/* * * Copyright (c) 2021 Linaro Limited * Copyright (c) 2022 Thomas Stranger * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include /* Macros to fill up prescaler values */ #define z_ahb_prescaler(v) LL_RCC_SYSCLK_DIV_ ## v #define ahb_prescaler(v) z_ahb_prescaler(v) #define z_apb1_prescaler(v) LL_RCC_APB1_DIV_ ## v #define apb1_prescaler(v) z_apb1_prescaler(v) #define z_apb2_prescaler(v) LL_RCC_APB2_DIV_ ## v #define apb2_prescaler(v) z_apb2_prescaler(v) #define z_apb3_prescaler(v) LL_RCC_APB3_DIV_ ## v #define apb3_prescaler(v) z_apb3_prescaler(v) #define PLL1_ID 1 #define PLL2_ID 2 #define PLL3_ID 3 static uint32_t get_bus_clock(uint32_t clock, uint32_t prescaler) { return clock / prescaler; } static uint32_t get_msis_frequency(void) { return __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSI_IsEnabledRangeSelect(), ((LL_RCC_MSI_IsEnabledRangeSelect() == 1U) ? LL_RCC_MSIS_GetRange() : LL_RCC_MSIS_GetRangeAfterStandby())); } __unused /** @brief returns the pll source frequency of given pll_id */ static uint32_t get_pllsrc_frequency(size_t pll_id) { if ((IS_ENABLED(STM32_PLL_SRC_HSI) && pll_id == PLL1_ID) || (IS_ENABLED(STM32_PLL2_SRC_HSI) && pll_id == PLL2_ID) || (IS_ENABLED(STM32_PLL3_SRC_HSI) && pll_id == PLL3_ID)) { return STM32_HSI_FREQ; } else if ((IS_ENABLED(STM32_PLL_SRC_HSE) && pll_id == PLL1_ID) || (IS_ENABLED(STM32_PLL2_SRC_HSE) && pll_id == PLL2_ID) || (IS_ENABLED(STM32_PLL3_SRC_HSE) && pll_id == PLL3_ID)) { return STM32_HSE_FREQ; } else if ((IS_ENABLED(STM32_PLL_SRC_MSIS) && pll_id == PLL1_ID) || (IS_ENABLED(STM32_PLL2_SRC_MSIS) && pll_id == PLL2_ID) || (IS_ENABLED(STM32_PLL3_SRC_MSIS) && pll_id == PLL3_ID)) { return get_msis_frequency(); } __ASSERT(0, "No PLL Source configured"); return 0; } static uint32_t get_startup_frequency(void) { switch (LL_RCC_GetSysClkSource()) { case LL_RCC_SYS_CLKSOURCE_STATUS_MSIS: return get_msis_frequency(); case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: return STM32_HSI_FREQ; case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: return STM32_HSE_FREQ; case LL_RCC_SYS_CLKSOURCE_STATUS_PLL1: return get_pllsrc_frequency(PLL1_ID); default: __ASSERT(0, "Unexpected startup freq"); return 0; } } __unused static uint32_t get_pllout_frequency(uint32_t pllsrc_freq, int pllm_div, int plln_mul, int pllout_div) { __ASSERT_NO_MSG(pllm_div && pllout_div); return (pllsrc_freq / pllm_div) * plln_mul / pllout_div; } static uint32_t get_sysclk_frequency(void) { #if defined(STM32_SYSCLK_SRC_PLL) return get_pllout_frequency(get_pllsrc_frequency(PLL1_ID), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_R_DIVISOR); #elif defined(STM32_SYSCLK_SRC_MSIS) return get_msis_frequency(); #elif defined(STM32_SYSCLK_SRC_HSE) return STM32_HSE_FREQ; #elif defined(STM32_SYSCLK_SRC_HSI) return STM32_HSI_FREQ; #else __ASSERT(0, "No SYSCLK Source configured"); return 0; #endif } /** @brief Verifies clock is part of active clock configuration */ int enabled_clock(uint32_t