/* * Copyright (c) 2020 Antmicro * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include "clock_control_litex.h" #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(CLK_CTRL_LITEX, CONFIG_CLOCK_CONTROL_LOG_LEVEL); static struct litex_clk_device *ldev; /* global struct for whole driver */ static struct litex_clk_clkout *clkouts;/* clkout array for whole driver */ /* All DRP regs addresses and sizes */ static const struct litex_drp_reg drp[] = { {DRP_ADDR_RESET, 1}, {DRP_ADDR_LOCKED, 1}, {DRP_ADDR_READ, 1}, {DRP_ADDR_WRITE, 1}, {DRP_ADDR_DRDY, 1}, {DRP_ADDR_ADR, 1}, {DRP_ADDR_DAT_W, 2}, {DRP_ADDR_DAT_R, 2}, }; struct litex_clk_regs_addr litex_clk_regs_addr_init(void) { struct litex_clk_regs_addr m; uint32_t i, addr; addr = CLKOUT0_REG1; for (i = 0; i <= CLKOUT_MAX; i++) { if (i == 5) { /* *special case because CLKOUT5 have its reg addresses *placed lower than other CLKOUTs */ m.clkout[5].reg1 = CLKOUT5_REG1; m.clkout[5].reg2 = CLKOUT5_REG2; } else { m.clkout[i].reg1 = addr; addr++; m.clkout[i].reg2 = addr; addr++; } } return m; } /* * These lookup tables are taken from: * https://github.com/Digilent/Zybo-hdmi-out/blob/b991fff6e964420ae3c00c3dbee52f2ad748b3ba/sdk/displaydemo/src/dynclk/dynclk.h * * 2015 Copyright Digilent Incorporated * Author: Sam Bobrowicz * */ /* MMCM loop filter lookup table */ static const uint32_t litex_clk_filter_table[] = { 0b0001011111, 0b0001010111, 0b0001111011, 0b0001011011, 0b0001101011, 0b0001110011, 0b0001110011, 0b0001110011, 0b0001110011, 0b0001001011, 0b0001001011, 0b0001001011, 0b0010110011, 0b0001010011, 0b0001010011, 0b0001010011, 0b0001010011, 0b0001010011, 0b0001010011, 0b0001010011, 0b0001010011, 0b0001010011, 0b0001010011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0001100011, 0b0010010011, 0b0010010011, 0b0010010011, 0b0010010011, 0b0010010011, 0b0010010011, 0b0010010011, 0b0010010011, 0b0010010011, 0b0010010011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011, 0b0010100011 }; /* MMCM lock detection lookup table */ static const uint64_t litex_clk_lock_table[] = { 0b0011000110111110100011111010010000000001, 0b0011000110111110100011111010010000000001, 0b0100001000111110100011111010010000000001, 0b0101101011111110100011111010010000000001, 0b0111001110111110100011111010010000000001, 0b1000110001111110100011111010010000000001, 0b1001110011111110100011111010010000000001, 0b1011010110111110100011111010010000000001, 0b1100111001111110100011111010010000000001, 0b1110011100111110100011111010010000000001, 0b1111111111111000010011111010010000000001, 0b1111111111110011100111111010010000000001, 0b1111111111101110111011111010010000000001, 0b1111111111101011110011111010010000000001, 0b1111111111101000101011111010010000000001, 0b1111111111100111000111111010010000000001, 0b1111111111100011111111111010010000000001, 0b1111111111100010011011111010010000000001, 0b1111111111100000110111111010010000000001, 0b1111111111011111010011111010010000000001, 0b1111111111011101101111111010010000000001, 0b1111111111011100001011111010010000000001, 0b1111111111011010100111111010010000000001, 0b1111111111011001000011111010010000000001, 0b1111111111011001000011111010010000000001, 0b1111111111010111011111111010010000000001, 0b1111111111010101111011111010010000000001, 0b1111111111010101111011111010010000000001, 0b1111111111010100010111111010010000000001, 0b1111111111010100010111111010010000000001, 0b1111111111010010110011111010010000000001, 0b1111111111010010110011111010010000000001, 0b1111111111010010110011111010010000000001, 0b1111111111010001001111111010010000000001, 0b1111111111010001001111111010010000000001, 0b1111111111010001001111111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001, 0b1111111111001111101011111010010000000001 }; /* End of copied code */ /* Helper function for filter lookup table */ static inline uint32_t litex_clk_lookup_filter(uint32_t glob_mul) { return litex_clk_filter_table[glob_mul - 1]; } /* Helper function for lock lookup table */ static inline uint64_t litex_clk_lookup_lock(uint32_t glob_mul) { return litex_clk_lock_table[glob_mul - 1]; } static inline void litex_clk_set_reg(uint32_t reg, uint32_t val) { litex_write(drp[reg].addr, drp[reg].size, val); } static inline uint32_t litex_clk_get_reg(uint32_t reg) { return litex_read(drp[reg].addr, drp[reg].size); } static inline void litex_clk_assert_reg(uint32_t reg) { int assert = (1 << (drp[reg].size * BITS_PER_BYTE)) - 1; litex_clk_set_reg(reg, assert); } static inline void litex_clk_deassert_reg(uint32_t reg) { litex_clk_set_reg(reg, ZERO_REG); } static int litex_clk_wait(uint32_t reg) { uint32_t timeout; __ASSERT(reg == DRP_LOCKED || reg == DRP_DRDY, "Unsupported register! Please provide DRP_LOCKED or DRP_DRDY"); if (reg == DRP_LOCKED) { timeout = ldev->timeout.lock; } else { timeout = ldev->timeout.drdy; } /*Waiting for signal to assert in reg*/ while (!litex_clk_get_reg(reg) && timeout) { timeout--; k_sleep(K_MSEC(1)); } if (timeout == 0) { LOG_WRN("Timeout occured when waiting for the register: 0x%x", reg); return -ETIME; } return 0; } /* Read value written in given internal MMCM register*/ static int litex_clk_get_DO(uint8_t clk_reg_addr, uint16_t *res) { int ret; litex_clk_set_reg(DRP_ADR, clk_reg_addr); litex_clk_assert_reg(DRP_READ); litex_clk_deassert_reg(DRP_READ); ret = litex_clk_wait(DRP_DRDY); if (ret != 0) { return ret; } *res = litex_clk_get_reg(DRP_DAT_R); return 0; } /* Get global divider and multiplier values and update global config */ static int litex_clk_update_global_config(void) { int ret; uint16_t divreg, mult2; uint8_t low_time, high_time; ret = litex_clk_get_DO(CLKFBOUT_REG2, &mult2); if (ret != 0) { return ret; } ret = litex_clk_get_DO(DIV_REG, &divreg); if (ret != 0) { return ret; } if (mult2 & (NO_CNT_MASK << NO_CNT_POS)) { ldev->g_config.mul = 1; } else { uint16_t mult1; ret = litex_clk_get_DO(CLKFBOUT_REG1, &mult1); if (ret != 0) { return ret; } low_time = mult1 & HL_TIME_MASK; high_time = (mult1 >> HIGH_TIME_POS) & HL_TIME_MASK; ldev->g_config.mul = low_time + high_time; } if (divreg & (NO_CNT_MASK << NO_CNT_DIVREG_POS)) { ldev->g_config.div = 1; } else { low_time = divreg & HL_TIME_MASK; high_time = (divreg >> HIGH_TIME_POS) & HL_TIME_MASK; ldev->g_config.div = low_time + high_time; } return 0; } static uint64_t litex_clk_calc_global_frequency(uint32_t mul, uint32_t div) { uint64_t f; f = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * (uint64_t)mul; f /= div; return f; } /* Calculate frequency with real global params and update global config */ static uint64_t litex_clk_get_real_global_frequency(void) { uint64_t f; litex_clk_update_global_config(); f = litex_clk_calc_global_frequency(ldev->g_config.mul, ldev->g_config.div); ldev->g_config.freq = f; ldev->ts_g_config.div = ldev->g_config.div; ldev->ts_g_config.mul = ldev->g_config.mul; ldev->ts_g_config.freq = ldev->g_config.freq; return f; } /* Return dividers of given CLKOUT */ static int litex_clk_get_clkout_divider(struct litex_clk_clkout *lcko, uint32_t *divider, uint32_t *fract_cnt) { struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); int ret; uint16_t div, frac; uint8_t clkout_nr = lcko->id; uint8_t low_time, high_time; ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &div); if (ret != 0) { return ret; } ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &frac); if (ret != 0) { return ret; } low_time = div & HL_TIME_MASK; high_time = (div >> HIGH_TIME_POS) & HL_TIME_MASK; *divider = low_time + high_time; *fract_cnt = (frac >> FRAC_POS) & FRAC_MASK; return 0; } /* Debug functions */ #ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG static void litex_clk_check_DO(char *reg_name, uint8_t clk_reg_addr, uint16_t *res) { int ret; ret = litex_clk_get_DO(clk_reg_addr, res); if (ret != 0) { LOG_ERR("%s: read error: %d", reg_name, ret); } else { LOG_DBG("%s: 0x%x", reg_name, *res); } } static void litex_clk_print_general_regs(void) { uint16_t power_reg, div_reg, clkfbout_reg1, clkfbout_reg2, lock_reg1, lock_reg2, lock_reg3, filt_reg1, filt_reg2; litex_clk_check_DO("POWER_REG", POWER_REG, &power_reg); litex_clk_check_DO("DIV_REG", DIV_REG, &div_reg); litex_clk_check_DO("MUL_REG1", CLKFBOUT_REG1, &clkfbout_reg1); litex_clk_check_DO("MUL_REG2", CLKFBOUT_REG2, &clkfbout_reg2); litex_clk_check_DO("LOCK_REG1", LOCK_REG1, &lock_reg1); litex_clk_check_DO("LOCK_REG2", LOCK_REG2, &lock_reg2); litex_clk_check_DO("LOCK_REG3", LOCK_REG3, &lock_reg3); litex_clk_check_DO("FILT_REG1", FILT_REG1, &filt_reg1); litex_clk_check_DO("FILT_REG2", FILT_REG2, &filt_reg2); } static void litex_clk_print_clkout_regs(uint8_t clkout, uint8_t reg1, uint8_t reg2) { uint16_t clkout_reg1, clkout_reg2; char reg_name[16]; sprintf(reg_name, "CLKOUT%u REG1", clkout); litex_clk_check_DO(reg_name, reg1, &clkout_reg1); sprintf(reg_name, "CLKOUT%u REG2", clkout); litex_clk_check_DO(reg_name, reg2, &clkout_reg2); } static void litex_clk_print_all_regs(void) { struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); uint32_t i; litex_clk_print_general_regs(); for (i = 0; i < ldev->nclkout; i++) { litex_clk_print_clkout_regs(i, drp_addr.clkout[i].reg1, drp_addr.clkout[i].reg2); } } static void litex_clk_print_params(struct litex_clk_clkout *lcko) { LOG_DBG("CLKOUT%d DUMP:", lcko->id); LOG_DBG("Defaults:"); LOG_DBG("f: %u d: %u/%u p: %u", lcko->def.freq, lcko->def.duty.num, lcko->def.duty.den, lcko->def.phase); LOG_DBG("Config to set:"); LOG_DBG("div: %u freq: %u duty: %u/%u phase: %d per_off: %u", lcko->ts_config.div, lcko->ts_config.freq, lcko->ts_config.duty.num, lcko->ts_config.duty.den, lcko->ts_config.phase, lcko->config.period_off); LOG_DBG("Config:"); LOG_DBG("div: %u freq: %u duty: %u/%u phase: %d per_off: %u", lcko->config.div, lcko->config.freq, lcko->config.duty.num, lcko->config.duty.den, lcko->config.phase, lcko->config.period_off); LOG_DBG("Divide group:"); LOG_DBG("e: %u ht: %u lt: %u nc: %u", lcko->div.edge, lcko->div.high_time, lcko->div.low_time, lcko->div.no_cnt); LOG_DBG("Frac group:"); LOG_DBG("f: %u fen: %u fwff: %u fwfr: %u pmf: %u", lcko->frac.frac, lcko->frac.frac_en, lcko->frac.frac_wf_f, lcko->frac.frac_wf_r, lcko->frac.phase_mux_f); LOG_DBG("Phase group:"); LOG_DBG("dt: %u pm: %u mx: %u", lcko->phase.delay_time, lcko->phase.phase_mux, lcko->phase.mx); } static void litex_clk_print_all_params(void) { uint32_t c; LOG_DBG("Global Config to set:"); LOG_DBG("freq: %llu mul: %u div: %u", ldev->ts_g_config.freq, ldev->ts_g_config.mul, ldev->ts_g_config.div); LOG_DBG("Global Config:"); LOG_DBG("freq: %llu mul: %u div: %u", ldev->g_config.freq, ldev->g_config.mul, ldev->g_config.div); for (c = 0; c < ldev->nclkout; c++) { litex_clk_print_params(&ldev->clkouts[c]); } } #endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */ /* Returns raw value ready to be written into MMCM */ static inline uint16_t litex_clk_calc_DI(uint16_t DO_val, uint16_t mask, uint16_t bitset) { uint16_t DI_val; DI_val = DO_val & mask; DI_val |= bitset; return DI_val; } /* Sets calculated DI value into DI DRP register */ static int litex_clk_set_DI(uint16_t DI_val) { int ret; litex_clk_set_reg(DRP_DAT_W, DI_val); litex_clk_assert_reg(DRP_WRITE); litex_clk_deassert_reg(DRP_WRITE); ret = litex_clk_wait(DRP_DRDY); return ret; } /* * Change register value as specified in arguments * * mask: preserve or zero MMCM register bits * by selecting 1 or 0 on desired specific mask positions * bitset: set those bits in MMCM register which are 1 in bitset * clk_reg_addr: internal MMCM address of control register * */ static int litex_clk_change_value(uint16_t mask, uint16_t bitset, uint8_t clk_reg_addr) { uint16_t DO_val, DI_val; int ret; litex_clk_assert_reg(DRP_RESET); ret = litex_clk_get_DO(clk_reg_addr, &DO_val); if (ret != 0) { return ret; } DI_val = litex_clk_calc_DI(DO_val, mask, bitset); ret = litex_clk_set_DI(DI_val); if (ret != 0) { return ret; } #ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG DI_val = litex_clk_get_reg(DRP_DAT_W); LOG_DBG("set 0x%x under: 0x%x", DI_val, clk_reg_addr); #endif litex_clk_deassert_reg(DRP_DAT_W); litex_clk_deassert_reg(DRP_RESET); ret = litex_clk_wait(DRP_LOCKED); return ret; } /* * Set register values for given CLKOUT * * clkout_nr: clock output number * mask_regX: preserve or zero MMCM register X bits * by selecting 1 or 0 on desired specific mask positions * bitset_regX: set those bits in MMCM register X which are 1 in bitset * */ static int litex_clk_set_clock(uint8_t clkout_nr, uint16_t mask_reg1, uint16_t bitset_reg1, uint16_t mask_reg2, uint16_t bitset_reg2) { struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); int ret; if (!(mask_reg2 == FULL_REG_16 && bitset_reg2 == ZERO_REG)) { ret = litex_clk_change_value(mask_reg2, bitset_reg2, drp_addr.clkout[clkout_nr].reg2); if (ret != 0) { return ret; } } if (!(mask_reg1 == FULL_REG_16 && bitset_reg1 == ZERO_REG)) { ret = litex_clk_change_value(mask_reg1, bitset_reg1, drp_addr.clkout[clkout_nr].reg1); if (ret != 0) { return ret; } } return 0; } /* Set global divider for all CLKOUTs */ static int litex_clk_set_divreg(void) { int ret; uint8_t no_cnt = 0, edge = 0, ht = 0, lt = 0, div = ldev->ts_g_config.div; uint16_t bitset = 0; if (div == 1) { no_cnt = 1; } else { ht = div / 2; lt = ht; edge = div % 2; if (edge) { lt += edge; } } bitset = (edge << EDGE_DIVREG_POS) | (no_cnt << NO_CNT_DIVREG_POS) | (ht << HIGH_TIME_POS) | (lt << LOW_TIME_POS); ret = litex_clk_change_value(KEEP_IN_DIV, bitset, DIV_REG); if (ret != 0) { return ret; } ldev->g_config.div = div; LOG_DBG("Global divider set to %u", div); return 0; } /* Set global multiplier for all CLKOUTs */ static int litex_clk_set_mulreg(void) { int ret; uint8_t no_cnt = 0, edge = 0, ht = 0, lt = 0, mul = ldev->ts_g_config.mul; uint16_t bitset1 = 0; if (mul == 1) { no_cnt = 1; } else { ht = mul / 2; lt = ht; edge = mul % 2; if (edge) { lt += edge; } } bitset1 = (ht << HIGH_TIME_POS) | (lt << LOW_TIME_POS); ret = litex_clk_change_value(KEEP_IN_MUL_REG1, bitset1, CLKFBOUT_REG1); if (ret != 0) { return ret; } if (edge || no_cnt) { uint16_t bitset2 = (edge << EDGE_POS) | (no_cnt << NO_CNT_POS); ret = litex_clk_change_value(KEEP_IN_MUL_REG2, bitset2, CLKFBOUT_REG2); if (ret != 0) { return ret; } } ldev->g_config.mul = mul; LOG_DBG("Global multiplier set to %u", mul); return 0; } static int litex_clk_set_filt(void) { uint16_t filt_reg; uint32_t filt, mul; int ret; mul = ldev->g_config.mul; filt = litex_clk_lookup_filter(mul); /* * Preparing and setting filter register values * according to reg map form Xilinx XAPP888 */ filt_reg = (((filt >> 9) & 0x1) << 15) | (((filt >> 7) & 0x3) << 11) | (((filt >> 6) & 0x1) << 8); ret = litex_clk_change_value(FILT1_MASK, filt_reg, FILT_REG1); if (ret != 0) { return ret; } filt_reg = (((filt >> 5) & 0x1) << 15) | (((filt >> 3) & 0x3) << 11) | (((filt >> 1) & 0x3) << 7) | (((filt) & 