/* * Copyright (c) 2020 Abram Early * Copyright (c) 2023 Andriy Gelman * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_mcp251xfd #include "can_mcp251xfd.h" #include #include #include #include #include #include #include LOG_MODULE_REGISTER(can_mcp251xfd, CONFIG_CAN_LOG_LEVEL); static void mcp251xfd_canframe_to_txobj(const struct can_frame *src, int mailbox_idx, struct mcp251xfd_txobj *dst) { memset(dst, 0, sizeof(*dst)); if ((src->flags & CAN_FRAME_IDE) != 0) { dst->id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, src->id >> 18); dst->id |= FIELD_PREP(MCP251XFD_OBJ_ID_EID_MASK, src->id); dst->flags |= MCP251XFD_OBJ_FLAGS_IDE; } else { dst->id = FIELD_PREP(MCP251XFD_OBJ_ID_SID_MASK, src->id); } if ((src->flags & CAN_FRAME_BRS) != 0) { dst->flags |= MCP251XFD_OBJ_FLAGS_BRS; } dst->flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_DLC_MASK, src->dlc); #if defined(CONFIG_CAN_FD_MODE) if ((src->flags & CAN_FRAME_FDF) != 0) { dst->flags |= MCP251XFD_OBJ_FLAGS_FDF; } #endif dst->flags |= FIELD_PREP(MCP251XFD_OBJ_FLAGS_SEQ_MASK, mailbox_idx); dst->id = sys_cpu_to_le32(dst->id); dst->flags = sys_cpu_to_le32(dst->flags); if ((src->flags & CAN_FRAME_RTR) != 0) { dst->flags |= MCP251XFD_OBJ_FLAGS_RTR; } else { memcpy(dst->data, src->data, MIN(can_dlc_to_bytes(src->dlc), CAN_MAX_DLEN)); } } static void *mcp251xfd_read_reg(const struct device *dev, uint16_t addr, int len) { const struct mcp251xfd_config *dev_cfg = dev->config; struct mcp251xfd_data *dev_data = dev->data; struct mcp251xfd_spi_data *spi_data = &dev_data->spi_data; uint16_t spi_cmd; int ret; spi_cmd = sys_cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_READ | addr); memcpy(&spi_data->header[1], &spi_cmd, sizeof(spi_cmd)); struct spi_buf tx_buf = {.buf = &spi_data->header[1], .len = MCP251XFD_SPI_CMD_LEN + len}; struct spi_buf rx_buf = {.buf = &spi_data->header[1], .len = MCP251XFD_SPI_CMD_LEN + len}; const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1}; const struct spi_buf_set rx = {.buffers = &rx_buf, .count = 1}; ret = spi_transceive_dt(&dev_cfg->bus, &tx, &rx); if (ret < 0) { return NULL; } return &spi_data->buf[0]; } static void *mcp251xfd_read_crc(const struct device *dev, uint16_t addr, int len) { const struct mcp251xfd_config *dev_cfg = dev->config; struct mcp251xfd_data *dev_data = dev->data; struct mcp251xfd_spi_data *spi_data = &dev_data->spi_data; int num_retries = CONFIG_CAN_MCP251XFD_READ_CRC_RETRIES + 1; int ret; while (num_retries-- > 0) { uint16_t crc_in, crc, spi_cmd; struct spi_buf tx_buf = {.buf = &spi_data->header[0], .len = MCP251XFD_SPI_CMD_LEN + MCP251XFD_SPI_LEN_FIELD_LEN + len + MCP251XFD_SPI_CRC_LEN}; struct spi_buf rx_buf = {.buf = &spi_data->header[0], .len = MCP251XFD_SPI_CMD_LEN + MCP251XFD_SPI_LEN_FIELD_LEN + len + MCP251XFD_SPI_CRC_LEN}; const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1}; const struct spi_buf_set rx = {.buffers = &rx_buf, .count = 1}; spi_cmd = sys_cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_READ_CRC | addr); memcpy(&spi_data->header[0], &spi_cmd, sizeof(spi_cmd)); spi_data->header[2] = len; /* * Evaluate initial crc over spi_cmd and length as these value will change after * spi transaction is finished. */ crc_in = crc16(MCP251XFD_CRC_POLY, MCP251XFD_CRC_SEED, (uint8_t *)(&spi_data->header[0]), MCP251XFD_SPI_CMD_LEN + MCP251XFD_SPI_LEN_FIELD_LEN); ret = spi_transceive_dt(&dev_cfg->bus, &tx, &rx); if (ret < 0) { continue; } /* Continue crc calculation over the data field and the crc field */ crc = crc16(MCP251XFD_CRC_POLY, crc_in, &spi_data->buf[0], len + MCP251XFD_SPI_CRC_LEN); if (crc == 0) { return &spi_data->buf[0]; } } return NULL; } static inline void *mcp251xfd_get_spi_buf_ptr(const struct device *dev) { struct mcp251xfd_data *dev_data = dev->data; struct mcp251xfd_spi_data *spi_data = &dev_data->spi_data; return &spi_data->buf[0]; } static int mcp251xfd_write(const struct device *dev, uint16_t addr, int len) { const struct mcp251xfd_config *dev_cfg = dev->config; struct mcp251xfd_data *dev_data = dev->data; struct mcp251xfd_spi_data *spi_data = &dev_data->spi_data; uint16_t spi_cmd; struct spi_buf tx_buf = {.buf = &spi_data->header[1], .len = MCP251XFD_SPI_CMD_LEN + len}; const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1}; spi_cmd = sys_cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_WRITE | addr); memcpy(&spi_data->header[1], &spi_cmd, sizeof(spi_cmd)); return spi_write_dt(&dev_cfg->bus, &tx); } static int mcp251xfd_fifo_write(const struct device *dev, int mailbox_idx, const struct can_frame *msg) { uint32_t *regs; struct mcp251xfd_txobj *txobj; uint8_t *reg_byte; uint16_t address; int tx_len; int ret; /* read fifosta and ua at the same time */ regs = mcp251xfd_read_crc(dev, MCP251XFD_REG_TXQSTA, MCP251XFD_REG_SIZE * 2); if (!regs) { LOG_ERR("Failed to read 8 bytes from REG_TXQSTA"); return -EINVAL; } /* check if fifo is full */ if (!