/* spi.c - SPI based Bluetooth driver */ #define DT_DRV_COMPAT zephyr_bt_hci_spi /* * Copyright (c) 2017 Linaro Ltd. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL #include LOG_MODULE_REGISTER(bt_driver); /* Special Values */ #define SPI_WRITE 0x0A #define SPI_READ 0x0B #define READY_NOW 0x02 #define EVT_BLUE_INITIALIZED 0x01 /* Offsets */ #define STATUS_HEADER_READY 0 #define STATUS_HEADER_TOREAD 3 #define STATUS_HEADER_TOWRITE 1 #define PACKET_TYPE 0 #define EVT_HEADER_TYPE 0 #define EVT_HEADER_EVENT 1 #define EVT_HEADER_SIZE 2 #define EVT_LE_META_SUBEVENT 3 #define EVT_VENDOR_CODE_LSB 3 #define EVT_VENDOR_CODE_MSB 4 #define CMD_OGF 1 #define CMD_OCF 2 /* Max SPI buffer length for transceive operations. * * Buffer size needs to be at least the size of the larger RX/TX buffer * required by the SPI slave, as the legacy spi_transceive requires both RX/TX * to be the same length. Size also needs to be compatible with the * slave device used (e.g. nRF5X max buffer length for SPIS is 255). */ #define SPI_MAX_MSG_LEN 255 /* As defined by X-NUCLEO-IDB04A1 BSP */ #define DATA_DELAY_US DT_INST_PROP(0, controller_data_delay_us) /* Single byte header denoting the buffer type */ #define H4_HDR_SIZE 1 /* Maximum L2CAP MTU that can fit in a single packet */ #define MAX_MTU (SPI_MAX_MSG_LEN - H4_HDR_SIZE - BT_L2CAP_HDR_SIZE - BT_HCI_ACL_HDR_SIZE) #if CONFIG_BT_L2CAP_TX_MTU > MAX_MTU #warning CONFIG_BT_L2CAP_TX_MTU is too large and can result in packets that cannot \ be transmitted across this HCI link #endif /* CONFIG_BT_L2CAP_TX_MTU > MAX_MTU */ struct bt_spi_data { bt_hci_recv_t recv; }; static uint8_t __noinit rxmsg[SPI_MAX_MSG_LEN]; static uint8_t __noinit txmsg[SPI_MAX_MSG_LEN]; static const struct gpio_dt_spec irq_gpio = GPIO_DT_SPEC_INST_GET(0, irq_gpios); static const struct gpio_dt_spec rst_gpio = GPIO_DT_SPEC_INST_GET(0, reset_gpios); static struct gpio_callback gpio_cb; static K_SEM_DEFINE(sem_initialised, 0, 1); static K_SEM_DEFINE(sem_request, 0, 1); static K_SEM_DEFINE(sem_busy, 1, 1); static K_KERNEL_STACK_DEFINE(spi_rx_stack, CONFIG_BT_DRV_RX_STACK_SIZE); static struct k_thread spi_rx_thread_data; static const struct spi_dt_spec bus = SPI_DT_SPEC_INST_GET( 0, SPI_OP_MODE_MASTER | SPI_TRANSFER_MSB | SPI_WORD_SET(8), 0); static struct spi_buf spi_tx_buf; static struct spi_buf spi_rx_buf; static const struct spi_buf_set spi_tx = { .buffers = &spi_tx_buf, .count = 1 }; static const struct spi_buf_set spi_rx = { .buffers = &spi_rx_buf, .count = 1 }; static inline int bt_spi_transceive(void *tx, uint32_t tx_len, void *rx, uint32_t rx_len) { spi_tx_buf.buf = tx; spi_tx_buf.len = (size_t)tx_len; spi_rx_buf.buf = rx; spi_rx_buf.len = (size_t)rx_len; return spi_transceive_dt(&bus, &spi_tx, &spi_rx); } static inline uint16_t bt_spi_get_cmd(uint8_t *msg) { return (msg[CMD_OCF] << 8) | msg[CMD_OGF]; } static inline uint16_t bt_spi_get_evt(uint8_t *msg) { return (msg[EVT_VENDOR_CODE_MSB] << 8) | msg[EVT_VENDOR_CODE_LSB]; } static void bt_spi_isr(const struct device *unused1, struct gpio_callback *unused2, uint32_t unused3) { LOG_DBG(""); k_sem_give(&sem_request); } static bool bt_spi_handle_vendor_evt(uint8_t *msg) { bool handled = false; switch (bt_spi_get_evt(msg)) { case EVT_BLUE_INITIALIZED: { k_sem_give(&sem_initialised); handled = true; } default: break; } return handled; } static int bt_spi_get_header(uint8_t op, uint16_t *size) { uint8_t header_master[5] = {op, 0, 0, 0, 0}; uint8_t header_slave[5]; bool reading = (op == SPI_READ); bool loop_cond; uint8_t size_offset; int ret; if (!