/* * Copyright (c) 2023 STMicroelectronics * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include "stm32_hsem.h" /* Macros to fill up prescaler values */ #define fn_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v #define ahb_prescaler(v) fn_ahb_prescaler(v) #define fn_ahb5_prescaler(v) LL_RCC_AHB5_DIV_ ## v #define ahb5_prescaler(v) fn_ahb5_prescaler(v) #define fn_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v #define apb1_prescaler(v) fn_apb1_prescaler(v) #define fn_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v #define apb2_prescaler(v) fn_apb2_prescaler(v) #define fn_apb7_prescaler(v) LL_RCC_APB7_DIV_ ## v #define apb7_prescaler(v) fn_apb7_prescaler(v) #define RCC_CALC_FLASH_FREQ __LL_RCC_CALC_HCLK_FREQ #define GET_CURRENT_FLASH_PRESCALER LL_RCC_GetAHBPrescaler static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler) { return clock / prescaler; } /** @brief Verifies clock is part of active clock configuration */ int enabled_clock(uint32_t src_clk) { if ((src_clk == STM32_SRC_SYSCLK) || (src_clk == STM32_SRC_HCLK1) || (src_clk == STM32_SRC_HCLK5) || (src_clk == STM32_SRC_PCLK1) || (src_clk == STM32_SRC_PCLK2) || (src_clk == STM32_SRC_PCLK7) || ((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) || ((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) || ((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) || ((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) || ((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) || ((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) || ((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED))) { return 0; } return -ENOTSUP; } static inline int stm32_clock_control_on(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); volatile int temp; ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) { /* Attempt to toggle a wrong periph clock bit */ return -ENOTSUP; } sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr); /* Delay after enabling the clock, to allow it to become active */ temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus); UNUSED(temp); return 0; } static inline int stm32_clock_control_off(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) { /* Attempt to toggle a wrong periph clock bit */ return -ENOTSUP; } sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr); return 0; } static inline int stm32_clock_control_configure(const struct device *dev, clock_control_subsys_t sub_system, void *data) { #if defined(STM32_SRC_CLOCK_MIN) /* At least one alt src clock available */ struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); int err; ARG_UNUSED(dev); ARG_UNUSED(data); err = enabled_clock(pclken->bus); if (err < 0) { /* Attempt to configure a src clock not available or not valid */ return err; } sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr), STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr)); sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr), STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr)); return 0; #else /* No src clock available: Not supported */ return -ENOTSUP; #endif } __unused static uint32_t get_pllsrc_frequency(void) { if (IS_ENABLED(STM32_PLL_SRC_HSI)) { return STM32_HSI_FREQ; } else if (IS_ENABLED(STM32_PLL_SRC_HSE)) { return STM32_HSE_FREQ; } __ASSERT(0, "No PLL Source configured"); return 0; } __unused static uint32_t get_pllsrc(void) { if (IS_ENABLED(STM32_PLL_SRC_HSI)) { return LL_RCC_PLL1SOURCE_HSI; } else if (IS_ENABLED(STM32_PLL_SRC_HSE)) { return LL_RCC_PLL1SOURCE_HSE; } __ASSERT(0, "No PLL Source configured"); return 0; } static int stm32_clock_control_get_subsys_rate(const struct device *dev, clock_control_subsys_t sub_system, uint32_t *rate) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); /* * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler) * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * since it will be updated after clock configuration and hence * more likely to contain actual clock speed */ uint32_t ahb_clock = SystemCoreClock; uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER); uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER); uint32_t apb7_clock = get_bus_clock(ahb_clock, STM32_APB7_PRESCALER); uint32_t ahb5_clock; ARG_UNUSED(dev); if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) { /* PLL is the SYSCLK source, use 'ahb5-prescaler' */ ahb5_clock = get_bus_clock(ahb_clock * STM32_AHB_PRESCALER, STM32_AHB5_PRESCALER); } else { /* PLL is not the SYSCLK source, use 'ahb5-div'(if set) */ if (IS_ENABLED(STM32_AHB5_DIV)) { ahb5_clock = ahb_clock * STM32_AHB_PRESCALER / 2; } else { ahb5_clock = ahb_clock * STM32_AHB_PRESCALER; } } __ASSERT(ahb5_clock <= MHZ(32), "AHB5 clock frequency exceeds 32 MHz"); switch (pclken->bus) { case STM32_CLOCK_BUS_AHB1: case STM32_CLOCK_BUS_AHB2: case STM32_CLOCK_BUS_AHB4: case STM32_SRC_HCLK1: *rate = ahb_clock; break; case STM32_CLOCK_BUS_AHB5: case STM32_SRC_HCLK5: *rate = ahb5_clock; break; case STM32_CLOCK_BUS_APB1: case STM32_CLOCK_BUS_APB1_2: case STM32_SRC_PCLK1: *rate = apb1_clock; break; case STM32_CLOCK_BUS_APB2: case STM32_SRC_PCLK2: *rate = apb2_clock; break; case STM32_CLOCK_BUS_APB7: case STM32_SRC_PCLK7: *rate = apb7_clock; break; case STM32_SRC_SYSCLK: *rate = SystemCoreClock * STM32_CORE_PRESCALER; break; #if defined(STM32_PLL_ENABLED) case STM32_SRC_PLL1_P: *rate = __LL_RCC_CALC_PLL1PCLK_FREQ(get_pllsrc_frequency(), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_P_DIVISOR); break; case STM32_SRC_PLL1_Q: *rate = __LL_RCC_CALC_PLL1QCLK_FREQ(get_pllsrc_frequency(), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_Q_DIVISOR); break; case STM32_SRC_PLL1_R: *rate = __LL_RCC_CALC_PLL1RCLK_FREQ(get_pllsrc_frequency(), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_R_DIVISOR); break; #endif /* STM32_PLL_ENABLED */ #if defined(STM32_LSE_ENABLED) case STM32_SRC_LSE: *rate = STM32_LSE_FREQ; break; #endif #if defined(STM32_LSI_ENABLED) case STM32_SRC_LSI: *rate = STM32_LSI_FREQ; break; #endif #if defined(STM32_HSI_ENABLED) case STM32_SRC_HSI16: *rate = STM32_HSI_FREQ; break; #endif #if defined(STM32_HSE_ENABLED) case STM32_SRC_HSE: if (IS_ENABLED(STM32_HSE_DIV2)) { *rate = STM32_HSE_FREQ / 2; } else { *rate = STM32_HSE_FREQ; } break; #endif default: return -ENOTSUP; } if (pclken->div) { *rate /= (pclken->div + 1); } return 0; } static enum clock_control_status stm32_clock_control_get_status(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) { /* Gated clocks */ if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr) == pclken->enr) { return CLOCK_CONTROL_STATUS_ON; } else { return CLOCK_CONTROL_STATUS_OFF; } } else { /* Domain clock sources */ if (enabled_clock(pclken->bus) == 0) { return CLOCK_CONTROL_STATUS_ON; } else { return CLOCK_CONTROL_STATUS_OFF; } } } static DEVICE_API(clock_control, stm32_clock_control_api) = { .on = stm32_clock_control_on, .off = stm32_clock_control_off, .get_rate = stm32_clock_control_get_subsys_rate, .get_status = stm32_clock_control_get_status, .configure = stm32_clock_control_configure, }; __unused static int get_vco_input_range(uint32_t m_div, uint32_t *range) { uint32_t vco_freq; vco_freq = get_pllsrc_frequency() / m_div; if (MHZ(4) <= vco_freq && vco_freq <= MHZ(8)) { *range = LL_RCC_PLLINPUTRANGE_4_8; } else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) { *range = LL_RCC_PLLINPUTRANGE_8_16; } else { return -ERANGE; } return 0; } static void set_regu_voltage(uint32_t hclk_freq) { if (hclk_freq <= MHZ(16)) { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2); } else { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); } while (LL_PWR_IsActiveFlag_VOS() == 0) { } } /* * Unconditionally switch the system clock source to HSI. */ __unused static void stm32_clock_switch_to_hsi(void) { /* Enable HSI if not enabled */ if (LL_RCC_HSI_IsReady() != 1) { /* Enable HSI */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1) { /* Wait for HSI ready */ } } /* Set HSI as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) { } /* Erratum 2.2.4: Spurious deactivation of HSE when HSI is selected as * system clock source * Re-enable HSE clock if required after switch source to HSI */ if (IS_ENABLED(STM32_HSE_ENABLED)) { if (IS_ENABLED(STM32_HSE_DIV2)) { LL_RCC_HSE_EnablePrescaler(); } /* Enable HSE */ LL_RCC_HSE_Enable(); while (LL_RCC_HSE_IsReady() != 1) { /* Wait for HSE ready */ } } } __unused static int set_up_plls(void) { #if defined(STM32_PLL_ENABLED) int r; uint32_t vco_input_range; LL_RCC_PLL1_Disable(); /* Configure PLL source */ /* Can be HSE, HSI */ if (IS_ENABLED(STM32_PLL_SRC_HSE)) { /* Main PLL configuration and activation */ LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSE); } else if (IS_ENABLED(STM32_PLL_SRC_HSI)) { /* Main PLL configuration and activation */ LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSI); } else { return -ENOTSUP; } r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range); if (r < 0) { return r; } LL_RCC_PLL1_SetDivider(STM32_PLL_M_DIVISOR); LL_RCC_PLL1_SetVCOInputRange(vco_input_range); LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER); LL_RCC_PLL1FRACN_Disable(); if (IS_ENABLED(STM32_PLL_P_ENABLED)) { LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR); LL_RCC_PLL1_EnableDomain_PLL1P(); } if (IS_ENABLED(STM32_PLL_Q_ENABLED)) { LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR); LL_RCC_PLL1_EnableDomain_PLL1Q(); } if (IS_ENABLED(STM32_PLL_R_ENABLED)) { LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR); LL_RCC_PLL1_EnableDomain_PLL1R(); } /* Enable PLL */ LL_RCC_PLL1_Enable(); while (LL_RCC_PLL1_IsReady() != 1U) { /* Wait for PLL ready */ } #else /* Init PLL source to None */ LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_NONE); #endif /* STM32_PLL_ENABLED */ return 0; } static void set_up_fixed_clock_sources(void) { if (IS_ENABLED(STM32_HSE_ENABLED)) { if (IS_ENABLED(STM32_HSE_DIV2)) { LL_RCC_HSE_EnablePrescaler(); } /* Enable HSE */ LL_RCC_HSE_Enable(); while (LL_RCC_HSE_IsReady() != 1) { /* Wait for HSE ready */ } } if (IS_ENABLED(STM32_HSI_ENABLED)) { /* Enable HSI if not enabled */ if (LL_RCC_HSI_IsReady() != 1) { /* Enable HSI */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1) { /* Wait for HSI ready */ } } } if (IS_ENABLED(STM32_LSI_ENABLED)) { /* LSI belongs to the back-up domain, enable access.*/ /* Set the DBP bit in the Power control register 1 (PWR_CR1) */ LL_PWR_EnableBkUpAccess(); while (!LL_PWR_IsEnabledBkUpAccess()) { /* Wait for Backup domain access */ } LL_RCC_LSI1_Enable(); while (LL_RCC_LSI1_IsReady() != 1) { } LL_PWR_DisableBkUpAccess(); } if (IS_ENABLED(STM32_LSE_ENABLED)) { /* LSE belongs to the back-up domain, enable access.