(regs[0] & MCP251XFD_REG_TXQSTA_TXQNIF)) { return -ENOMEM; } address = MCP251XFD_RAM_START_ADDR + regs[1]; txobj = mcp251xfd_get_spi_buf_ptr(dev); mcp251xfd_canframe_to_txobj(msg, mailbox_idx, txobj); tx_len = MCP251XFD_OBJ_HEADER_SIZE; if ((msg->flags & CAN_FRAME_RTR) == 0) { tx_len += ROUND_UP(can_dlc_to_bytes(msg->dlc), MCP251XFD_RAM_ALIGNMENT); } ret = mcp251xfd_write(dev, address, tx_len); if (ret < 0) { return ret; } reg_byte = mcp251xfd_get_spi_buf_ptr(dev); *reg_byte = MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_TXQCON_UINC | MCP251XFD_REG_TXQCON_TXREQ); return mcp251xfd_write(dev, MCP251XFD_REG_TXQCON + 1, 1); } static void mcp251xfd_rxobj_to_canframe(struct mcp251xfd_rxobj *src, struct can_frame *dst) { memset(dst, 0, sizeof(*dst)); src->id = sys_le32_to_cpu(src->id); src->flags = sys_le32_to_cpu(src->flags); if ((src->flags & MCP251XFD_OBJ_FLAGS_IDE) != 0) { dst->id = FIELD_GET(MCP251XFD_OBJ_ID_EID_MASK, src->id); dst->id |= FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, src->id) << 18; dst->flags |= CAN_FRAME_IDE; } else { dst->id = FIELD_GET(MCP251XFD_OBJ_ID_SID_MASK, src->id); } if ((src->flags & MCP251XFD_OBJ_FLAGS_BRS) != 0) { dst->flags |= CAN_FRAME_BRS; } #if defined(CONFIG_CAN_FD_MODE) if ((src->flags & MCP251XFD_OBJ_FLAGS_FDF) != 0) { dst->flags |= CAN_FRAME_FDF; } #endif dst->dlc = FIELD_GET(MCP251XFD_OBJ_FLAGS_DLC_MASK, src->flags); #if defined(CONFIG_CAN_RX_TIMESTAMP) dst->timestamp = sys_le32_to_cpu(src->timestamp); #endif if ((src->flags & MCP251XFD_OBJ_FLAGS_RTR) != 0) { dst->flags |= CAN_FRAME_RTR; } else { memcpy(dst->data, src->data, MIN(can_dlc_to_bytes(dst->dlc), CAN_MAX_DLEN)); } } static int mcp251xfd_get_mode_internal(const struct device *dev, uint8_t *mode) { uint8_t *reg_byte; uint32_t mask = MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_CON_OPMOD_MASK); reg_byte = mcp251xfd_read_crc(dev, MCP251XFD_REG_CON_B2, 1); if (!reg_byte) { return -EINVAL; } *mode = FIELD_GET(mask, *reg_byte); return 0; } static int mcp251xfd_reg_check_value_wtimeout(const struct device *dev, uint16_t addr, uint32_t value, uint32_t mask, uint32_t timeout_usec, int retries, bool allow_yield) { uint32_t *reg; uint32_t delay = timeout_usec / retries; for (;;) { reg = mcp251xfd_read_crc(dev, addr, MCP251XFD_REG_SIZE); if (!reg) { return -EINVAL; } *reg = sys_le32_to_cpu(*reg); if ((*reg & mask) == value) { return 0; } if (--retries < 0) { LOG_ERR("Timeout validing 0x%x", addr); return -EIO; } if (allow_yield) { k_sleep(K_USEC(delay)); } else { k_busy_wait(delay); } } return 0; } static int mcp251xfd_set_tdc(const struct device *dev, bool is_enabled) { uint32_t *reg; uint32_t tmp; struct mcp251xfd_data *dev_data = dev->data; reg = mcp251xfd_get_spi_buf_ptr(dev); if (is_enabled) { tmp = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK, MCP251XFD_REG_TDC_TDCMOD_AUTO); tmp |= FIELD_PREP(MCP251XFD_REG_TDC_TDCO_MASK, dev_data->tdco); } else { tmp = FIELD_PREP(MCP251XFD_REG_TDC_TDCMOD_MASK, MCP251XFD_REG_TDC_TDCMOD_DISABLED); } *reg = sys_cpu_to_le32(tmp); return mcp251xfd_write(dev, MCP251XFD_REG_TDC, MCP251XFD_REG_SIZE); } static int mcp251xfd_set_mode_internal(const struct device *dev, uint8_t requested_mode) { struct mcp251xfd_data *dev_data = dev->data; uint32_t *reg; uint32_t opmod, reg_con; int ret = 0; k_mutex_lock(&dev_data->mutex, K_FOREVER); reg = mcp251xfd_read_crc(dev, MCP251XFD_REG_CON, MCP251XFD_REG_SIZE); if (!reg) { ret = -EINVAL; goto done; } reg_con = sys_le32_to_cpu(*reg); opmod = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, reg_con); if (opmod == requested_mode) { goto done; } #if defined(CONFIG_CAN_FD_MODE) if (dev_data->current_mcp251xfd_mode == MCP251XFD_REG_CON_MODE_CONFIG) { if (requested_mode == MCP251XFD_REG_CON_MODE_CAN2_0 || requested_mode == MCP251XFD_REG_CON_MODE_EXT_LOOPBACK || requested_mode == MCP251XFD_REG_CON_MODE_INT_LOOPBACK) { ret = mcp251xfd_set_tdc(dev, false); } else if (requested_mode == MCP251XFD_REG_CON_MODE_MIXED) { ret = mcp251xfd_set_tdc(dev, true); } if (ret < 0) { goto done; } } #endif reg_con &= ~MCP251XFD_REG_CON_REQOP_MASK; reg_con |= FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, requested_mode); *reg = sys_cpu_to_le32(reg_con); ret = mcp251xfd_write(dev, MCP251XFD_REG_CON, MCP251XFD_REG_SIZE); if (ret < 0) { LOG_ERR("Failed to write REG_CON register [%d]", MCP251XFD_REG_CON); goto done; } ret = mcp251xfd_reg_check_value_wtimeout( dev, MCP251XFD_REG_CON, FIELD_PREP(MCP251XFD_REG_CON_OPMOD_MASK, requested_mode), MCP251XFD_REG_CON_OPMOD_MASK, MCP251XFD_MODE_CHANGE_TIMEOUT_USEC, MCP251XFD_MODE_CHANGE_RETRIES, true); done: k_mutex_unlock(&dev_data->mutex); return ret; } static int mcp251xfd_set_mode(const struct device *dev, can_mode_t mode) { struct mcp251xfd_data *dev_data = dev->data; if (dev_data->common.started) { return -EBUSY; } /* todo: Add CAN_MODE_ONE_SHOT support */ if ((mode & (CAN_MODE_3_SAMPLES | CAN_MODE_ONE_SHOT)) != 0) { return -ENOTSUP; } if (mode == CAN_MODE_NORMAL) { dev_data->next_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_CAN2_0; } if ((mode & CAN_MODE_FD) != 0) { #if defined(CONFIG_CAN_FD_MODE) dev_data->next_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_MIXED; #else return -ENOTSUP; #endif } if ((mode & CAN_MODE_LISTENONLY) != 0) { dev_data->next_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_LISTENONLY; } if ((mode & CAN_MODE_LOOPBACK) != 0) { dev_data->next_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_EXT_LOOPBACK; } dev_data->common.mode = mode; return 0; } static int mcp251xfd_set_timing(const struct device *dev, const struct can_timing *timing) { struct mcp251xfd_data *dev_data = dev->data; uint32_t *reg; uint32_t tmp; int ret; if (!timing) { return -EINVAL; } if (dev_data->common.started) { return -EBUSY; } k_mutex_lock(&dev_data->mutex, K_FOREVER); reg = mcp251xfd_get_spi_buf_ptr(dev); tmp = FIELD_PREP(MCP251XFD_REG_NBTCFG_BRP_MASK, timing->prescaler - 1); tmp |= FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG1_MASK, timing->prop_seg + timing->phase_seg1 - 1); tmp |= FIELD_PREP(MCP251XFD_REG_NBTCFG_TSEG2_MASK, timing->phase_seg2 - 1); tmp |= FIELD_PREP(MCP251XFD_REG_NBTCFG_SJW_MASK, timing->sjw - 1); *reg = tmp; ret = mcp251xfd_write(dev, MCP251XFD_REG_NBTCFG, MCP251XFD_REG_SIZE); if (ret < 0) { LOG_ERR("Failed to write NBTCFG register [%d]", ret); } k_mutex_unlock(&dev_data->mutex); return ret; } #if defined(CONFIG_CAN_FD_MODE) static int mcp251xfd_set_timing_data(const struct device *dev, const struct can_timing *timing) { struct mcp251xfd_data *dev_data = dev->data; uint32_t *reg; uint32_t tmp; int ret; if (!timing) { return -EINVAL; } if (dev_data->common.started) { return -EBUSY; } k_mutex_lock(&dev_data->mutex, K_FOREVER); reg = mcp251xfd_get_spi_buf_ptr(dev); tmp = FIELD_PREP(MCP251XFD_REG_DBTCFG_BRP_MASK, timing->prescaler - 1); tmp |= FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG1_MASK, timing->prop_seg + timing->phase_seg1 - 1); tmp |= FIELD_PREP(MCP251XFD_REG_DBTCFG_TSEG2_MASK, timing->phase_seg2 - 1); tmp |= FIELD_PREP(MCP251XFD_REG_DBTCFG_SJW_MASK, timing->sjw - 1); *reg = sys_cpu_to_le32(tmp); /* actual TDCO minimum is -64 but driver implementation only sets >= 0 values */ dev_data->tdco = CAN_CALC_TDCO(timing, 0U, MCP251XFD_REG_TDC_TDCO_MAX); ret = mcp251xfd_write(dev, MCP251XFD_REG_DBTCFG, MCP251XFD_REG_SIZE); if (ret < 0) { LOG_ERR("Failed to write DBTCFG register [%d]", ret); } k_mutex_unlock(&dev_data->mutex); return ret; } #endif static int mcp251xfd_send(const struct device *dev, const struct can_frame *msg, k_timeout_t timeout, can_tx_callback_t callback, void *callback_arg) { struct mcp251xfd_data *dev_data = dev->data; uint8_t mailbox_idx; int ret = 0; LOG_DBG("Sending %d bytes. Id: 0x%x, ID type: %s %s %s %s", can_dlc_to_bytes(msg->dlc), msg->id, msg->flags & CAN_FRAME_IDE ? "extended" : "standard", msg->flags & CAN_FRAME_RTR ? "RTR" : "", msg->flags & CAN_FRAME_FDF ? "FD frame" : "", msg->flags & CAN_FRAME_BRS ? "BRS" : ""); if (!dev_data->common.started) { return -ENETDOWN; } if (dev_data->state == CAN_STATE_BUS_OFF) { return -ENETUNREACH; } if ((msg->flags & CAN_FRAME_FDF) == 0 && msg->dlc > CAN_MAX_DLC) { LOG_ERR("DLC of %d without fd flag set.", msg->dlc); return -EINVAL; } if ((msg->flags & CAN_FRAME_FDF) && !(dev_data->common.mode & CAN_MODE_FD)) { return -ENOTSUP; } if (k_sem_take(&dev_data->tx_sem, timeout) != 0) { return -EAGAIN; } k_mutex_lock(&dev_data->mutex, K_FOREVER); for (mailbox_idx = 0; mailbox_idx < MCP251XFD_TX_QUEUE_ITEMS; mailbox_idx++) { if ((BIT(mailbox_idx) & dev_data->mailbox_usage) == 0) { dev_data->mailbox_usage |= BIT(mailbox_idx); break; } } if (mailbox_idx >= MCP251XFD_TX_QUEUE_ITEMS) { k_sem_give(&dev_data->tx_sem); ret = -EIO; goto done; } dev_data->mailbox[mailbox_idx].cb = callback; dev_data->mailbox[mailbox_idx].cb_arg = callback_arg; ret = mcp251xfd_fifo_write(dev, mailbox_idx, msg); if (ret < 0) { dev_data->mailbox_usage &= ~BIT(mailbox_idx); dev_data->mailbox[mailbox_idx].cb = NULL; k_sem_give(&dev_data->tx_sem); } done: k_mutex_unlock(&dev_data->mutex); return ret; } static int mcp251xfd_add_rx_filter(const struct device *dev, can_rx_callback_t rx_cb, void *cb_arg, const struct can_filter *filter) { struct mcp251xfd_data *dev_data = dev->data; uint32_t *reg; uint32_t tmp; uint8_t *reg_byte; int filter_idx; int ret; k_mutex_lock(&dev_data->mutex, K_FOREVER); for (filter_idx = 0; filter_idx < CONFIG_CAN_MAX_FILTER ; filter_idx++) { if ((BIT(filter_idx) & dev_data->filter_usage) == 0) { break; } } if (filter_idx >= CONFIG_CAN_MAX_FILTER) { filter_idx = -ENOSPC; goto done; } reg = mcp251xfd_get_spi_buf_ptr(dev); if ((filter->flags & CAN_FILTER_IDE) != 0) { tmp = FIELD_PREP(MCP251XFD_REG_FLTOBJ_SID_MASK, filter->id >> 18); tmp |= FIELD_PREP(MCP251XFD_REG_FLTOBJ_EID_MASK, filter->id); tmp |= MCP251XFD_REG_FLTOBJ_EXIDE; } else { tmp = FIELD_PREP(MCP251XFD_REG_FLTOBJ_SID_MASK, filter->id); } *reg = sys_cpu_to_le32(tmp); ret = mcp251xfd_write(dev, MCP251XFD_REG_FLTOBJ(filter_idx), MCP251XFD_REG_SIZE); if (ret < 0) { LOG_ERR("Failed to write FLTOBJ register [%d]", ret); goto done; } reg = mcp251xfd_get_spi_buf_ptr(dev); if ((filter->flags & CAN_FILTER_IDE) != 0) { tmp = FIELD_PREP(MCP251XFD_REG_MASK_MSID_MASK, filter->mask >> 18); tmp |= FIELD_PREP(MCP251XFD_REG_MASK_MEID_MASK, filter->mask); } else { tmp = FIELD_PREP(MCP251XFD_REG_MASK_MSID_MASK, filter->mask); } tmp |= MCP251XFD_REG_MASK_MIDE; *reg = sys_cpu_to_le32(tmp); ret = mcp251xfd_write(dev, MCP251XFD_REG_FLTMASK(filter_idx), MCP251XFD_REG_SIZE); if (ret < 0) { LOG_ERR("Failed to write FLTMASK register [%d]", ret); goto done; } reg_byte = mcp251xfd_get_spi_buf_ptr(dev); *reg_byte = MCP251XFD_REG_BYTE_FLTCON_FLTEN; *reg_byte |= FIELD_PREP(MCP251XFD_REG_BYTE_FLTCON_FBP_MASK, MCP251XFD_RX_FIFO_IDX); ret = mcp251xfd_write(dev, MCP251XFD_REG_BYTE_FLTCON(filter_idx), 1); if (ret < 0) { LOG_ERR("Failed to write FLTCON register [%d]", ret); goto done; } dev_data->filter_usage |= BIT(filter_idx); dev_data->filter[filter_idx] = *filter; dev_data->rx_cb[filter_idx] = rx_cb; dev_data->cb_arg[filter_idx] = cb_arg; done: k_mutex_unlock(&dev_data->mutex); return filter_idx; } static void mcp251xfd_remove_rx_filter(const struct device *dev, int filter_idx) { struct mcp251xfd_data *dev_data = dev->data; uint8_t *reg_byte; uint32_t *reg; int ret; if (filter_idx < 0 || filter_idx >= CONFIG_CAN_MAX_FILTER) { LOG_ERR("Filter ID %d out of bounds", filter_idx); return; } k_mutex_lock(&dev_data->mutex, K_FOREVER); reg_byte = mcp251xfd_get_spi_buf_ptr(dev); *reg_byte = 0; ret = mcp251xfd_write(dev, MCP251XFD_REG_BYTE_FLTCON(filter_idx), 1); if (ret < 0) { LOG_ERR("Failed to write FLTCON register [%d]", ret); goto done; } dev_data->filter_usage &= ~BIT(filter_idx); reg = mcp251xfd_get_spi_buf_ptr(dev); reg[0] = 0; ret = mcp251xfd_write(dev, MCP251XFD_REG_FLTCON(filter_idx), MCP251XFD_REG_SIZE); if (ret < 0) { LOG_ERR("Failed to write FLTCON register [%d]", ret); } done: k_mutex_unlock(&dev_data->mutex); } static void mcp251xfd_set_state_change_callback(const struct device *dev, can_state_change_callback_t cb, void *user_data) { struct mcp251xfd_data *dev_data = dev->data; dev_data->common.state_change_cb = cb; dev_data->common.state_change_cb_user_data = user_data; } static int mcp251xfd_get_state(const struct device *dev, enum can_state *state, struct can_bus_err_cnt *err_cnt) { struct mcp251xfd_data *dev_data = dev->data; uint32_t *reg; uint32_t tmp; int ret = 0; k_mutex_lock(&dev_data->mutex, K_FOREVER); reg = mcp251xfd_read_crc(dev, MCP251XFD_REG_TREC, MCP251XFD_REG_SIZE); if (!reg) { ret = -EINVAL; goto done; } tmp = sys_le32_to_cpu(*reg); if (err_cnt != NULL) { err_cnt->tx_err_cnt = FIELD_GET(MCP251XFD_REG_TREC_TEC_MASK, tmp); err_cnt->rx_err_cnt = FIELD_GET(MCP251XFD_REG_TREC_REC_MASK, tmp); } if (state == NULL) { goto done; } if (!dev_data->common.started) { *state = CAN_STATE_STOPPED; goto done; } if ((tmp & MCP251XFD_REG_TREC_TXBO) != 0) { *state = CAN_STATE_BUS_OFF; } else if ((tmp & MCP251XFD_REG_TREC_TXBP) != 0) { *state = CAN_STATE_ERROR_PASSIVE; } else if ((tmp & MCP251XFD_REG_TREC_RXBP) != 0) { *state = CAN_STATE_ERROR_PASSIVE; } else if ((tmp & MCP251XFD_REG_TREC_TXWARN) != 0) { *state = CAN_STATE_ERROR_WARNING; } else if ((tmp & MCP251XFD_REG_TREC_RXWARN) != 0) { *state = CAN_STATE_ERROR_WARNING; } else { *state = CAN_STATE_ERROR_ACTIVE; } done: k_mutex_unlock(&dev_data->mutex); return 0; } static int mcp251xfd_get_core_clock(const struct device *dev, uint32_t *rate) { const struct mcp251xfd_config *dev_cfg = dev->config; *rate = dev_cfg->osc_freq; return 0; } static int mcp251xfd_get_max_filters(const struct device *dev, bool ide) { ARG_UNUSED(ide); return CONFIG_CAN_MAX_FILTER; } static int mcp251xfd_handle_fifo_read(const struct device *dev, const struct mcp251xfd_fifo *fifo, uint8_t fifo_type) { int ret = 0; struct mcp251xfd_data *dev_data = dev->data; uint32_t *regs, fifosta, ua; uint8_t *reg_byte; int len; int fetch_total = 0; int ui_inc = 0; uint32_t fifo_tail_index, fifo_tail_addr; uint8_t fifo_head_index; k_mutex_lock(&dev_data->mutex, K_FOREVER); /* read in FIFOSTA and FIFOUA at the same time */ regs = mcp251xfd_read_crc(dev, MCP251XFD_REG_FIFOCON_TO_STA(fifo->reg_fifocon_addr), 2 * MCP251XFD_REG_SIZE); if (!regs) { ret = -EINVAL; goto done; } fifosta = sys_le32_to_cpu(regs[0]); ua = sys_le32_to_cpu(regs[1]); /* is there any data in the fifo? */ if (!(fifosta & MCP251XFD_REG_FIFOSTA_TFNRFNIF)) { goto done; } fifo_tail_addr = ua; fifo_tail_index = (fifo_tail_addr - fifo->ram_start_addr) / fifo->item_size; if (fifo_type == MCP251XFD_FIFO_TYPE_RX) { /* * fifo_head_index points where the next message will be written. * It points to one past the end of the fifo. */ fifo_head_index = FIELD_GET(MCP251XFD_REG_FIFOSTA_FIFOCI_MASK, fifosta); if (fifo_head_index == 0) { fifo_head_index = fifo->capacity - 1; } else { fifo_head_index -= 1; } if (fifo_tail_index > fifo_head_index) { /* fetch to the end of the memory and then wrap to the start */ fetch_total = fifo->capacity - 1 - fifo_tail_index + 1; fetch_total += fifo_head_index + 1; } else { fetch_total = fifo_head_index - fifo_tail_index + 1; } } else if (fifo_type == MCP251XFD_FIFO_TYPE_TEF) { /* FIFOCI doesn't exist for TEF queues, so fetch one message at a time */ fifo_head_index = fifo_tail_index; fetch_total = 1; } else { ret = -EINVAL; goto done; } while (fetch_total > 0) { uint16_t memory_addr; uint8_t *data; if (fifo_tail_index > fifo_head_index) { len = fifo->capacity - 1 - fifo_tail_index + 1; } else { len = fifo_head_index - fifo_tail_index + 1; } memory_addr = MCP251XFD_RAM_START_ADDR + fifo->ram_start_addr + fifo_tail_index * fifo->item_size; data = mcp251xfd_read_reg(dev, memory_addr, len * fifo->item_size); if (!data) { LOG_ERR("Error fetching batch message"); ret = -EINVAL; goto done; } for (int i = 0; i < len; i++) { fifo->msg_handler(dev, (void *)(&data[i * fifo->item_size])); } fifo_tail_index = (fifo_tail_index + len) % fifo->capacity; fetch_total -= len; ui_inc += len; } reg_byte = mcp251xfd_get_spi_buf_ptr(dev); *reg_byte = MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_FIFOCON_UINC); for (int i = 0; i < ui_inc; i++) { ret = mcp251xfd_write(dev, fifo->reg_fifocon_addr + 1, 1); if (ret < 0) { LOG_ERR("Failed to increment pointer"); goto done; } } done: k_mutex_unlock(&dev_data->mutex); return ret; } static void mcp251xfd_reset_tx_fifos(const struct device *dev, int status) { struct mcp251xfd_data *dev_data = dev->data; LOG_INF("All FIFOs Reset"); k_mutex_lock(&dev_data->mutex, K_FOREVER); for (int i = 0; i < MCP251XFD_TX_QUEUE_ITEMS; i++) { can_tx_callback_t callback; if (!(dev_data->mailbox_usage & BIT(i))) { continue; } callback = dev_data->mailbox[i].cb; if (callback) { callback(dev, status, dev_data->mailbox[i].cb_arg); } dev_data->mailbox_usage &= ~BIT(i); dev_data->mailbox[i].cb = NULL; k_sem_give(&dev_data->tx_sem); } k_mutex_unlock(&dev_data->mutex); } /* * CERRIF will be set each time a threshold in the TEC/REC counter is crossed by the following * conditions: * • TEC or REC exceeds the Error Warning state threshold * • The transmitter or receiver transitions to Error Passive state * • The transmitter transitions to Bus Off state * • The transmitter or receiver transitions from Error Passive to Error Active state * • The module transitions from Bus Off to Error Active state, after the bus off recovery * sequence * When the user clears CERRIF, it will remain clear until a new counter crossing occurs. */ static int mcp251xfd_handle_cerrif(const struct device *dev) { enum can_state