src_clk) { if ((src_clk == STM32_SRC_SYSCLK) || (src_clk == STM32_SRC_HCLK) || (src_clk == STM32_SRC_PCLK1) || (src_clk == STM32_SRC_PCLK2) || (src_clk == STM32_SRC_PCLK3) || ((src_clk == STM32_SRC_HSE) && IS_ENABLED(STM32_HSE_ENABLED)) || ((src_clk == STM32_SRC_HSI16) && IS_ENABLED(STM32_HSI_ENABLED)) || ((src_clk == STM32_SRC_HSI48) && IS_ENABLED(STM32_HSI48_ENABLED)) || ((src_clk == STM32_SRC_LSE) && IS_ENABLED(STM32_LSE_ENABLED)) || ((src_clk == STM32_SRC_LSI) && IS_ENABLED(STM32_LSI_ENABLED)) || ((src_clk == STM32_SRC_MSIS) && IS_ENABLED(STM32_MSIS_ENABLED)) || ((src_clk == STM32_SRC_MSIK) && IS_ENABLED(STM32_MSIK_ENABLED)) || ((src_clk == STM32_SRC_PLL1_P) && IS_ENABLED(STM32_PLL_P_ENABLED)) || ((src_clk == STM32_SRC_PLL1_Q) && IS_ENABLED(STM32_PLL_Q_ENABLED)) || ((src_clk == STM32_SRC_PLL1_R) && IS_ENABLED(STM32_PLL_R_ENABLED)) || ((src_clk == STM32_SRC_PLL2_P) && IS_ENABLED(STM32_PLL2_P_ENABLED)) || ((src_clk == STM32_SRC_PLL2_Q) && IS_ENABLED(STM32_PLL2_Q_ENABLED)) || ((src_clk == STM32_SRC_PLL2_R) && IS_ENABLED(STM32_PLL2_R_ENABLED)) || ((src_clk == STM32_SRC_PLL3_P) && IS_ENABLED(STM32_PLL3_P_ENABLED)) || ((src_clk == STM32_SRC_PLL3_Q) && IS_ENABLED(STM32_PLL3_Q_ENABLED)) || ((src_clk == STM32_SRC_PLL3_R) && IS_ENABLED(STM32_PLL3_R_ENABLED))) { return 0; } return -ENOTSUP; } static inline int stm32_clock_control_on(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); volatile int temp; ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) { /* Attempt to toggle a wrong periph clock bit */ return -ENOTSUP; } sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr); /* Delay after enabling the clock, to allow it to become active */ temp = sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus); UNUSED(temp); return 0; } static inline int stm32_clock_control_off(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == 0) { /* Attempt to toggle a wrong periph clock bit */ return -ENOTSUP; } sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus, pclken->enr); return 0; } static inline int stm32_clock_control_configure(const struct device *dev, clock_control_subsys_t sub_system, void *data) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sub_system); int err; ARG_UNUSED(dev); ARG_UNUSED(data); err = enabled_clock(pclken->bus); if (err < 0) { /* Attempt to configure a src clock not available or not valid */ return err; } sys_clear_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr), STM32_CLOCK_MASK_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr)); sys_set_bits(DT_REG_ADDR(DT_NODELABEL(rcc)) + STM32_CLOCK_REG_GET(pclken->enr), STM32_CLOCK_VAL_GET(pclken->enr) << STM32_CLOCK_SHIFT_GET(pclken->enr)); return 0; } static int stm32_clock_control_get_subsys_rate(const struct device *dev, clock_control_subsys_t sys, uint32_t *rate) { struct stm32_pclken *pclken = (struct stm32_pclken *)(sys); /* * Get AHB Clock (= SystemCoreClock = SYSCLK/prescaler) * SystemCoreClock is preferred to CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * since it will be updated after clock configuration and hence * more likely to contain actual clock speed */ uint32_t ahb_clock = SystemCoreClock; uint32_t apb1_clock = get_bus_clock(ahb_clock, STM32_APB1_PRESCALER); uint32_t apb2_clock = get_bus_clock(ahb_clock, STM32_APB2_PRESCALER); uint32_t apb3_clock = get_bus_clock(ahb_clock, STM32_APB3_PRESCALER); ARG_UNUSED(dev); switch (pclken->bus) { case STM32_CLOCK_BUS_AHB1: case STM32_CLOCK_BUS_AHB2: case STM32_CLOCK_BUS_AHB2_2: case STM32_CLOCK_BUS_AHB3: case STM32_SRC_HCLK: *rate = ahb_clock; break; case STM32_CLOCK_BUS_APB1: case STM32_CLOCK_BUS_APB1_2: case STM32_SRC_PCLK1: *rate = apb1_clock; break; case STM32_CLOCK_BUS_APB2: case STM32_SRC_PCLK2: *rate = apb2_clock; break; case STM32_CLOCK_BUS_APB3: case STM32_SRC_PCLK3: *rate = apb3_clock; break; case STM32_SRC_SYSCLK: *rate = get_sysclk_frequency(); break; #if defined(STM32_HSI_ENABLED) case STM32_SRC_HSI16: *rate = STM32_HSI_FREQ; break; #endif /* STM32_HSI_ENABLED */ #if defined(STM32_MSIS_ENABLED) case STM32_SRC_MSIS: *rate = get_msis_frequency(); break; #endif /* STM32_MSIS_ENABLED */ #if defined(STM32_MSIK_ENABLED) case STM32_SRC_MSIK: *rate = __LL_RCC_CALC_MSIK_FREQ(LL_RCC_MSIRANGESEL_RUN, STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos); break; #endif /* STM32_MSIK_ENABLED */ #if defined(STM32_HSE_ENABLED) case STM32_SRC_HSE: *rate = STM32_HSE_FREQ; break; #endif /* STM32_HSE_ENABLED */ #if defined(STM32_LSE_ENABLED) case STM32_SRC_LSE: *rate = STM32_LSE_FREQ; break; #endif /* STM32_LSE_ENABLED */ #if defined(STM32_LSI_ENABLED) case STM32_SRC_LSI: *rate = STM32_LSI_FREQ; break; #endif /* STM32_LSI_ENABLED */ #if defined(STM32_HSI48_ENABLED) case STM32_SRC_HSI48: *rate = STM32_HSI48_FREQ; break; #endif /* STM32_HSI48_ENABLED */ #if defined(STM32_PLL_ENABLED) case STM32_SRC_PLL1_P: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_P_DIVISOR); break; case STM32_SRC_PLL1_Q: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_Q_DIVISOR); break; case STM32_SRC_PLL1_R: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL1_ID), STM32_PLL_M_DIVISOR, STM32_PLL_N_MULTIPLIER, STM32_PLL_R_DIVISOR); break; #endif /* STM32_PLL_ENABLED */ #if defined(STM32_PLL2_ENABLED) case STM32_SRC_PLL2_P: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID), STM32_PLL2_M_DIVISOR, STM32_PLL2_N_MULTIPLIER, STM32_PLL2_P_DIVISOR); break; case STM32_SRC_PLL2_Q: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID), STM32_PLL2_M_DIVISOR, STM32_PLL2_N_MULTIPLIER, STM32_PLL2_Q_DIVISOR); break; case STM32_SRC_PLL2_R: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL2_ID), STM32_PLL2_M_DIVISOR, STM32_PLL2_N_MULTIPLIER, STM32_PLL2_R_DIVISOR); break; #endif /* STM32_PLL2_ENABLED */ #if defined(STM32_PLL3_ENABLED) case STM32_SRC_PLL3_P: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID), STM32_PLL3_M_DIVISOR, STM32_PLL3_N_MULTIPLIER, STM32_PLL3_P_DIVISOR); break; case