true); return 0; } static int esai_trigger_stop(const struct device *dev, enum dai_dir dir) { struct esai_data *data; int ret; ESAI_Type *base; data = dev->data; base = UINT_TO_ESAI(data->regmap); ret = esai_update_state(data, dir, DAI_STATE_STOPPING); if (ret < 0) { LOG_ERR("failed to transition to STOPPING"); return -EINVAL; } LOG_DBG("stopping direction %d", dir); /* disable transmitter/receiver */ esai_tx_rx_enable_disable(base, dir, BIT(0), false); /* disable FIFO */ esai_tx_rx_enable_disable_fifo(base, dir, false); return 0; } static int esai_trigger(const struct device *dev, enum dai_dir dir, enum dai_trigger_cmd cmd) { /* TX/RX should be triggered individually */ if (dir != DAI_DIR_RX && dir != DAI_DIR_TX) { LOG_ERR("invalid direction: %d", dir); return -EINVAL; } switch (cmd) { case DAI_TRIGGER_START: return esai_trigger_start(dev, dir); case DAI_TRIGGER_PAUSE: case DAI_TRIGGER_STOP: return esai_trigger_stop(dev, dir); case DAI_TRIGGER_PRE_START: case DAI_TRIGGER_COPY: /* nothing to do here, return success code */ return 0; default: LOG_ERR("invalid trigger command: %d", cmd); return -EINVAL; } return 0; } static const struct dai_properties *esai_get_properties(const struct device *dev, enum dai_dir dir, int stream_id) { const struct esai_config *cfg = dev->config; switch (dir) { case DAI_DIR_RX: return cfg->rx_props; case DAI_DIR_TX: return cfg->tx_props; default: LOG_ERR("invalid direction: %d", dir); return NULL; } } static int esai_probe(const struct device *dev) { /* nothing to be done here but mandatory to implement */ return 0; } static int esai_remove(const struct device *dev) { /* nothing to be done here but mandatory to implement */ return 0; } static DEVICE_API(dai, esai_api) = { .config_set = esai_config_set, .config_get = esai_config_get, .trigger = esai_trigger, .get_properties = esai_get_properties, .probe = esai_probe, .remove = esai_remove, }; static int esai_init(const struct device *dev) { const struct esai_config *cfg; struct esai_data *data; int ret; cfg = dev->config; data = dev->data; device_map(&data->regmap, cfg->regmap_phys, cfg->regmap_size, K_MEM_CACHE_NONE); ret = esai_parse_pinmodes(cfg, data); if (ret < 0) { return ret; } return 0; } #define ESAI_INIT(inst) \ \ BUILD_ASSERT(ESAI_TX_FIFO_WATERMARK(inst) >= 1 && \ ESAI_TX_FIFO_WATERMARK(inst) <= _ESAI_FIFO_DEPTH(inst), \ "invalid TX watermark value"); \ \ BUILD_ASSERT(ESAI_RX_FIFO_WATERMARK(inst) >= 1 && \ ESAI_RX_FIFO_WATERMARK(inst) <= _ESAI_FIFO_DEPTH(inst), \ "invalid RX watermark value"); \ \ BUILD_ASSERT(ESAI_FIFO_DEPTH(inst) >= 1 && \ ESAI_FIFO_DEPTH(inst) <= _ESAI_FIFO_DEPTH(inst), \ "invalid FIFO depth value"); \ \ BUILD_ASSERT(ESAI_WORD_WIDTH(inst) == 8 || \ ESAI_WORD_WIDTH(inst) == 12 || \ ESAI_WORD_WIDTH(inst) == 16 || \ ESAI_WORD_WIDTH(inst) == 20 || \ ESAI_WORD_WIDTH(inst) == 24, \ "invalid word width value"); \ \ static const struct dai_properties esai_tx_props_##inst = { \ .fifo_address = ESAI_TX_FIFO_BASE(inst), \ .fifo_depth = ESAI_FIFO_DEPTH(inst) * 4, \ .dma_hs_id = ESAI_TX_RX_DMA_HANDSHAKE(inst, tx), \ }; \ \ static const struct dai_properties esai_rx_props_##inst = { \ .fifo_address = ESAI_RX_FIFO_BASE(inst), \ .fifo_depth = ESAI_FIFO_DEPTH(inst) * 4, \ .dma_hs_id = ESAI_TX_RX_DMA_HANDSHAKE(inst, rx), \ }; \ \ static uint32_t pinmodes_##inst[] = \ DT_INST_PROP_OR(inst, esai_pin_modes, {}); \ \ BUILD_ASSERT(ARRAY_SIZE(pinmodes_##inst) % 2 == 0, \ "bad pinmask array size"); \ \ static uint32_t clock_cfg_##inst[] = \ DT_INST_PROP_OR(inst, esai_clock_configuration, {}); \ \ BUILD_ASSERT(ARRAY_SIZE(clock_cfg_##inst) % 2 == 0, \ "bad clock configuration array size"); \ \ static struct esai_config esai_config_##inst = { \ .regmap_phys = DT_INST_REG_ADDR(inst), \ .regmap_size = DT_INST_REG_SIZE(inst), \ .tx_props = &esai_tx_props_##inst, \ .rx_props = &esai_rx_props_##inst, \ .tx_fifo_watermark = ESAI_TX_FIFO_WATERMARK(inst), \ .rx_fifo_watermark = ESAI_RX_FIFO_WATERMARK(inst), \ .word_width = ESAI_WORD_WIDTH(inst), \ .pinmodes = pinmodes_##inst, \ .pinmodes_size = ARRAY_SIZE(pinmodes_##inst), \ .clock_cfg = clock_cfg_##inst, \ .clock_cfg_size = ARRAY_SIZE(clock_cfg_##inst), \ }; \ \ static struct esai_data esai_data_##inst = { \ .cfg.type = DAI_IMX_ESAI, \ .cfg.dai_index = DT_INST_PROP_OR(inst, dai_index, 0), \ }; \ \ DEVICE_DT_INST_DEFINE(inst, &esai_init, NULL, \ &esai_data_##inst, &esai_config_##inst, \ POST_KERNEL, CONFIG_DAI_INIT_PRIORITY, \ &esai_api); \ DT_INST_FOREACH_STATUS_OKAY(ESAI_INIT);