new_state; struct mcp251xfd_data *dev_data = dev->data; struct can_bus_err_cnt err_cnt; int ret; k_mutex_lock(&dev_data->mutex, K_FOREVER); ret = mcp251xfd_get_state(dev, &new_state, &err_cnt); if (ret < 0) { goto done; } if (new_state == dev_data->state) { goto done; } LOG_INF("State %d -> %d (tx: %d, rx: %d)", dev_data->state, new_state, err_cnt.tx_err_cnt, err_cnt.rx_err_cnt); /* Upon entering bus-off, all the fifos are reset. */ dev_data->state = new_state; if (new_state == CAN_STATE_BUS_OFF) { mcp251xfd_reset_tx_fifos(dev, -ENETDOWN); } if (dev_data->common.state_change_cb) { dev_data->common.state_change_cb(dev, new_state, err_cnt, dev_data->common.state_change_cb_user_data); } done: k_mutex_unlock(&dev_data->mutex); return ret; } static int mcp251xfd_handle_modif(const struct device *dev) { struct mcp251xfd_data *dev_data = dev->data; uint8_t mode; int ret; k_mutex_lock(&dev_data->mutex, K_FOREVER); ret = mcp251xfd_get_mode_internal(dev, &mode); if (ret < 0) { goto finish; } dev_data->current_mcp251xfd_mode = mode; LOG_INF("Switched to mode %d", mode); if (mode == dev_data->next_mcp251xfd_mode) { ret = 0; goto finish; } /* try to transition back into our target mode */ if (dev_data->common.started) { LOG_INF("Switching back into mode %d", dev_data->next_mcp251xfd_mode); ret = mcp251xfd_set_mode_internal(dev, dev_data->next_mcp251xfd_mode); } finish: k_mutex_unlock(&dev_data->mutex); return ret; } static int mcp251xfd_handle_ivmif(const struct device *dev) { uint32_t *reg; struct mcp251xfd_data *dev_data = dev->data; int ret; uint32_t tmp; k_mutex_lock(&dev_data->mutex, K_FOREVER); reg = mcp251xfd_read_crc(dev, MCP251XFD_REG_BDIAG1, MCP251XFD_REG_SIZE); if (!reg) { ret = -EINVAL; goto done; } tmp = sys_le32_to_cpu(*reg); if ((tmp & MCP251XFD_REG_BDIAG1_TXBOERR) != 0) { LOG_INF("ivmif bus-off error"); mcp251xfd_reset_tx_fifos(dev, -ENETDOWN); } /* Clear the values in diag */ reg = mcp251xfd_get_spi_buf_ptr(dev); reg[0] = 0; ret = mcp251xfd_write(dev, MCP251XFD_REG_BDIAG1, MCP251XFD_REG_SIZE); if (ret < 0) { goto done; } /* There's no flag for DACKERR */ if ((tmp & MCP251XFD_REG_BDIAG1_NACKERR) != 0) { CAN_STATS_ACK_ERROR_INC(dev); } if ((tmp & (MCP251XFD_REG_BDIAG1_NBIT0ERR | MCP251XFD_REG_BDIAG1_DBIT0ERR)) != 0) { CAN_STATS_BIT0_ERROR_INC(dev); } if ((tmp & (MCP251XFD_REG_BDIAG1_NBIT1ERR | MCP251XFD_REG_BDIAG1_DBIT1ERR)) != 0) { CAN_STATS_BIT1_ERROR_INC(dev); } if ((tmp & (MCP251XFD_REG_BDIAG1_NCRCERR | MCP251XFD_REG_BDIAG1_DCRCERR)) != 0) { CAN_STATS_CRC_ERROR_INC(dev); } if ((tmp & (MCP251XFD_REG_BDIAG1_NFORMERR | MCP251XFD_REG_BDIAG1_DFORMERR)) != 0) { CAN_STATS_FORM_ERROR_INC(dev); } if ((tmp & (MCP251XFD_REG_BDIAG1_NSTUFERR | MCP251XFD_REG_BDIAG1_DSTUFERR)) != 0) { CAN_STATS_STUFF_ERROR_INC(dev); } done: k_mutex_unlock(&dev_data->mutex); return ret; } #if defined(CONFIG_CAN_STATS) static int mcp251xfd_handle_rxovif(const struct device *dev) { uint8_t *reg_byte; struct mcp251xfd_data *dev_data = dev->data; int ret; k_mutex_lock(&dev_data->mutex, K_FOREVER); reg_byte = mcp251xfd_get_spi_buf_ptr(dev); *reg_byte = 0; ret = mcp251xfd_write(dev, MCP251XFD_REG_FIFOSTA(MCP251XFD_RX_FIFO_IDX), 1); if (ret < 0) { goto done; } CAN_STATS_RX_OVERRUN_INC(dev); done: k_mutex_unlock(&dev_data->mutex); return ret; } #endif static void mcp251xfd_handle_interrupts(const struct device *dev) { const struct mcp251xfd_config *dev_cfg = dev->config; struct mcp251xfd_data *dev_data = dev->data; uint16_t *reg_int_hw; uint32_t reg_int; int ret; uint8_t consecutive_calls = 0; while (1) { k_mutex_lock(&dev_data->mutex, K_FOREVER); reg_int_hw = mcp251xfd_read_crc(dev, MCP251XFD_REG_INT, sizeof(*reg_int_hw)); if (!reg_int_hw) { k_mutex_unlock(&dev_data->mutex); continue; } *reg_int_hw = sys_le16_to_cpu(*reg_int_hw); reg_int = *reg_int_hw; /* these interrupt flags need to be explicitly cleared */ if (reg_int & MCP251XFD_REG_INT_IF_CLEARABLE_MASK) { *reg_int_hw &= ~MCP251XFD_REG_INT_IF_CLEARABLE_MASK; *reg_int_hw = sys_cpu_to_le16(*reg_int_hw); ret = mcp251xfd_write(dev, MCP251XFD_REG_INT, sizeof(*reg_int_hw)); if (ret) { LOG_ERR("Error clearing REG_INT interrupts [%d]", ret); } } k_mutex_unlock(&dev_data->mutex); if ((reg_int & MCP251XFD_REG_INT_RXIF) != 0) { ret = mcp251xfd_handle_fifo_read(dev, &dev_cfg->rx_fifo, MCP251XFD_FIFO_TYPE_RX); if (ret < 0) { LOG_ERR("Error handling RXIF [%d]", ret); } } if ((reg_int & MCP251XFD_REG_INT_TEFIF) != 0) { ret = mcp251xfd_handle_fifo_read(dev, &dev_cfg->tef_fifo, MCP251XFD_FIFO_TYPE_TEF); if (ret < 0) { LOG_ERR("Error handling TEFIF [%d]", ret); } } if ((reg_int & MCP251XFD_REG_INT_IVMIF) != 0) { ret = mcp251xfd_handle_ivmif(dev); if (ret < 0) { LOG_ERR("Error handling IVMIF [%d]", ret); } } if ((reg_int & MCP251XFD_REG_INT_MODIF) != 0) { ret = mcp251xfd_handle_modif(dev); if (ret < 0) { LOG_ERR("Error handling MODIF [%d]", ret); } } /* * From Linux mcp251xfd driver * On the MCP2527FD and MCP2518FD, we don't get a CERRIF IRQ on the transition * TX ERROR_WARNING -> TX ERROR_ACTIVE. */ if ((reg_int & MCP251XFD_REG_INT_CERRIF) || dev_data->state > CAN_STATE_ERROR_ACTIVE) { ret = mcp251xfd_handle_cerrif(dev); if (ret < 0) { LOG_ERR("Error handling CERRIF [%d]", ret); } } #if defined(CONFIG_CAN_STATS) if ((reg_int & MCP251XFD_REG_INT_RXOVIF) != 0) { ret = mcp251xfd_handle_rxovif(dev); if (ret < 0) { LOG_ERR("Error handling RXOVIF [%d]", ret); } } #endif /* Break from loop if INT pin is inactive */ consecutive_calls++; ret = gpio_pin_get_dt(&dev_cfg->int_gpio_dt); if (ret < 0) { LOG_ERR("Couldn't read INT pin [%d]", ret); } else if (ret == 0) { /* All interrupt flags handled */ break; } else if (consecutive_calls % MCP251XFD_MAX_INT_HANDLER_CALLS == 0) { /* If there are clock problems, then MODIF cannot be cleared. */ /* This is detected if there are too many consecutive calls. */ /* Sleep this thread if this happens. */ k_sleep(K_USEC(MCP251XFD_INT_HANDLER_SLEEP_USEC)); } } } static void mcp251xfd_int_thread(const struct device *dev) { const struct mcp251xfd_config *dev_cfg = dev->config; struct mcp251xfd_data *dev_data = dev->data; while (1) { int ret; k_sem_take(&dev_data->int_sem, K_FOREVER); mcp251xfd_handle_interrupts(dev); /* Re-enable pin interrupts */ ret = gpio_pin_interrupt_configure_dt(&dev_cfg->int_gpio_dt, GPIO_INT_LEVEL_ACTIVE); if (ret < 0) { LOG_ERR("Couldn't enable pin interrupt [%d]", ret); k_oops(); } } } static void mcp251xfd_int_gpio_callback(const struct device *dev_gpio, struct gpio_callback *cb, uint32_t pins) { ARG_UNUSED(dev_gpio); struct mcp251xfd_data *dev_data = CONTAINER_OF(cb, struct mcp251xfd_data, int_gpio_cb); const struct device *dev = dev_data->dev; const struct mcp251xfd_config *dev_cfg = dev->config; int ret; /* Disable pin interrupts */ ret = gpio_pin_interrupt_configure_dt(&dev_cfg->int_gpio_dt, GPIO_INT_DISABLE); if (ret < 0) { LOG_ERR("Couldn't disable pin interrupt [%d]", ret); k_oops(); } k_sem_give(&dev_data->int_sem); } static int mcp251xfd_get_capabilities(const struct device *dev, can_mode_t *cap) { ARG_UNUSED(dev); *cap = CAN_MODE_NORMAL | CAN_MODE_LISTENONLY | CAN_MODE_LOOPBACK; #if defined(CONFIG_CAN_FD_MODE) *cap |= CAN_MODE_FD; #endif return 0; } static int mcp251xfd_start(const struct device *dev) { struct mcp251xfd_data *dev_data = dev->data; const struct mcp251xfd_config *dev_cfg = dev->config; int ret; if (dev_data->common.started) { return -EALREADY; } /* in case of a race between mcp251xfd_send() and mcp251xfd_stop() */ mcp251xfd_reset_tx_fifos(dev, -ENETDOWN); if (dev_cfg->common.phy != NULL) { ret = can_transceiver_enable(dev_cfg->common.phy, dev_data->common.mode); if (ret < 0) { LOG_ERR("Failed to enable CAN transceiver [%d]", ret); return ret; } } k_mutex_lock(&dev_data->mutex, K_FOREVER); CAN_STATS_RESET(dev); ret = mcp251xfd_set_mode_internal(dev, dev_data->next_mcp251xfd_mode); if (ret < 0) { LOG_ERR("Failed to set the mode [%d]", ret); if (dev_cfg->common.phy != NULL) { /* Attempt to disable the CAN transceiver in case of error */ (void)can_transceiver_disable(dev_cfg->common.phy); } } else { dev_data->common.started = true; } k_mutex_unlock(&dev_data->mutex); return ret; } static int mcp251xfd_stop(const struct device *dev) { struct mcp251xfd_data *dev_data = dev->data; const struct mcp251xfd_config *dev_cfg = dev->config; uint8_t *reg_byte; int ret; if (!dev_data->common.started) { return -EALREADY; } k_mutex_lock(&dev_data->mutex, K_FOREVER); /* abort all transmissions */ reg_byte = mcp251xfd_get_spi_buf_ptr(dev); *reg_byte = MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_CON_ABAT); ret = mcp251xfd_write(dev, MCP251XFD_REG_CON_B3, 1); if (ret < 0) { k_mutex_unlock(&dev_data->mutex); return ret; } /* wait for all the messages to be aborted */ while (1) { reg_byte = mcp251xfd_read_crc(dev, MCP251XFD_REG_CON_B3, 1); if (!reg_byte || (*reg_byte & MCP251XFD_UINT32_FLAG_TO_BYTE_MASK(MCP251XFD_REG_CON_ABAT)) == 0) { break; } } mcp251xfd_reset_tx_fifos(dev, -ENETDOWN); ret = mcp251xfd_set_mode_internal(dev, MCP251XFD_REG_CON_MODE_CONFIG); if (ret < 0) { k_mutex_unlock(&dev_data->mutex); return ret; } dev_data->common.started = false; k_mutex_unlock(&dev_data->mutex); if (dev_cfg->common.phy != NULL) { ret = can_transceiver_disable(dev_cfg->common.phy); if (ret < 0) { LOG_ERR("Failed to disable CAN transceiver [%d]", ret); return ret; } } return 0; } static void mcp251xfd_rx_fifo_handler(const struct device *dev, void *data) { struct can_frame dst; struct mcp251xfd_data *dev_data = dev->data; struct mcp251xfd_rxobj *rxobj = data; uint32_t filhit; mcp251xfd_rxobj_to_canframe(rxobj, &dst); #ifndef CONFIG_CAN_ACCEPT_RTR if ((dst.flags & CAN_FRAME_RTR) != 0U) { return; } #endif /* !CONFIG_CAN_ACCEPT_RTR */ filhit = FIELD_GET(MCP251XFD_OBJ_FILHIT_MASK, rxobj->flags); if ((dev_data->filter_usage & BIT(filhit)) != 0) { LOG_DBG("Received msg CAN id: 0x%x", dst.id); dev_data->rx_cb[filhit](dev, &dst, dev_data->cb_arg[filhit]); } } static void mcp251xfd_tef_fifo_handler(const struct device *dev, void *data) { struct mcp251xfd_data *dev_data = dev->data; can_tx_callback_t callback; struct mcp251xfd_tefobj *tefobj = data; uint8_t mailbox_idx; mailbox_idx = FIELD_GET(MCP251XFD_OBJ_FLAGS_SEQ_MASK, tefobj->flags); if (mailbox_idx >= MCP251XFD_TX_QUEUE_ITEMS) { mcp251xfd_reset_tx_fifos(dev, -EIO); LOG_ERR("Invalid mailbox index"); return; } callback = dev_data->mailbox[mailbox_idx].cb; if (callback != NULL) { callback(dev, 0, dev_data->mailbox[mailbox_idx].cb_arg); } dev_data->mailbox_usage &= ~BIT(mailbox_idx); dev_data->mailbox[mailbox_idx].cb = NULL; k_sem_give(&dev_data->tx_sem); } static inline int mcp251xfd_init_con_reg(const struct device *dev) { uint32_t *reg; uint32_t tmp; reg = mcp251xfd_get_spi_buf_ptr(dev); tmp = MCP251XFD_REG_CON_ISOCRCEN | MCP251XFD_REG_CON_WAKFIL | MCP251XFD_REG_CON_TXQEN | MCP251XFD_REG_CON_STEF; tmp |= FIELD_PREP(MCP251XFD_REG_CON_WFT_MASK, MCP251XFD_REG_CON_WFT_T11FILTER) | FIELD_PREP(MCP251XFD_REG_CON_REQOP_MASK, MCP251XFD_REG_CON_MODE_CONFIG); *reg = tmp; return mcp251xfd_write(dev, MCP251XFD_REG_CON, MCP251XFD_REG_SIZE); } static inline int mcp251xfd_init_osc_reg(const struct device *dev) { int ret; const struct mcp251xfd_config *dev_cfg = dev->config; uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev); uint32_t reg_value = MCP251XFD_REG_OSC_OSCRDY; uint32_t tmp; tmp = FIELD_PREP(MCP251XFD_REG_OSC_CLKODIV_MASK, dev_cfg->clko_div); if (dev_cfg->pll_enable) { tmp |= MCP251XFD_REG_OSC_PLLEN; reg_value |= MCP251XFD_REG_OSC_PLLRDY; } *reg = sys_cpu_to_le32(tmp); ret = mcp251xfd_write(dev, MCP251XFD_REG_OSC, MCP251XFD_REG_SIZE); if (ret < 0) { return ret; } return mcp251xfd_reg_check_value_wtimeout(dev, MCP251XFD_REG_OSC, reg_value, reg_value, MCP251XFD_PLLRDY_TIMEOUT_USEC, MCP251XFD_PLLRDY_RETRIES, false); } static inline int mcp251xfd_init_iocon_reg(const struct device *dev) { const struct mcp251xfd_config *dev_cfg = dev->config; uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev); uint32_t tmp; /* * MCP2518FD Errata: DS80000789 * Writing Byte 2/3 of the IOCON register using single SPI write cleat LAT0 and LAT1. * This has no effect in the current version since LAT0/1 are set to zero anyway. * However, it needs to be properly handled if other values are needed. Errata suggests * to do single byte writes instead. */ tmp = MCP251XFD_REG_IOCON_TRIS0 | MCP251XFD_REG_IOCON_TRIS1 | MCP251XFD_REG_IOCON_PM0 | MCP251XFD_REG_IOCON_PM1; if (dev_cfg->sof_on_clko) { tmp |= MCP251XFD_REG_IOCON_SOF; } *reg = sys_cpu_to_le32(tmp); return mcp251xfd_write(dev, MCP251XFD_REG_IOCON, MCP251XFD_REG_SIZE); } static inline int mcp251xfd_init_int_reg(const struct device *dev) { uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev); uint32_t tmp; tmp = MCP251XFD_REG_INT_RXIE | MCP251XFD_REG_INT_MODIE | MCP251XFD_REG_INT_TEFIE | MCP251XFD_REG_INT_CERRIE; #if defined(CONFIG_CAN_STATS) tmp |= MCP251XFD_REG_INT_RXOVIE; #endif *reg = sys_cpu_to_le32(tmp); return mcp251xfd_write(dev, MCP251XFD_REG_INT, MCP251XFD_REG_SIZE); } static inline int mcp251xfd_init_tef_fifo(const struct device *dev) { uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev); uint32_t tmp; tmp = MCP251XFD_REG_TEFCON_TEFNEIE | MCP251XFD_REG_TEFCON_FRESET; tmp |= FIELD_PREP(MCP251XFD_REG_TEFCON_FSIZE_MASK, MCP251XFD_TX_QUEUE_ITEMS - 1); *reg = sys_cpu_to_le32(tmp); return mcp251xfd_write(dev, MCP251XFD_REG_TEFCON, MCP251XFD_REG_SIZE); } static inline int mcp251xfd_init_tx_queue(const struct device *dev) { uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev); uint32_t tmp; tmp = MCP251XFD_REG_TXQCON_TXEN | MCP251XFD_REG_TXQCON_FRESET; tmp |= FIELD_PREP(MCP251XFD_REG_TXQCON_TXAT_MASK, MCP251XFD_REG_TXQCON_TXAT_UNLIMITED); tmp |= FIELD_PREP(MCP251XFD_REG_TXQCON_FSIZE_MASK, MCP251XFD_TX_QUEUE_ITEMS - 1); tmp |= FIELD_PREP(MCP251XFD_REG_TXQCON_PLSIZE_MASK, can_bytes_to_dlc(MCP251XFD_PAYLOAD_SIZE) - 8); *reg = sys_cpu_to_le32(tmp); return mcp251xfd_write(dev, MCP251XFD_REG_TXQCON, MCP251XFD_REG_SIZE); } static inline int mcp251xfd_init_rx_fifo(const struct device *dev) { uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev); uint32_t tmp; tmp = MCP251XFD_REG_FIFOCON_TFNRFNIE | MCP251XFD_REG_FIFOCON_FRESET; #if defined(CONFIG_CAN_STATS) tmp |= MCP251XFD_REG_FIFOCON_RXOVIE; #endif tmp |= FIELD_PREP(MCP251XFD_REG_FIFOCON_FSIZE_MASK, MCP251XFD_RX_FIFO_ITEMS - 1); tmp |= FIELD_PREP(MCP251XFD_REG_FIFOCON_PLSIZE_MASK, can_bytes_to_dlc(MCP251XFD_PAYLOAD_SIZE) - 8); #if defined(CONFIG_CAN_RX_TIMESTAMP) tmp |= MCP251XFD_REG_FIFOCON_RXTSEN; #endif *reg = sys_cpu_to_le32(tmp); return mcp251xfd_write(dev, MCP251XFD_REG_FIFOCON(MCP251XFD_RX_FIFO_IDX), MCP251XFD_REG_SIZE); } #if defined(CONFIG_CAN_RX_TIMESTAMP) static int mcp251xfd_init_tscon(const struct device *dev) { uint32_t *reg = mcp251xfd_get_spi_buf_ptr(dev); const struct mcp251xfd_config *dev_cfg = dev->config; uint32_t tmp; tmp = MCP251XFD_REG_TSCON_TBCEN; tmp |= FIELD_PREP(MCP251XFD_REG_TSCON_TBCPRE_MASK, dev_cfg->timestamp_prescaler - 1); *reg = sys_cpu_to_le32(tmp); return mcp251xfd_write(dev, MCP251XFD_REG_TSCON, MCP251XFD_REG_SIZE); } #endif static int mcp251xfd_reset(const struct device *dev) { const struct mcp251xfd_config *dev_cfg = dev->config; uint16_t cmd = sys_cpu_to_be16(MCP251XFD_SPI_INSTRUCTION_RESET); const struct spi_buf tx_buf = {.buf = &cmd, .len = sizeof(cmd),}; const struct spi_buf_set tx = {.buffers = &tx_buf, .count = 1}; int ret; /* device can only be reset when in configuration mode */ ret = mcp251xfd_set_mode_internal(dev, MCP251XFD_REG_CON_MODE_CONFIG); if (ret < 0) { return ret; } ret = spi_write_dt(&dev_cfg->bus, &tx); /* Adding delay after init to fix occasional init issue. Delay time found experimentally. */ k_sleep(K_USEC(MCP251XFD_RESET_DELAY_USEC)); return ret; } static int mcp251xfd_init(const struct device *dev) { const struct mcp251xfd_config *dev_cfg = dev->config; struct mcp251xfd_data *dev_data = dev->data; uint32_t *reg; uint8_t opmod; int ret; struct can_timing timing = { 0 }; #if defined(CONFIG_CAN_FD_MODE) struct can_timing timing_data = { 0 }; #endif dev_data->dev = dev; if (dev_cfg->clk_dev != NULL) { uint32_t clk_id = dev_cfg->clk_id; if (!device_is_ready(dev_cfg->clk_dev)) { LOG_ERR("Clock controller not ready"); return -ENODEV; } ret = clock_control_on(dev_cfg->clk_dev, (clock_control_subsys_t)clk_id); if (ret < 0) { LOG_ERR("Failed to enable clock [%d]", ret); return ret; } } k_sem_init(&dev_data->int_sem, 0, 1); k_sem_init(&dev_data->tx_sem, MCP251XFD_TX_QUEUE_ITEMS, MCP251XFD_TX_QUEUE_ITEMS); k_mutex_init(&dev_data->mutex); if (!spi_is_ready_dt(&dev_cfg->bus)) { LOG_ERR("SPI bus %s not ready", dev_cfg->bus.bus->name); return -ENODEV; } if (!gpio_is_ready_dt(&dev_cfg->int_gpio_dt)) { LOG_ERR("GPIO port not ready"); return -ENODEV; } if (gpio_pin_configure_dt(&dev_cfg->int_gpio_dt, GPIO_INPUT) < 0) { LOG_ERR("Unable to configure GPIO pin"); return -EINVAL; } gpio_init_callback(&dev_data->int_gpio_cb, mcp251xfd_int_gpio_callback, BIT(dev_cfg->int_gpio_dt.pin)); if (gpio_add_callback_dt(&dev_cfg->int_gpio_dt, &dev_data->int_gpio_cb) < 0) { return -EINVAL; } if (gpio_pin_interrupt_configure_dt(&dev_cfg->int_gpio_dt, GPIO_INT_LEVEL_ACTIVE) < 0) { return -EINVAL; } k_thread_create(&dev_data->int_thread, dev_data->int_thread_stack, CONFIG_CAN_MCP251XFD_INT_THREAD_STACK_SIZE, (k_thread_entry_t)mcp251xfd_int_thread, (void *)dev, NULL, NULL, K_PRIO_COOP(CONFIG_CAN_MCP251XFD_INT_THREAD_PRIO), 0, K_NO_WAIT); (void)k_thread_name_set(&dev_data->int_thread, "MCP251XFD interrupt thread"); ret = mcp251xfd_reset(dev); if (ret < 0) { LOG_ERR("Failed to reset the device [%d]", ret); return ret; } ret = can_calc_timing(dev, &timing, dev_cfg->common.bitrate, dev_cfg->common.sample_point); if (ret < 0) { LOG_ERR("Can't find timing for given param"); return ret; } LOG_DBG("Presc: %d, BS1: %d, BS2: %d", timing.prescaler, timing.phase_seg1, timing.phase_seg2); LOG_DBG("Sample-point err : %d", ret); #if defined(CONFIG_CAN_FD_MODE) ret = can_calc_timing_data(dev, &timing_data, dev_cfg->common.bitrate_data, dev_cfg->common.sample_point_data); if (ret < 0) { LOG_ERR("Can't find data timing for given param"); return ret; } LOG_DBG("Data phase Presc: %d, BS1: %d, BS2: %d", timing_data.prescaler, timing_data.phase_seg1, timing_data.phase_seg2); LOG_DBG("Data phase Sample-point err : %d", ret); #endif reg = mcp251xfd_read_crc(dev, MCP251XFD_REG_CON, MCP251XFD_REG_SIZE); if (!reg) { return -EIO; } *reg = sys_le32_to_cpu(*reg); opmod = FIELD_GET(MCP251XFD_REG_CON_OPMOD_MASK, *reg); if (opmod != MCP251XFD_REG_CON_MODE_CONFIG) { LOG_ERR("Device did not reset into configuration mode [%d]", opmod); return -EIO; } dev_data->current_mcp251xfd_mode = MCP251XFD_REG_CON_MODE_CONFIG; ret = mcp251xfd_init_con_reg(dev); if (ret < 0) { return ret; } ret = mcp251xfd_init_osc_reg(dev); if (ret < 0) { LOG_ERR("Error initializing OSC register [%d]", ret); return ret; } ret = mcp251xfd_init_iocon_reg(dev); if (ret < 0) { return ret; } ret = mcp251xfd_init_int_reg(dev); if (ret < 0) { return ret; } ret = mcp251xfd_set_tdc(dev, false); if (ret < 0) { return ret; } #if defined(CONFIG_CAN_RX_TIMESTAMP) ret = mcp251xfd_init_tscon(dev); if (ret < 0) { return ret; } #endif ret = mcp251xfd_init_tef_fifo(dev); if (ret < 0) { return ret; } ret = mcp251xfd_init_tx_queue(dev); if (ret < 0) { return ret; } ret = mcp251xfd_init_rx_fifo(dev); if (ret < 0) { return ret; } LOG_DBG("%d TX FIFOS: 1 element", MCP251XFD_TX_QUEUE_ITEMS); LOG_DBG("1 RX FIFO: %d elements", MCP251XFD_RX_FIFO_ITEMS); LOG_DBG("%db of %db RAM Allocated", MCP251XFD_TEF_FIFO_SIZE + MCP251XFD_TX_QUEUE_SIZE + MCP251XFD_RX_FIFO_SIZE, MCP251XFD_RAM_SIZE); ret = can_set_timing(dev, &timing); if (ret < 0) { return ret; } #if defined(CONFIG_CAN_FD_MODE) ret = can_set_timing_data(dev, &timing_data); #endif return ret; } static DEVICE_API(can, mcp251xfd_api_funcs) = { .get_capabilities = mcp251xfd_get_capabilities, .set_mode = mcp251xfd_set_mode, .set_timing = mcp251xfd_set_timing, #if defined(CONFIG_CAN_FD_MODE) .set_timing_data = mcp251xfd_set_timing_data, #endif .start = mcp251xfd_start, .stop = mcp251xfd_stop, .send = mcp251xfd_send, .add_rx_filter = mcp251xfd_add_rx_filter, .remove_rx_filter = mcp251xfd_remove_rx_filter, .get_state = mcp251xfd_get_state, .set_state_change_callback = mcp251xfd_set_state_change_callback, .get_core_clock = mcp251xfd_get_core_clock, .get_max_filters = mcp251xfd_get_max_filters, .timing_min = { .sjw = 1, .prop_seg = 0, .phase_seg1 = 2, .phase_seg2 = 1, .prescaler = 1, }, .timing_max = { .sjw = 128, .prop_seg = 0, .phase_seg1 = 256, .phase_seg2 = 128, .prescaler = 256, }, #if defined(CONFIG_CAN_FD_MODE) .timing_data_min = { .sjw = 1, .prop_seg = 0, .phase_seg1 = 1, .phase_seg2 = 1, .prescaler = 1, }, .timing_data_max = { .sjw = 16, .prop_seg = 0, .phase_seg1 = 32, .phase_seg2 = 16, .prescaler = 256, }, #endif }; #define MCP251XFD_SET_CLOCK(inst) \ COND_CODE_1(DT_INST_NODE_HAS_PROP(inst, clocks), \ (.clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(inst)), \ .clk_id = DT_INST_CLOCKS_CELL(inst, id)), \ ()) #define MCP251XFD_INIT(inst) \ static K_KERNEL_STACK_DEFINE(mcp251xfd_int_stack_##inst, \ CONFIG_CAN_MCP251XFD_INT_THREAD_STACK_SIZE); \ \ static struct mcp251xfd_data mcp251xfd_data_##inst = { \ .int_thread_stack = mcp251xfd_int_stack_##inst, \ }; \ static const struct mcp251xfd_config mcp251xfd_config_##inst = { \ .common = CAN_DT_DRIVER_CONFIG_INST_GET(inst, 0, 8000000), \ .bus = SPI_DT_SPEC_INST_GET(inst, SPI_WORD_SET(8), 0), \ .int_gpio_dt = GPIO_DT_SPEC_INST_GET(inst, int_gpios), \ \ .sof_on_clko = DT_INST_PROP(inst, sof_on_clko), \ .clko_div = DT_INST_ENUM_IDX(inst, clko_div), \ .pll_enable = DT_INST_PROP(inst, pll_enable), \ .timestamp_prescaler = DT_INST_PROP(inst, timestamp_prescaler), \ \ .osc_freq = DT_INST_PROP(inst, osc_freq), \ \ .rx_fifo = {.ram_start_addr = MCP251XFD_RX_FIFO_START_ADDR, \ .reg_fifocon_addr = MCP251XFD_REG_FIFOCON(MCP251XFD_RX_FIFO_IDX), \ .capacity = MCP251XFD_RX_FIFO_ITEMS, \ .item_size = MCP251XFD_RX_FIFO_ITEM_SIZE, \ .msg_handler = mcp251xfd_rx_fifo_handler}, \ .tef_fifo = {.ram_start_addr = MCP251XFD_TEF_FIFO_START_ADDR, \ .reg_fifocon_addr = MCP251XFD_REG_TEFCON, \ .capacity = MCP251XFD_TEF_FIFO_ITEMS, \ .item_size = MCP251XFD_TEF_FIFO_ITEM_SIZE, \ .msg_handler = mcp251xfd_tef_fifo_handler}, \ MCP251XFD_SET_CLOCK(inst) \ }; \ \ CAN_DEVICE_DT_INST_DEFINE(inst, mcp251xfd_init, NULL, &mcp251xfd_data_##inst, \ &mcp251xfd_config_##inst, POST_KERNEL, CONFIG_CAN_INIT_PRIORITY, \ &mcp251xfd_api_funcs); DT_INST_FOREACH_STATUS_OKAY(MCP251XFD_INIT)