STM32_SRC_PLL3_Q: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID), STM32_PLL3_M_DIVISOR, STM32_PLL3_N_MULTIPLIER, STM32_PLL3_Q_DIVISOR); break; case STM32_SRC_PLL3_R: *rate = get_pllout_frequency(get_pllsrc_frequency(PLL3_ID), STM32_PLL3_M_DIVISOR, STM32_PLL3_N_MULTIPLIER, STM32_PLL3_R_DIVISOR); break; #endif /* STM32_PLL3_ENABLED */ default: return -ENOTSUP; } if (pclken->div) { *rate /= (pclken->div + 1); } return 0; } static enum clock_control_status stm32_clock_control_get_status(const struct device *dev, clock_control_subsys_t sub_system) { struct stm32_pclken *pclken = (struct stm32_pclken *)sub_system; ARG_UNUSED(dev); if (IN_RANGE(pclken->bus, STM32_PERIPH_BUS_MIN, STM32_PERIPH_BUS_MAX) == true) { /* Gated clocks */ if ((sys_read32(DT_REG_ADDR(DT_NODELABEL(rcc)) + pclken->bus) & pclken->enr) == pclken->enr) { return CLOCK_CONTROL_STATUS_ON; } else { return CLOCK_CONTROL_STATUS_OFF; } } else { /* Domain clock sources */ if (enabled_clock(pclken->bus) == 0) { return CLOCK_CONTROL_STATUS_ON; } else { return CLOCK_CONTROL_STATUS_OFF; } } } static DEVICE_API(clock_control, stm32_clock_control_api) = { .on = stm32_clock_control_on, .off = stm32_clock_control_off, .get_rate = stm32_clock_control_get_subsys_rate, .get_status = stm32_clock_control_get_status, .configure = stm32_clock_control_configure, }; __unused static int get_vco_input_range(uint32_t m_div, uint32_t *range, size_t pll_id) { uint32_t vco_freq; vco_freq = get_pllsrc_frequency(pll_id) / m_div; if (MHZ(4) <= vco_freq && vco_freq <= MHZ(8)) { *range = LL_RCC_PLLINPUTRANGE_4_8; } else if (MHZ(8) < vco_freq && vco_freq <= MHZ(16)) { *range = LL_RCC_PLLINPUTRANGE_8_16; } else { return -ERANGE; } return 0; } static void set_regu_voltage(uint32_t hclk_freq) { if (hclk_freq < MHZ(25)) { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE4); } else if (hclk_freq < MHZ(55)) { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE3); } else if (hclk_freq < MHZ(110)) { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE2); } else { LL_PWR_SetRegulVoltageScaling(LL_PWR_REGU_VOLTAGE_SCALE1); } while (LL_PWR_IsActiveFlag_VOS() == 0) { } } #if defined(STM32_PLL_ENABLED) /* * Dynamic voltage scaling: * Enable the Booster mode before enabling then PLL for sysclock above 55MHz * The goal of this function is to set the epod prescaler, so that epod clock freq * is between 4MHz and 16MHz. * Up to now only MSI as PLL1 source clock can be > 16MHz, requiring a epod prescaler > 1 * For HSI16, epod prescaler is default (div1, not divided). * Once HSE is > 16MHz, the epod prescaler would also be also required. */ static void set_epod_booster(void) { /* Reset Epod Prescaler in case it was set earlier with another DIV value */ LL_PWR_DisableEPODBooster(); while (LL_PWR_IsActiveFlag_BOOST() == 1) { } LL_RCC_SetPll1EPodPrescaler(LL_RCC_PLL1MBOOST_DIV_1); if (MHZ(55) <= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { /* * Set EPOD clock prescaler based on