0x1) << 4); ret = litex_clk_change_value(FILT2_MASK, filt_reg, FILT_REG2); return ret; } static int litex_clk_set_lock(void) { uint16_t lock_reg; uint32_t mul; uint64_t lock; int ret; mul = ldev->g_config.mul; lock = litex_clk_lookup_lock(mul); /* * Preparing and setting lock register values * according to reg map form Xilinx XAPP888 */ lock_reg = (lock >> 20) & 0x3FF; ret = litex_clk_change_value(LOCK1_MASK, lock_reg, LOCK_REG1); if (ret != 0) { return ret; } lock_reg = (((lock >> 30) & 0x1F) << 10) | (lock & 0x3FF); ret = litex_clk_change_value(LOCK23_MASK, lock_reg, LOCK_REG2); if (ret != 0) { return ret; } lock_reg = (((lock >> 35) & 0x1F) << 10) | ((lock >> 10) & 0x3FF); ret = litex_clk_change_value(LOCK23_MASK, lock_reg, LOCK_REG3); return ret; } /* Set all multiplier-related regs: mul, filt and lock regs */ static int litex_clk_set_mul(void) { int ret; ret = litex_clk_set_mulreg(); if (ret != 0) { return ret; } ret = litex_clk_set_filt(); if (ret != 0) { return ret; } ret = litex_clk_set_lock(); return ret; } static int litex_clk_set_both_globs(void) { /* * we need to check what change first to prevent * getting our VCO_FREQ out of possible range */ uint64_t vco_freq; int ret; /* div-first case */ vco_freq = litex_clk_calc_global_frequency( ldev->g_config.mul, ldev->ts_g_config.div); if (vco_freq > ldev->vco.max || vco_freq < ldev->vco.min) { /* div-first not safe */ vco_freq = litex_clk_calc_global_frequency( ldev->ts_g_config.mul, ldev->g_config.div); if (vco_freq > ldev->vco.max || vco_freq < ldev->vco.min) { /* mul-first not safe */ ret = litex_clk_set_divreg(); /* Ignore timeout because we expect that to happen */ if (ret != -ETIME && ret != 0) { return ret; } else if (ret == -ETIME) { ldev->g_config.div = ldev->ts_g_config.div; LOG_DBG("Global divider set to %u", ldev->g_config.div); } ret = litex_clk_set_mul(); if (ret != 0) { return ret; } } else { /* mul-first safe */ ret = litex_clk_set_mul(); if (ret != 0) { return ret; } ret = litex_clk_set_divreg(); if (ret != 0) { return ret; } } } else { /* div-first safe */ ret = litex_clk_set_divreg(); if (ret != 0) { return ret; } ret = litex_clk_set_mul(); if (ret != 0) { return ret; } } return 0; } /* Set global divider, multiplier, filt and lock values */ static int litex_clk_set_globs(void) { int ret; uint8_t set_div = 0, set_mul = 0; set_div = ldev->ts_g_config.div != ldev->g_config.div; set_mul = ldev->ts_g_config.mul != ldev->g_config.mul; if (set_div || set_mul) { if (set_div && set_mul) { ret = litex_clk_set_both_globs(); if (ret != 0) { return ret; } } else if (set_div) { /* set divider only */ ret = litex_clk_set_divreg(); if (ret != 0) { return ret; } } else { /* set multiplier only */ ret = litex_clk_set_mul(); if (ret != 0) { return ret; } } ldev->g_config.freq = ldev->ts_g_config.freq; } return 0; } /* Round scaled value*/ static inline uint32_t litex_round(uint32_t val, uint32_t mod) { if (val % mod > mod / 2) { return val / mod + 1; } return val / mod; } /* * Duty Cycle */ /* Returns accurate duty ratio of given clkout*/ int litex_clk_get_duty_cycle(struct litex_clk_clkout *lcko, struct clk_duty *duty) { struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); int ret; uint32_t divider; uint16_t clkout_reg1, clkout_reg2; uint8_t clkout_nr, high_time, edge, no_cnt, frac_en, frac_cnt; clkout_nr = lcko->id; /* Check if divider is off */ ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &clkout_reg2); if (ret != 0) { return ret; } edge = (clkout_reg2 >> EDGE_POS) & EDGE_MASK; no_cnt = (clkout_reg2 >> NO_CNT_POS) & NO_CNT_MASK; frac_en = (clkout_reg2 >> FRAC_EN_POS) & FRAC_EN_MASK; frac_cnt = (clkout_reg2 >> FRAC_POS) & FRAC_MASK; /* get duty 50% when divider is off or fractional is enabled */ if (no_cnt || (frac_en && frac_cnt)) { duty->num = 1; duty->den = 2; return 0; } ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &clkout_reg1); if (ret != 0) { return ret; } divider = clkout_reg1 & HL_TIME_MASK; high_time = (clkout_reg1 >> HIGH_TIME_POS) & HL_TIME_MASK; divider += high_time; /* Scaling to consider edge control bit */ duty->num = high_time * 10 + edge * 5; duty->den = (divider + edge) * 10; return 0; } /* Calculates duty cycle for given ratio in percent, 1% accuracy */ static inline uint8_t litex_clk_calc_duty_percent(struct clk_duty *duty) { uint32_t div, duty_ratio, ht; ht = duty->num; div = duty->den; duty_ratio = ht * 10000 / div; return (uint8_t)litex_round(duty_ratio, 100); } /* Calculate necessary values for setting duty cycle in normal mode */ static int litex_clk_calc_duty_normal(struct litex_clk_clkout *lcko, int calc_new) { struct clk_duty duty; int delta_d; uint32_t ht_aprox, synth_duty, min_d; uint8_t high_time_it, edge_it, high_duty, divider = lcko->config.div; int err; if (calc_new) { duty = lcko->ts_config.duty; } else { err = litex_clk_get_duty_cycle(lcko, &duty); if (err != 0) { return err; } } high_duty = litex_clk_calc_duty_percent(&duty); min_d = INT_MAX; /* check if duty is available to set */ ht_aprox = high_duty * divider; if (ht_aprox > ((HIGH_LOW_TIME_REG_MAX * 100) + 50) || ((HIGH_LOW_TIME_REG_MAX * 100) + 50) < (divider * 100) - ht_aprox) { return -EINVAL; } /* to prevent high_time == 0 or low_time == 0 */ for (high_time_it = 1; high_time_it < divider; high_time_it++) { for (edge_it = 0; edge_it < 2; edge_it++) { synth_duty = (high_time_it * 100 + 50 * edge_it) / divider; delta_d = synth_duty - high_duty; delta_d = abs(delta_d); /* check if low_time won't be above acceptable range */ if (delta_d < min_d && (divider - high_time_it) <= HIGH_LOW_TIME_REG_MAX) { min_d = delta_d; lcko->div.high_time = high_time_it; lcko->div.low_time = divider - high_time_it; lcko->div.edge = edge_it; lcko->config.duty.num = high_time_it * 100 + 50 * edge_it; lcko->config.duty.den = divider * 100; } } } /* * Calculating values in normal mode, * clear control bits of fractional part */ lcko->frac.frac_wf_f = 0; lcko->frac.frac_wf_r = 0; return 0; } /* Calculates duty high_time for given divider and ratio */ static inline int litex_clk_calc_duty_high_time(struct clk_duty *duty, uint32_t divider) { uint32_t high_duty; high_duty = litex_clk_calc_duty_percent(duty) * divider; return litex_round(high_duty, 100); } /* Set duty cycle with given ratio */ static int litex_clk_set_duty_cycle(struct litex_clk_clkout *lcko, struct clk_duty *duty) { int ret; uint16_t bitset1, bitset2; uint8_t clkout_nr = lcko->id, *edge = &lcko->div.edge, *high_time = &lcko->div.high_time, high_duty = litex_clk_calc_duty_percent(duty), *low_time = &lcko->div.low_time; if (lcko->frac.frac == 0) { lcko->ts_config.duty = *duty; LOG_DBG("CLKOUT%d: setting duty: %u/%u", lcko->id, duty->num, duty->den); ret = litex_clk_calc_duty_normal(lcko, true); if (ret != 0) { LOG_ERR("CLKOUT%d: cannot set %d%% duty cycle", clkout_nr, high_duty); return ret; } } else { LOG_ERR("CLKOUT%d: cannot set duty cycle when fractional divider enabled", clkout_nr); return -EACCES; } bitset1 = (*high_time << HIGH_TIME_POS) | (*low_time << LOW_TIME_POS); bitset2 = (*edge << EDGE_POS); LOG_DBG("SET DUTY CYCLE: e:%u ht:%u lt:%u\nbitset1: 0x%x bitset2: 0x%x", *edge, *high_time, *low_time, bitset1, bitset2); ret = litex_clk_set_clock(clkout_nr, REG1_DUTY_MASK, bitset1, REG2_DUTY_MASK, bitset2); if (ret != 0) { return ret; } LOG_INF("CLKOUT%d: set duty: %d%%", lcko->id, litex_clk_calc_duty_percent(&lcko->config.duty)); return 0; } /* * Phase */ /* Calculate necessary values for setting phase in normal mode */ static int litex_clk_calc_phase_normal(struct litex_clk_clkout *lcko) { uint64_t period_buff; uint32_t post_glob_div_f, global_period, clkout_period, *period_off = &lcko->ts_config.period_off; uint8_t divider = lcko->config.div; /* ps unit */ post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency(); period_buff = PICOS_IN_SEC; period_buff /= post_glob_div_f; global_period = (uint32_t)period_buff; clkout_period = global_period * divider; if (lcko->ts_config.phase != 0) { int synth_phase, delta_p, min_p, p_o; uint8_t delay, p_m; *period_off = litex_round(clkout_period * (*period_off), 10000); if (*period_off / global_period > DELAY_TIME_MAX) { return -EINVAL; } min_p = INT_MAX; p_o = *period_off; /* Delay_time: (0-63) */ for (delay = 0; delay <= DELAY_TIME_MAX; delay++) { /* phase_mux: (0-7) */ for (p_m = 0; p_m <= PHASE_MUX_MAX; p_m++) { synth_phase = (delay * global_period) + ((p_m * ((global_period * 100) / 8) / 100)); delta_p = synth_phase - p_o; delta_p = abs(delta_p); if (delta_p < min_p) { min_p = delta_p; lcko->phase.phase_mux = p_m; lcko->phase.delay_time = delay; lcko->config.period_off = synth_phase; } } } } else { /* Don't change phase offset*/ lcko->phase.phase_mux = 0; lcko->phase.delay_time = 0; } /* * Calculating values in normal mode, * fractional control bits need to be zero */ lcko->frac.phase_mux_f = 0; return 0; } /* Convert phase offset to positive lower than 360 deg. and calculate period */ static int litex_clk_prepare_phase(struct litex_clk_clkout *lcko) { int *phase = &lcko->ts_config.phase; *phase %= 360; if (*phase < 0) { *phase += 360; } lcko->ts_config.period_off = ((*phase * 10000) / 360); return 0; } /* Calculate necessary values for setting phase */ static int litex_clk_calc_phase(struct litex_clk_clkout *lcko) { litex_clk_prepare_phase(lcko); return litex_clk_calc_phase_normal(lcko); } /* Returns phase-specific values of given clock output */ static int litex_clk_get_phase_data(struct litex_clk_clkout *lcko, uint8_t *phase_mux, uint8_t *delay_time) { struct litex_clk_regs_addr drp_addr = litex_clk_regs_addr_init(); int ret; uint16_t r1, r2; uint8_t clkout_nr = lcko->id; ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg1, &r1); if (ret != 0) { return ret; } ret = litex_clk_get_DO(drp_addr.clkout[clkout_nr].reg2, &r2); if (ret != 0) { return ret; } *phase_mux = (r1 >> PHASE_MUX_POS) & PHASE_MUX_MASK; *delay_time = (r2 >> DELAY_TIME_POS) & HL_TIME_MASK; return 0; } /* Returns phase of given clock output in time offset */ int litex_clk_get_phase(struct litex_clk_clkout *lcko) { uint64_t period_buff; uint32_t divider = 0, fract_cnt, post_glob_div_f, pm, global_period, clkout_period, period; uint8_t phase_mux = 0, delay_time = 0; int err = 0; litex_clk_get_phase_data(lcko, &phase_mux, &delay_time); err = litex_clk_get_clkout_divider(lcko, ÷r, &fract_cnt); if (err != 0) { return err; } post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency(); period_buff = PICOS_IN_SEC; period_buff /= post_glob_div_f; /* ps unit */ global_period = (uint32_t)period_buff; clkout_period = global_period * divider; pm = (phase_mux * global_period * 1000) / PHASE_MUX_RES_FACTOR; pm = litex_round(pm, 1000); period = delay_time * global_period + pm; period = period * 1000 / clkout_period; period = period * 360; return litex_round(period, 1000); } /* Returns phase of given clock output in degrees */ int litex_clk_get_phase_deg(struct litex_clk_clkout *lcko) { uint64_t post_glob_div_f, buff, clkout_period; post_glob_div_f = (uint32_t)litex_clk_get_real_global_frequency(); buff = PICOS_IN_SEC; buff /= post_glob_div_f; clkout_period = (uint32_t)buff; clkout_period *= lcko->config.div; buff = lcko->config.period_off * 1000 / clkout_period; buff *= 360; buff = litex_round(buff, 1000); return (int)buff; } /* Sets phase given in degrees on given clock output */ int litex_clk_set_phase(struct litex_clk_clkout *lcko, int degrees) { int ret; uint16_t bitset1, bitset2, reg2_mask; uint8_t *phase_mux = &lcko->phase.phase_mux, *delay_time = &lcko->phase.delay_time, clkout_nr = lcko->id; lcko->ts_config.phase = degrees; reg2_mask = REG2_PHASE_MASK; LOG_DBG("CLKOUT%d: setting phase: %u deg", lcko->id, degrees); ret = litex_clk_calc_phase(lcko); if (ret != 0) { LOG_ERR("CLKOUT%d: phase offset %d deg is too high", clkout_nr, degrees); return ret; } bitset1 = (*phase_mux << PHASE_MUX_POS); bitset2 = (*delay_time << DELAY_TIME_POS); ret = litex_clk_set_clock(clkout_nr, REG1_PHASE_MASK, bitset1, reg2_mask, bitset2); if (ret != 0) { return ret; } lcko->config.phase = litex_clk_get_phase_deg(lcko); LOG_INF("CLKOUT%d: set phase: %d deg", lcko->id, lcko->config.phase); LOG_DBG("SET PHASE: pm:%u dt:%u\nbitset1: 0x%x bitset2: 0x%x", *phase_mux, *delay_time, bitset1, bitset2); return 0; } /* * Frequency */ /* Returns rate in Hz */ static inline uint32_t litex_clk_calc_rate(struct litex_clk_clkout *lcko) { uint64_t f = litex_clk_calc_global_frequency(ldev->ts_g_config.mul, ldev->ts_g_config.div); f /= lcko->config.div; return (uint32_t)f; } /* * Written since there is no pow() in math.h. Only for exponent * and base above 0. Used for calculating scaling factor for * frequency margin * */ static uint32_t litex_clk_pow(uint32_t base, uint32_t exp) { int ret = 1; while (exp--) { ret *= base; } return ret; } /* Returns true when possible to set frequency with given global settings */ static int litex_clk_calc_clkout_params(struct litex_clk_clkout *lcko, uint64_t vco_freq) { int delta_f; uint64_t m, clk_freq = 0; uint32_t d, margin = 1; if (lcko->margin.exp) { margin = litex_clk_pow(10, lcko->margin.exp); } lcko->div.no_cnt = 0; for (d = lcko->clkout_div.min; d <= lcko->clkout_div.max; d++) { clk_freq = vco_freq; clk_freq /= d; m = lcko->ts_config.freq * lcko->margin.m; /* Scale margin according to its exponent */ if (lcko->margin.exp) { m /= margin; } delta_f = clk_freq - lcko->ts_config.freq; delta_f = abs(delta_f); if (delta_f <= m) { lcko->config.freq = (uint32_t)clk_freq; if (lcko->config.div != d) { ldev->update_clkout[lcko->id] = 1; } lcko->config.div = d; /* for sake of completeness */ lcko->ts_config.div = d; /* we are not using fractional divider */ lcko->frac.frac_en = 0; lcko->frac.frac = 0; if (d == 1) { lcko->div.no_cnt = 1; } LOG_DBG("CLKOUT%d: freq:%u div:%u gdiv:%u gmul:%u", lcko->id, lcko->config.freq, lcko->config.div, ldev->ts_g_config.div, ldev->ts_g_config.mul); return true; } } return false; } /* Compute dividers for all active clock outputs */ static int litex_clk_calc_all_clkout_params(uint64_t vco_freq) { struct litex_clk_clkout *lcko; uint32_t c; for (c = 0; c < ldev->nclkout; c++) { lcko = &ldev->clkouts[c]; if (!litex_clk_calc_clkout_params(lcko, vco_freq)) { return false; } } return true; } /* Calculate parameters for whole active part of MMCM */ static int litex_clk_calc_all_params(void) { uint32_t div, mul; uint64_t vco_freq = 0; for (div = ldev->divclk.min; div <= ldev->divclk.max; div++) { ldev->ts_g_config.div = div; for (mul = ldev->clkfbout.max; mul >= ldev->clkfbout.min; mul--) { int below, above, all_valid = true; vco_freq = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * (uint64_t)mul; vco_freq /= div; below = vco_freq < (ldev->vco.min * (1 + ldev->vco_margin)); above = vco_freq > (ldev->vco.max * (1 - ldev->vco_margin)); if (!below && !above) { all_valid = litex_clk_calc_all_clkout_params (vco_freq); if (all_valid) { ldev->ts_g_config.mul = mul; ldev->ts_g_config.freq = vco_freq; LOG_DBG("GLOBAL: freq:%llu g_div:%u g_mul:%u", ldev->ts_g_config.freq, ldev->ts_g_config.div, ldev->ts_g_config.mul); return 0; } } } } LOG_ERR("Cannot find correct settings for all clock outputs!"); return -ENOTSUP; } int litex_clk_check_rate_range(struct litex_clk_clkout *lcko, uint32_t rate) { uint64_t max, min, m; uint32_t div, margin; m = rate * lcko->margin.m; if (lcko->margin.exp) { margin = litex_clk_pow(10, lcko->margin.exp); } max = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * (uint64_t)ldev->clkfbout.max; div = ldev->divclk.min * lcko->clkout_div.min; max /= div; max += m; min = CONFIG_SYS_CLOCK_HW_CYCLES_PER_SEC * ldev->clkfbout.min; div = ldev->divclk.max * lcko->clkout_div.max; min /= div; if (min < m) { min = 0; } else { min -= m; } if ((uint64_t)rate < min || (uint64_t)rate > max) { return -EINVAL; } return 0; } /* Returns closest available clock rate in Hz */ long litex_clk_round_rate(struct litex_clk_clkout *lcko, unsigned long rate) { int ret; ret = litex_clk_check_rate_range(lcko, rate); if (ret != 0) { return -EINVAL; } lcko->ts_config.freq = rate; ret = litex_clk_calc_all_params(); if (ret != 0) { return ret; } return litex_clk_calc_rate(lcko); } int litex_clk_write_rate(struct litex_clk_clkout *lcko) { int ret; uint16_t bitset1, bitset2; uint8_t *divider = &lcko->config.div, *edge = &lcko->div.edge, *high_time = &lcko->div.high_time, *low_time = &lcko->div.low_time, *no_cnt = &lcko->div.no_cnt, *frac = &lcko->frac.frac, *frac_en = &lcko->frac.frac_en, *frac_wf_r = &lcko->frac.frac_wf_r; bitset1 = (*high_time << HIGH_TIME_POS) | (*low_time << LOW_TIME_POS); bitset2 = (*frac << FRAC_POS) | (*frac_en << FRAC_EN_POS) | (*frac_wf_r << FRAC_WF_R_POS) | (*edge << EDGE_POS) | (*no_cnt << NO_CNT_POS); LOG_DBG("SET RATE: div:%u f:%u fwfr:%u fen:%u nc:%u e:%u ht:%u lt:%u\nbitset1: 0x%x bitset2: 0x%x", *divider, *frac, *frac_wf_r, *frac_en, *no_cnt, *edge, *high_time, *low_time, bitset1, bitset2); ret = litex_clk_set_clock(lcko->id, REG1_FREQ_MASK, bitset1, REG2_FREQ_MASK, bitset2); if (ret != 0) { return ret; } ldev->update_clkout[lcko->id] = 0; return 0; } int litex_clk_update_clkouts(void) { struct litex_clk_clkout *lcko; int ret; uint8_t c; for (c = 0; c < ldev->nclkout; c++) { if (ldev->update_clkout[c]) { lcko = &ldev->clkouts[c]; ret = litex_clk_calc_duty_normal(lcko, false); if (ret != 0) { return ret; } ret = litex_clk_write_rate(lcko); if (ret != 0) { return ret; } LOG_INF("CLKOUT%d: updated rate: %u to %u HZ", lcko->id, lcko->ts_config.freq, lcko->config.freq); } } return 0; } /* Set closest available clock rate in Hz, parent_rate ignored */ int litex_clk_set_rate(struct litex_clk_clkout *lcko, unsigned long rate) { int ret; LOG_DBG("CLKOUT%d: setting rate: %lu", lcko->id, rate); ret = litex_clk_round_rate(lcko, rate); if (ret < 0) { return ret; } ret = litex_clk_set_globs(); if (ret != 0) { return ret; } ret = litex_clk_calc_duty_normal(lcko, false); if (ret != 0) { return ret; } ret = litex_clk_write_rate(lcko); if (ret != 0) { return ret; } LOG_INF("CLKOUT%d: set rate: %u HZ", lcko->id, lcko->config.freq); ret = litex_clk_update_clkouts(); if (ret != 0) { return ret; } #ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG litex_clk_print_all_params(); litex_clk_print_all_regs(); #endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */ return 0; } /* Set default clock value from device tree for given clkout*/ static int litex_clk_set_def_clkout(int clkout_nr) { struct litex_clk_clkout *lcko = &ldev->clkouts[clkout_nr]; int ret; ret = litex_clk_set_rate(lcko, lcko->def.freq); if (ret != 0) { return ret; } ret = litex_clk_set_duty_cycle(lcko, &lcko->def.duty); if (ret != 0) { return ret; } return litex_clk_set_phase(lcko, lcko->def.phase); } static int litex_clk_set_all_def_clkouts(void) { int c, ret; for (c = 0; c < ldev->nclkout; c++) { ret = litex_clk_set_def_clkout(c); if (ret != 0) { return ret; } } return 0; } /* * Returns parameters of given clock output * * clock: device structure for driver * sub_system: pointer to struct litex_clk_clkout * casted to clock_control_subsys with * all clkout parameters */ static int litex_clk_get_subsys_rate(const struct device *clock, clock_control_subsys_t sys, uint32_t *rate) { struct litex_clk_setup *setup = sys; struct litex_clk_clkout *lcko; lcko = &ldev->clkouts[setup->clkout_nr]; *rate = litex_clk_calc_rate(lcko); return 0; } static enum clock_control_status litex_clk_get_status(const struct device *dev, clock_control_subsys_t sys) { struct litex_clk_setup *setup = sys; struct clk_duty duty; struct litex_clk_clkout *lcko; int ret; lcko = &ldev->clkouts[setup->clkout_nr]; setup->rate = litex_clk_calc_rate(lcko); ret = litex_clk_get_duty_cycle(lcko, &duty); if (ret != 0) { return ret; } setup->duty = litex_clk_calc_duty_percent(&duty); setup->phase = litex_clk_get_phase(lcko); return CLOCK_CONTROL_STATUS_ON; } static inline int litex_clk_on(const struct device *dev, clock_control_subsys_t sys) { struct litex_clk_setup *setup = sys; struct clk_duty duty; struct litex_clk_clkout *lcko; uint8_t duty_perc; int ret; lcko = &ldev->clkouts[setup->clkout_nr]; if (lcko->config.freq != setup->rate) { ret = litex_clk_set_rate(lcko, setup->rate); if (ret != 0) { return ret; } } if (lcko->config.phase != setup->phase) { ret = litex_clk_set_phase(lcko, setup->phase); if (ret != 0) { return ret; } } duty_perc = litex_clk_calc_duty_percent(&lcko->config.duty); if (duty_perc != setup->duty) { duty.num = setup->duty; duty.den = 100; ret = litex_clk_set_duty_cycle(lcko, &duty); if (ret != 0) { return ret; } } return 0; } static inline int litex_clk_off(const struct device *dev, clock_control_subsys_t sub_system) { return litex_clk_change_value(ZERO_REG, ZERO_REG, POWER_REG); } static DEVICE_API(clock_control, litex_clk_api) = { .on = litex_clk_on, .off = litex_clk_off, .get_rate = litex_clk_get_subsys_rate, .get_status = litex_clk_get_status }; static void litex_clk_dts_clkout_ranges_read(struct litex_clk_range *clkout_div) { clkout_div->min = CLKOUT_DIVIDE_MIN; clkout_div->max = CLKOUT_DIVIDE_MAX; } static int litex_clk_dts_timeout_read(struct litex_clk_timeout *timeout) { /* Read wait_lock timeout from device property*/ timeout->lock = LOCK_TIMEOUT; if (timeout->lock < 1) { LOG_ERR("LiteX CLK driver cannot wait shorter than ca. 1ms\n"); return -EINVAL; } /* Read wait_drdy timeout from device property*/ timeout->drdy = DRDY_TIMEOUT; if (timeout->drdy < 1) { LOG_ERR("LiteX CLK driver cannot wait shorter than ca. 1ms\n"); return -EINVAL; } return 0; } static int litex_clk_dts_clkouts_read(void) { struct litex_clk_range clkout_div; struct litex_clk_clkout *lcko; litex_clk_dts_clkout_ranges_read(&clkout_div); #if CLKOUT_EXIST(0) == 1 CLKOUT_INIT(0) #endif #if CLKOUT_EXIST(1) == 1 CLKOUT_INIT(1) #endif #if CLKOUT_EXIST(2) == 1 CLKOUT_INIT(2) #endif #if CLKOUT_EXIST(3) == 1 CLKOUT_INIT(3) #endif #if CLKOUT_EXIST(4) == 1 CLKOUT_INIT(4) #endif #if CLKOUT_EXIST(5) == 1 CLKOUT_INIT(5) #endif #if CLKOUT_EXIST(6) == 1 CLKOUT_INIT(6) #endif return 0; } static void litex_clk_init_clkouts(void) { struct litex_clk_clkout *lcko; int i; for (i = 0; i < ldev->nclkout; i++) { lcko = &ldev->clkouts[i]; lcko->base = ldev->base; /* mark defaults to set */ lcko->ts_config.freq = lcko->def.freq; lcko->ts_config.duty = lcko->def.duty; lcko->ts_config.phase = lcko->def.phase; } } static int litex_clk_dts_cnt_clocks(void) { return NCLKOUT; } static void litex_clk_dts_global_ranges_read(void) { ldev->divclk.min = DIVCLK_DIVIDE_MIN; ldev->divclk.max = DIVCLK_DIVIDE_MAX; ldev->clkfbout.min = CLKFBOUT_MULT_MIN; ldev->clkfbout.max = CLKFBOUT_MULT_MAX; ldev->vco.min = VCO_FREQ_MIN; ldev->vco.max = VCO_FREQ_MAX; ldev->vco_margin = VCO_MARGIN; } static int litex_clk_dts_global_read(void) { int ret; ldev->nclkout = litex_clk_dts_cnt_clocks(); clkouts = k_malloc(sizeof(struct litex_clk_clkout) * ldev->nclkout); ldev->update_clkout = k_malloc(sizeof(uint8_t) * ldev->nclkout); if (!clkouts || !ldev->update_clkout) { LOG_ERR("CLKOUT memory allocation failure!"); return -ENOMEM; } ldev->clkouts = clkouts; ret = litex_clk_dts_timeout_read(&ldev->timeout); if (ret != 0) { return ret; } litex_clk_dts_global_ranges_read(); return 0; } static int litex_clk_init_glob_clk(void) { int ret; /* Power on MMCM module */ ret = litex_clk_change_value(FULL_REG_16, FULL_REG_16, POWER_REG); if (ret != 0) { LOG_ERR("MMCM initialization failure, ret: %d", ret); return ret; } return 0; } /* Enable module, set global divider, multiplier, default clkout parameters */ static int litex_clk_init(const struct device *dev) { int ret; ldev = k_malloc(sizeof(struct litex_clk_device)); if (ldev == NULL) { return -ENOMEM; } ldev->base = (uint32_t *)DRP_BASE; if (ldev->base == NULL) { return -EIO; } ret = litex_clk_dts_global_read(); if (ret != 0) { return ret; } ret = litex_clk_dts_clkouts_read(); if (ret != 0) { return ret; } litex_clk_init_clkouts(); ret = litex_clk_init_glob_clk(); if (ret != 0) { return ret; } ret = litex_clk_set_all_def_clkouts(); if (ret != 0) { return ret; } #ifdef CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG litex_clk_print_all_params(); litex_clk_print_all_regs(); #endif /* CONFIG_CLOCK_CONTROL_LOG_LEVEL_DBG */ LOG_INF("LiteX Clock Control driver initialized"); return 0; } static const struct litex_clk_device ldev_init = { .base = (uint32_t *)DRP_BASE, .timeout = {LOCK_TIMEOUT, DRDY_TIMEOUT}, .divclk = {DIVCLK_DIVIDE_MIN, DIVCLK_DIVIDE_MAX}, .clkfbout = {CLKFBOUT_MULT_MIN, CLKFBOUT_MULT_MAX}, .vco = {VCO_FREQ_MIN, VCO_FREQ_MAX}, .vco_margin = VCO_MARGIN, .nclkout = NCLKOUT }; DEVICE_DT_DEFINE(DT_NODELABEL(clock0), litex_clk_init, NULL, NULL, &ldev_init, POST_KERNEL, CONFIG_CLOCK_CONTROL_INIT_PRIORITY, &litex_clk_api);