*/ /* Set the DBP bit in the Power control register 1 (PWR_CR1) */ LL_PWR_EnableBkUpAccess(); while (!LL_PWR_IsEnabledBkUpAccess()) { /* Wait for Backup domain access */ } /* Configure driving capability */ LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR1_LSEDRV_Pos); /* Enable LSE Oscillator (32.768 kHz) */ LL_RCC_LSE_Enable(); while (!LL_RCC_LSE_IsReady()) { /* Wait for LSE ready */ } /* Enable LSESYS additionally */ LL_RCC_LSE_EnablePropagation(); /* Wait till LSESYS is ready */ while (!LL_RCC_LSE_IsPropagationReady()) { } } } /** * @brief Initialize clocks for the stm32 * * This routine is called to enable and configure the clocks and PLL * of the soc on the board. It depends on the board definition. * This function is called on the startup and also to restore the config * when exiting for low power mode. * * @param dev clock device struct * * @return 0 */ int stm32_clock_control_init(const struct device *dev) { uint32_t old_flash_freq; int r; ARG_UNUSED(dev); if (IS_ENABLED(STM32_SYSCLK_SRC_PLL) && (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1R)) { /* In case of chainloaded application, it may happen that PLL * was already configured as sysclk src by bootloader. * Don't test other cases as there are multiple options but * they will be handled smoothly by the function. */ SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; return 0; } old_flash_freq = RCC_CALC_FLASH_FREQ(HAL_RCC_GetSysClockFreq(), GET_CURRENT_FLASH_PRESCALER()); /* Set up individual enabled clocks */ set_up_fixed_clock_sources(); /* Set voltage regulator to comply with targeted system frequency */ set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); /* If required, apply max step freq for Sysclock w/ PLL input */ if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) { LL_RCC_PLL1_SetPLL1RCLKDivisionStep(LL_RCC_PLL1RCLK_2_STEP_DIV); /* Send 2 pulses on CLKPRE like it is done in STM32Cube HAL */ LL_RCC_PLL1_DisablePLL1RCLKDivision(); LL_RCC_PLL1_EnablePLL1RCLKDivision(); LL_RCC_PLL1_DisablePLL1RCLKDivision(); LL_RCC_PLL1_EnablePLL1RCLKDivision(); } /* Set up PLLs */ r = set_up_plls(); if (r < 0) { return r; } /* If freq increases, set flash latency before any clock setting */ if (old_flash_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); } LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_CORE_PRESCALER)); if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) { /* PLL is the SYSCLK source, use 'ahb5-prescaler' */ LL_RCC_SetAHB5Prescaler(ahb5_prescaler(STM32_AHB5_PRESCALER)); } else { /* PLL is not the SYSCLK source, use 'ahb5-div'(if set) */ if (IS_ENABLED(STM32_AHB5_DIV)) { LL_RCC_SetAHB5Divider(LL_RCC_AHB5_DIVIDER_2); } else { LL_RCC_SetAHB5Divider(LL_RCC_AHB5_DIVIDER_1); } } if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) { /* Set PLL as System Clock Source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1R); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1R) { } LL_RCC_PLL1_DisablePLL1RCLKDivision(); while (LL_RCC_PLL1_IsPLL1RCLKDivisionReady() == 0) { } } else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) { /* Set HSE as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) { } } else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) { stm32_clock_switch_to_hsi(); } /* If freq not increased, set flash latency after all clock setting */ if (old_flash_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); } /* Set voltage regulator to comply with targeted system frequency */ set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; /* Set bus prescalers prescaler */ LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER)); LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER)); LL_RCC_SetAPB7Prescaler(apb7_prescaler(STM32_APB7_PRESCALER)); return 0; } /** * @brief RCC device, note that priority is intentionally set to 1 so * that the device init runs just after SOC init */ DEVICE_DT_DEFINE(DT_NODELABEL(rcc), stm32_clock_control_init, NULL, NULL, NULL, PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY, &stm32_clock_control_api);