PLL1 input freq * (MSI/PLLM or HSE/PLLM when HSE is > 16MHz * Booster clock frequency should be between 4 and 16MHz * This is done in following steps: * Read MSI Frequency or HSE oscillaor freq * Divide PLL1 input freq (MSI/PLL or HSE/PLLM) * by the targeted freq (8MHz). * Make sure value is not higher than 16 * Shift in the register space (/2) */ int tmp; if (IS_ENABLED(STM32_PLL_SRC_MSIS)) { tmp = __LL_RCC_CALC_MSIS_FREQ(LL_RCC_MSIRANGESEL_RUN, STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos); } else if (IS_ENABLED(STM32_PLL_SRC_HSE) && (MHZ(16) < STM32_HSE_FREQ)) { tmp = STM32_HSE_FREQ; } else { return; } tmp = MIN(tmp / STM32_PLL_M_DIVISOR / 8000000, 16); tmp = tmp / 2; /* Configure the epod clock frequency between 4 and 16 MHz */ LL_RCC_SetPll1EPodPrescaler(tmp << RCC_PLL1CFGR_PLL1MBOOST_Pos); /* Enable EPOD booster and wait for booster ready flag set */ LL_PWR_EnableEPODBooster(); while (LL_PWR_IsActiveFlag_BOOST() == 0) { } } } #endif /* STM32_PLL_ENABLED */ __unused static void clock_switch_to_hsi(void) { /* Enable HSI if not enabled */ if (LL_RCC_HSI_IsReady() != 1) { /* Enable HSI */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1) { /* Wait for HSI ready */ } } /* Set HSI as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) { } LL_RCC_SetAHBPrescaler(LL_RCC_SYSCLK_DIV_1); } __unused static int set_up_plls(void) { #if defined(STM32_PLL_ENABLED) || defined(STM32_PLL2_ENABLED) || \ defined(STM32_PLL3_ENABLED) int r; uint32_t vco_input_range; #endif #if defined(STM32_PLL_ENABLED) /* * Switch to HSI and disable the PLL before configuration. * (Switching to HSI makes sure we have a SYSCLK source in * case we're currently running from the PLL we're about to * turn off and reconfigure.) */ if (LL_RCC_GetSysClkSource() == LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) { clock_switch_to_hsi(); } LL_RCC_PLL1_Disable(); /* Configure PLL source : Can be HSE, HSI, MSIS */ if (IS_ENABLED(STM32_PLL_SRC_HSE)) { /* Main PLL configuration and activation */ LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSE); } else if (IS_ENABLED(STM32_PLL_SRC_MSIS)) { /* Main PLL configuration and activation */ LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_MSIS); } else if (IS_ENABLED(STM32_PLL_SRC_HSI)) { /* Main PLL configuration and activation */ LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_HSI); } else { return -ENOTSUP; } /* * Configure the EPOD booster * before increasing the system clock freq * and after pll clock source is set */ set_epod_booster(); r = get_vco_input_range(STM32_PLL_M_DIVISOR, &vco_input_range, PLL1_ID); if (r < 0) { return r; } LL_RCC_PLL1_SetDivider(STM32_PLL_M_DIVISOR); /* Set VCO Input before enabling the PLL, depends on freq used for PLL1 */ LL_RCC_PLL1_SetVCOInputRange(vco_input_range); LL_RCC_PLL1_SetN(STM32_PLL_N_MULTIPLIER); LL_RCC_PLL1FRACN_Disable(); if (IS_ENABLED(STM32_PLL_FRACN_ENABLED)) { LL_RCC_PLL1_SetFRACN(STM32_PLL_FRACN_VALUE); LL_RCC_PLL1FRACN_Enable(); } if (IS_ENABLED(STM32_PLL_P_ENABLED)) { LL_RCC_PLL1_SetP(STM32_PLL_P_DIVISOR); LL_RCC_PLL1_EnableDomain_SAI(); } if (IS_ENABLED(STM32_PLL_Q_ENABLED)) { LL_RCC_PLL1_SetQ(STM32_PLL_Q_DIVISOR); LL_RCC_PLL1_EnableDomain_48M(); } if (IS_ENABLED(STM32_PLL_R_ENABLED)) { __ASSERT_NO_MSG((STM32_PLL_R_DIVISOR == 1) || (STM32_PLL_R_DIVISOR % 2 == 0)); LL_RCC_PLL1_SetR(STM32_PLL_R_DIVISOR); LL_RCC_PLL1_EnableDomain_SYS(); } LL_RCC_PLL1_Enable(); while (LL_RCC_PLL1_IsReady() != 1U) { } #else /* Init PLL source to None */ LL_RCC_PLL1_SetMainSource(LL_RCC_PLL1SOURCE_NONE); #endif /* STM32_PLL_ENABLED */ #if defined(STM32_PLL2_ENABLED) /* Configure PLL2 source */ if (IS_ENABLED(STM32_PLL2_SRC_HSE)) { LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSE); } else if (IS_ENABLED(STM32_PLL2_SRC_MSIS)) { LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_MSIS); } else if (IS_ENABLED(STM32_PLL2_SRC_HSI)) { LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_HSI); } else { return -ENOTSUP; } r = get_vco_input_range(STM32_PLL2_M_DIVISOR, &vco_input_range, PLL2_ID); if (r < 0) { return r; } LL_RCC_PLL2_SetDivider(STM32_PLL2_M_DIVISOR); LL_RCC_PLL2_SetVCOInputRange(vco_input_range); LL_RCC_PLL2_SetN(STM32_PLL2_N_MULTIPLIER); LL_RCC_PLL2FRACN_Disable(); if (IS_ENABLED(STM32_PLL2_FRACN_ENABLED)) { LL_RCC_PLL2_SetFRACN(STM32_PLL2_FRACN_VALUE); LL_RCC_PLL2FRACN_Enable(); } if (IS_ENABLED(STM32_PLL2_P_ENABLED)) { LL_RCC_PLL2_SetP(STM32_PLL2_P_DIVISOR); SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2PEN); } if (IS_ENABLED(STM32_PLL2_Q_ENABLED)) { LL_RCC_PLL2_SetQ(STM32_PLL2_Q_DIVISOR); SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2QEN); } if (IS_ENABLED(STM32_PLL2_R_ENABLED)) { LL_RCC_PLL2_SetR(STM32_PLL2_R_DIVISOR); SET_BIT(RCC->PLL2CFGR, RCC_PLL2CFGR_PLL2REN); } LL_RCC_PLL2_Enable(); while (LL_RCC_PLL2_IsReady() != 1U) { } #else /* Init PLL2 source to None */ LL_RCC_PLL2_SetSource(LL_RCC_PLL2SOURCE_NONE); #endif /* STM32_PLL2_ENABLED */ #if defined(STM32_PLL3_ENABLED) /* Configure PLL3 source */ if (IS_ENABLED(STM32_PLL3_SRC_HSE)) { LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSE); } else if (IS_ENABLED(STM32_PLL3_SRC_MSIS)) { LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_MSIS); } else if (IS_ENABLED(STM32_PLL3_SRC_HSI)) { LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_HSI); } else { return -ENOTSUP; } r = get_vco_input_range(STM32_PLL3_M_DIVISOR, &vco_input_range, PLL3_ID); if (r < 0) { return r; } LL_RCC_PLL3_SetDivider(STM32_PLL3_M_DIVISOR); LL_RCC_PLL3_SetVCOInputRange(vco_input_range); LL_RCC_PLL3_SetN(STM32_PLL3_N_MULTIPLIER); LL_RCC_PLL3FRACN_Disable(); if (IS_ENABLED(STM32_PLL3_FRACN_ENABLED)) { LL_RCC_PLL3_SetFRACN(STM32_PLL3_FRACN_VALUE); LL_RCC_PLL3FRACN_Enable(); } if (IS_ENABLED(STM32_PLL3_P_ENABLED)) { LL_RCC_PLL3_SetP(STM32_PLL3_P_DIVISOR); SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3PEN); } if (IS_ENABLED(STM32_PLL3_Q_ENABLED)) { LL_RCC_PLL3_SetQ(STM32_PLL3_Q_DIVISOR); SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3QEN); } if (IS_ENABLED(STM32_PLL3_R_ENABLED)) { LL_RCC_PLL3_SetR(STM32_PLL3_R_DIVISOR); SET_BIT(RCC->PLL3CFGR, RCC_PLL3CFGR_PLL3REN); } LL_RCC_PLL3_Enable(); while (LL_RCC_PLL3_IsReady() != 1U) { } #else /* Init PLL3 source to None */ LL_RCC_PLL3_SetSource(LL_RCC_PLL3SOURCE_NONE); #endif /* STM32_PLL3_ENABLED */ return 0; } static void set_up_fixed_clock_sources(void) { if (IS_ENABLED(STM32_HSE_ENABLED)) { /* Check if need to enable HSE bypass feature or not */ if (IS_ENABLED(STM32_HSE_BYPASS)) { LL_RCC_HSE_EnableBypass(); } else { LL_RCC_HSE_DisableBypass(); } /* Enable HSE */ LL_RCC_HSE_Enable(); while (LL_RCC_HSE_IsReady() != 1) { /* Wait for HSE ready */ } } if (IS_ENABLED(STM32_HSI_ENABLED)) { /* Enable HSI if not enabled */ if (LL_RCC_HSI_IsReady() != 1) { /* Enable HSI */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1) { /* Wait for HSI ready */ } } } if (IS_ENABLED(STM32_LSE_ENABLED)) { /* Enable the power interface clock */ LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR); if (!LL_PWR_IsEnabledBkUpAccess()) { /* Enable write access to Backup domain */ LL_PWR_EnableBkUpAccess(); while (!LL_PWR_IsEnabledBkUpAccess()) { /* Wait for Backup domain access */ } } /* Configure driving capability */ LL_RCC_LSE_SetDriveCapability(STM32_LSE_DRIVING << RCC_BDCR_LSEDRV_Pos); if (IS_ENABLED(STM32_LSE_BYPASS)) { /* Configure LSE bypass */ LL_RCC_LSE_EnableBypass(); } /* Enable LSE Oscillator */ LL_RCC_LSE_Enable(); /* Wait for LSE ready */ while (!LL_RCC_LSE_IsReady()) { } /* Enable LSESYS additionally */ LL_RCC_LSE_EnablePropagation(); /* Wait till LSESYS is ready */ while (!LL_RCC_LSESYS_IsReady()) { } LL_PWR_DisableBkUpAccess(); } if (IS_ENABLED(STM32_MSIS_ENABLED)) { /* Set MSIS Range */ LL_RCC_MSI_EnableRangeSelection(); LL_RCC_MSIS_SetRange(STM32_MSIS_RANGE << RCC_ICSCR1_MSISRANGE_Pos); if (IS_ENABLED(STM32_MSIS_PLL_MODE)) { __ASSERT(STM32_LSE_ENABLED, "MSIS Hardware auto calibration needs LSE clock activation"); /* Enable MSI hardware auto calibration */ LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIS); LL_RCC_MSI_EnablePLLMode(); } /* Enable MSIS */ LL_RCC_MSIS_Enable(); /* Wait till MSIS is ready */ while (LL_RCC_MSIS_IsReady() != 1) { } } if (IS_ENABLED(STM32_MSIK_ENABLED)) { /* Set MSIK Range */ LL_RCC_MSI_EnableRangeSelection(); LL_RCC_MSIK_SetRange(STM32_MSIK_RANGE << RCC_ICSCR1_MSIKRANGE_Pos); if (IS_ENABLED(STM32_MSIK_PLL_MODE)) { __ASSERT(STM32_LSE_ENABLED, "MSIK Hardware auto calibration needs LSE clock activation"); /* Enable MSI hardware auto calibration */ LL_RCC_SetMSIPLLMode(LL_RCC_PLLMODE_MSIK); LL_RCC_MSI_EnablePLLMode(); } if (IS_ENABLED(STM32_MSIS_ENABLED)) { __ASSERT((STM32_MSIK_PLL_MODE == STM32_MSIS_PLL_MODE), "Please check MSIS/MSIK config consistency"); } /* Enable MSIK */ LL_RCC_MSIK_Enable(); /* Wait till MSIK is ready */ while (LL_RCC_MSIK_IsReady() != 1) { } } if (IS_ENABLED(STM32_LSI_ENABLED)) { if (!LL_AHB3_GRP1_IsEnabledClock(LL_AHB3_GRP1_PERIPH_PWR)) { /* Enable the power interface clock */ LL_AHB3_GRP1_EnableClock(LL_AHB3_GRP1_PERIPH_PWR); } if (!LL_PWR_IsEnabledBkUpAccess()) { /* Enable write access to Backup domain */ LL_PWR_EnableBkUpAccess(); while (!LL_PWR_IsEnabledBkUpAccess()) { /* Wait for Backup domain access */ } } /* Enable LSI oscillator */ LL_RCC_LSI_Enable(); while (LL_RCC_LSI_IsReady() != 1) { } LL_PWR_DisableBkUpAccess(); } if (IS_ENABLED(STM32_HSI48_ENABLED)) { LL_RCC_HSI48_Enable(); while (LL_RCC_HSI48_IsReady() != 1) { } } } int stm32_clock_control_init(const struct device *dev) { uint32_t old_hclk_freq; int r; ARG_UNUSED(dev); /* Current hclk value */ old_hclk_freq = __LL_RCC_CALC_HCLK_FREQ(get_startup_frequency(), LL_RCC_GetAHBPrescaler()); /* Set voltage regulator to comply with targeted system frequency */ set_regu_voltage(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); /* Set flash latency */ /* If freq increases, set flash latency before any clock setting */ if (old_hclk_freq < CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); } /* Set up individual enabled clocks */ set_up_fixed_clock_sources(); /* Set up PLLs */ r = set_up_plls(); if (r < 0) { return r; } /* Set peripheral buses prescalers */ LL_RCC_SetAHBPrescaler(ahb_prescaler(STM32_AHB_PRESCALER)); LL_RCC_SetAPB1Prescaler(apb1_prescaler(STM32_APB1_PRESCALER)); LL_RCC_SetAPB2Prescaler(apb2_prescaler(STM32_APB2_PRESCALER)); LL_RCC_SetAPB3Prescaler(apb3_prescaler(STM32_APB3_PRESCALER)); if (IS_ENABLED(STM32_SYSCLK_SRC_PLL)) { /* Set PLL1 as System Clock Source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_PLL1); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_PLL1) { } } else if (IS_ENABLED(STM32_SYSCLK_SRC_HSE)) { /* Set HSE as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSE); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSE) { } } else if (IS_ENABLED(STM32_SYSCLK_SRC_MSIS)) { /* Set MSIS as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_MSIS); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_MSIS) { } } else if (IS_ENABLED(STM32_SYSCLK_SRC_HSI)) { /* Set HSI as SYSCLCK source */ LL_RCC_SetSysClkSource(LL_RCC_SYS_CLKSOURCE_HSI); while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) { } } else { return -ENOTSUP; } /* Set FLASH latency */ /* If freq not increased, set flash latency after all clock setting */ if (old_hclk_freq >= CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC) { LL_SetFlashLatency(CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC); } /* Update CMSIS variable */ SystemCoreClock = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC; return 0; } /** * @brief RCC device, note that priority is intentionally set to 1 so * that the device init runs just after SOC init */ DEVICE_DT_DEFINE(DT_NODELABEL(rcc), stm32_clock_control_init, NULL, NULL, NULL, PRE_KERNEL_1, CONFIG_CLOCK_CONTROL_INIT_PRIORITY, &stm32_clock_control_api);