(op == SPI_READ || op == SPI_WRITE)) { return -EINVAL; } if (reading) { size_offset = STATUS_HEADER_TOREAD; } do { ret = bt_spi_transceive(header_master, 5, header_slave, 5); if (ret) { break; } if (reading) { /* When reading, keep looping if there is not yet any data */ loop_cond = header_slave[STATUS_HEADER_TOREAD] == 0U; } else { /* When writing, keep looping if all bytes are zero */ loop_cond = ((header_slave[1] | header_slave[2] | header_slave[3] | header_slave[4]) == 0U); } } while ((header_slave[STATUS_HEADER_READY] != READY_NOW) || loop_cond); *size = (reading ? header_slave[size_offset] : SPI_MAX_MSG_LEN); return ret; } static struct net_buf *bt_spi_rx_buf_construct(uint8_t *msg) { bool discardable = false; k_timeout_t timeout = K_FOREVER; struct bt_hci_acl_hdr acl_hdr; struct net_buf *buf; int len; switch (msg[PACKET_TYPE]) { case BT_HCI_H4_EVT: switch (msg[EVT_HEADER_EVENT]) { case BT_HCI_EVT_VENDOR: /* Run event through interface handler */ if (bt_spi_handle_vendor_evt(msg)) { return NULL; } /* Event has not yet been handled */ __fallthrough; default: if (msg[EVT_HEADER_EVENT] == BT_HCI_EVT_LE_META_EVENT && (msg[EVT_LE_META_SUBEVENT] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) { discardable = true; timeout = K_NO_WAIT; } buf = bt_buf_get_evt(msg[EVT_HEADER_EVENT], discardable, timeout); if (!buf) { LOG_DBG("Discard adv report due to insufficient buf"); return NULL; } } len = sizeof(struct bt_hci_evt_hdr) + msg[EVT_HEADER_SIZE]; if (len > net_buf_tailroom(buf)) { LOG_ERR("Event too long: %d", len); net_buf_unref(buf); return NULL; } net_buf_add_mem(buf, &msg[1], len); break; case BT_HCI_H4_ACL: buf = bt_buf_get_rx(BT_BUF_ACL_IN, K_FOREVER); memcpy(&acl_hdr, &msg[1], sizeof(acl_hdr)); len = sizeof(acl_hdr) + sys_le16_to_cpu(acl_hdr.len); if (len > net_buf_tailroom(buf)) { LOG_ERR("ACL too long: %d", len); net_buf_unref(buf); return NULL; } net_buf_add_mem(buf, &msg[1], len); break; default: LOG_ERR("Unknown BT buf type %d", msg[0]); return NULL; } return buf; } static void bt_spi_rx_thread(void *p1, void *p2, void *p3) { const struct device *dev = p1; struct bt_spi_data *hci = dev->data; ARG_UNUSED(p2); ARG_UNUSED(p3); struct net_buf *buf; uint16_t size = 0U; int ret; (void)memset(&txmsg, 0xFF, SPI_MAX_MSG_LEN); while (true) { /* Wait for interrupt pin to be active */ k_sem_take(&sem_request, K_FOREVER); LOG_DBG(""); /* Wait for SPI bus to be available */ k_sem_take(&sem_busy, K_FOREVER); ret = bt_spi_get_header(SPI_READ, &size); /* Delay here is rounded up to next tick */ k_sleep(K_USEC(DATA_DELAY_US)); /* Read data */ if (ret == 0 && size != 0) { do { ret = bt_spi_transceive(&txmsg, size, &rxmsg, size); if (rxmsg[0] == 0U) { /* Consider increasing controller-data-delay-us * if this message is extremely common. */ LOG_DBG("Controller not ready for SPI transaction " "of %d bytes", size); } } while (rxmsg[0] == 0U && ret == 0); } k_sem_give(&sem_busy); if (ret || size == 0) { if (ret) { LOG_ERR("Error %d", ret); } continue; } LOG_HEXDUMP_DBG(rxmsg, size, "SPI RX"); /* Construct net_buf from SPI data */ buf = bt_spi_rx_buf_construct(rxmsg); if (buf) { /* Handle the received HCI data */ hci->recv(dev, buf); } } } static int bt_spi_send(const struct device *dev, struct net_buf *buf) { uint16_t size; uint8_t rx_first[1]; int ret; ARG_UNUSED(dev); LOG_DBG(""); /* Buffer needs an additional byte for type */ if (buf->len >= SPI_MAX_MSG_LEN) { LOG_ERR("Message too long (%d)", buf->len); return -EINVAL; } /* Wait for SPI bus to be available */ k_sem_take(&sem_busy, K_FOREVER); switch (bt_buf_get_type(buf)) { case BT_BUF_ACL_OUT: net_buf_push_u8(buf, BT_HCI_H4_ACL); break; case BT_BUF_CMD: net_buf_push_u8(buf, BT_HCI_H4_CMD); break; default: LOG_ERR("Unsupported type"); k_sem_give(&sem_busy); return -EINVAL; } ret = bt_spi_get_header(SPI_WRITE, &size); size = MIN(buf->len, size); if (size < buf->len) { LOG_WRN("Unable to write full data, skipping"); size = 0; ret = -ECANCELED; } if (!ret) { /* Delay here is rounded up to next tick */ k_sleep(K_USEC(DATA_DELAY_US)); /* Transmit the message */ while (true) { ret = bt_spi_transceive(buf->data, size, rx_first, 1); if (rx_first[0] != 0U || ret) { break; } /* Consider increasing controller-data-delay-us * if this message is extremely common. */ LOG_DBG("Controller not ready for SPI transaction of %d bytes", size); } } k_sem_give(&sem_busy); if (ret) { LOG_ERR("Error %d", ret); goto out; } LOG_HEXDUMP_DBG(buf->data, buf->len, "SPI TX"); out: net_buf_unref(buf); return ret; } static int bt_spi_open(const struct device *dev, bt_hci_recv_t recv) { struct bt_spi_data *hci = dev->data; int err; /* Configure RST pin and hold BLE in Reset */ err = gpio_pin_configure_dt(&rst_gpio, GPIO_OUTPUT_ACTIVE); if (err) { return err; } /* Configure IRQ pin and the IRQ call-back/handler */ err = gpio_pin_configure_dt(&irq_gpio, GPIO_INPUT); if (err) { return err; } gpio_init_callback(&gpio_cb, bt_spi_isr, BIT(irq_gpio.pin)); err = gpio_add_callback(irq_gpio.port, &gpio_cb); if (err) { return err; } /* Enable the interrupt line */ err = gpio_pin_interrupt_configure_dt(&irq_gpio, GPIO_INT_EDGE_TO_ACTIVE); if (err) { return err; } hci->recv = recv; /* Take BLE out of reset */ k_sleep(K_MSEC(DT_INST_PROP_OR(0, reset_assert_duration_ms, 0))); gpio_pin_set_dt(&rst_gpio, 0); /* Start RX thread */ k_thread_create(&spi_rx_thread_data, spi_rx_stack, K_KERNEL_STACK_SIZEOF(spi_rx_stack), bt_spi_rx_thread, (void *)dev, NULL, NULL, K_PRIO_COOP(CONFIG_BT_DRIVER_RX_HIGH_PRIO), 0, K_NO_WAIT); k_thread_name_set(&spi_rx_thread_data, "bt_spi_rx_thread"); /* Device will let us know when it's ready */ k_sem_take(&sem_initialised, K_FOREVER); return 0; } static DEVICE_API(bt_hci, drv) = { .open = bt_spi_open, .send = bt_spi_send, }; static int bt_spi_init(const struct device *dev) { ARG_UNUSED(dev); if (!spi_is_ready_dt(&bus)) { LOG_ERR("SPI device not ready"); return -ENODEV; } if (!gpio_is_ready_dt(&irq_gpio)) { LOG_ERR("IRQ GPIO device not ready"); return -ENODEV; } if (!gpio_is_ready_dt(&rst_gpio)) { LOG_ERR("Reset GPIO device not ready"); return -ENODEV; } LOG_DBG("BT SPI initialized"); return 0; } #define HCI_DEVICE_INIT(inst) \ static struct bt_spi_data hci_data_##inst = { \ }; \ DEVICE_DT_INST_DEFINE(inst, bt_spi_init, NULL, &hci_data_##inst, NULL, \ POST_KERNEL, CONFIG_BT_SPI_INIT_PRIORITY, &drv) /* Only one instance supported right now */ HCI_DEVICE_INIT(0)