/* hci_da1469x.c - DA1469x CMAC IPC Bluetooth driver */ /* * Copyright (c) 2023 Renesas Electronics Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #define LOG_LEVEL CONFIG_BT_HCI_DRIVER_LOG_LEVEL #include LOG_MODULE_REGISTER(hci_da1469x); #define DT_DRV_COMPAT renesas_bt_hci_da1469x struct hci_data { bt_hci_recv_t recv; }; static K_KERNEL_STACK_DEFINE(rng_thread_stack, CONFIG_BT_RX_STACK_SIZE); static struct k_thread rng_thread_data; struct k_sem rng_sem; static K_KERNEL_STACK_DEFINE(rx_thread_stack, CONFIG_BT_RX_STACK_SIZE); static struct k_thread rx_thread_data; static struct { struct net_buf *buf; struct k_fifo fifo; uint16_t remaining; uint16_t discard; bool have_hdr; bool discardable; bool deferred; uint8_t hdr_len; uint8_t type; union { struct bt_hci_evt_hdr evt; struct bt_hci_acl_hdr acl; struct bt_hci_iso_hdr iso; uint8_t hdr[4]; }; } rx = { .fifo = Z_FIFO_INITIALIZER(rx.fifo), }; static void h4_get_type(void) { /* Get packet type */ if (cmac_mbox_read(&rx.type, 1) != 1) { LOG_WRN("Unable to read H:4 packet type"); rx.type = BT_HCI_H4_NONE; return; } switch (rx.type) { case BT_HCI_H4_EVT: rx.remaining = sizeof(rx.evt); rx.hdr_len = rx.remaining; break; case BT_HCI_H4_ACL: rx.remaining = sizeof(rx.acl); rx.hdr_len = rx.remaining; break; case BT_HCI_H4_ISO: if (IS_ENABLED(CONFIG_BT_ISO)) { rx.remaining = sizeof(rx.iso); rx.hdr_len = rx.remaining; break; } __fallthrough; default: LOG_ERR("Unknown H:4 type 0x%02x", rx.type); rx.type = BT_HCI_H4_NONE; } } static void h4_read_hdr(void) { int bytes_read = rx.hdr_len - rx.remaining; int ret; ret = cmac_mbox_read(rx.hdr + bytes_read, rx.remaining); if (unlikely(ret < 0)) { LOG_ERR("Unable to read from mailbox (ret %d)", ret); } else { rx.remaining -= ret; } } static inline void get_acl_hdr(void) { h4_read_hdr(); if (!rx.remaining) { struct bt_hci_acl_hdr *hdr = &rx.acl; rx.remaining = sys_le16_to_cpu(hdr->len); LOG_DBG("Got ACL header. Payload %u bytes", rx.remaining); rx.have_hdr = true; } } static inline void get_iso_hdr(void) { h4_read_hdr(); if (!rx.remaining) { struct bt_hci_iso_hdr *hdr = &rx.iso; rx.remaining = bt_iso_hdr_len(sys_le16_to_cpu(hdr->len)); LOG_DBG("Got ISO header. Payload %u bytes", rx.remaining); rx.have_hdr = true; } } static inline void get_evt_hdr(void) { struct bt_hci_evt_hdr *hdr = &rx.evt; h4_read_hdr(); if (rx.hdr_len == sizeof(*hdr) && rx.remaining < sizeof(*hdr)) { switch (rx.evt.evt) { case BT_HCI_EVT_LE_META_EVENT: rx.remaining++; rx.hdr_len++; break; } } if (!rx.remaining) { if (rx.evt.evt == BT_HCI_EVT_LE_META_EVENT && (rx.hdr[sizeof(*hdr)] == BT_HCI_EVT_LE_ADVERTISING_REPORT)) { LOG_DBG("Marking adv report as discardable"); rx.discardable = true; } rx.remaining = hdr->len - (rx.hdr_len - sizeof(*hdr)); LOG_DBG("Got event header. Payload %u bytes", hdr->len); rx.have_hdr = true; } } static inline void copy_hdr(struct net_buf *buf) { net_buf_add_mem(buf, rx.hdr, rx.hdr_len); } static void reset_rx(void) { rx.type = BT_HCI_H4_NONE; rx.remaining = 0U; rx.have_hdr = false; rx.hdr_len = 0U; rx.discardable = false; } static struct net_buf *get_rx(k_timeout_t timeout) { LOG_DBG("type 0x%02x, evt 0x%02x", rx.type, rx.evt.evt); switch (rx.type) { case BT_HCI_H4_EVT: return bt_buf_get_evt(rx.evt.evt, rx.discardable, timeout); case BT_HCI_H4_ACL: return bt_buf_get_rx(BT_BUF_ACL_IN, timeout); case BT_HCI_H4_ISO: if (IS_ENABLED(CONFIG_BT_ISO)) { return bt_buf_get_rx(BT_BUF_ISO_IN, timeout); } } return NULL; } static void rx_isr_start(void) { if (rx.deferred) { rx.deferred = false; NVIC_SetPendingIRQ(CMAC2SYS_IRQn); } irq_enable(CMAC2SYS_IRQn); } static void rx_isr_stop(void) { irq_disable(CMAC2SYS_IRQn); } static void rx_thread(void *p1, void *p2, void *p3) { const struct device *dev = p1; struct hci_data *hci = dev->data; struct net_buf *buf; ARG_UNUSED(p2); ARG_UNUSED(p3); LOG_DBG("started"); while (1) { LOG_DBG("rx.buf %p", rx.buf); /* We can only do the allocation if we know the initial * header, since Command Complete/Status events must use the * original command buffer (if available). */ if (rx.have_hdr && !rx.buf) { rx.buf = get_rx(K_FOREVER); LOG_DBG("Got rx.buf %p", rx.buf); if (rx.remaining > net_buf_tailroom(rx.buf)) { LOG_ERR("Not enough space in buffer"); rx.discard = rx.remaining; reset_rx(); } else { copy_hdr(rx.buf); } } /* Let the ISR continue receiving new packets */ rx_isr_start(); buf = k_fifo_get(&rx.fifo, K_FOREVER); do { rx_isr_start(); LOG_DBG("Calling bt_recv(%p)", buf); hci->recv(dev, buf); /* Give other threads a chance to run if the ISR * is receiving data so fast that rx.fifo never * or very rarely goes empty. */ k_yield(); rx_isr_stop(); buf = k_fifo_get(&rx.fifo, K_NO_WAIT); } while (buf); } } static size_t h4_discard(size_t len) { uint8_t buf[33]; int err; err = cmac_mbox_read(buf, MIN(len, sizeof(buf))); if (unlikely(err < 0)) { LOG_ERR("Unable to read from mailbox (err %d)", err); return 0; } return err; } static inline void read_payload(void) { struct net_buf *buf; int read; if (!rx.buf) { size_t buf_tailroom; rx.buf = get_rx(K_NO_WAIT); if (!rx.buf) { if (rx.discardable) { LOG_WRN("Discarding event 0x%02x", rx.evt.evt); rx.discard = rx.remaining; reset_rx(); return; } LOG_WRN("Failed to allocate, deferring to rx_thread"); rx.deferred = true; return; } LOG_DBG("Allocated rx.buf %p", rx.buf); buf_tailroom = net_buf_tailroom(rx.buf); if (buf_tailroom < rx.remaining) { LOG_ERR("Not enough space in buffer %u/%zu", rx.remaining, buf_tailroom); rx.discard = rx.remaining; reset_rx(); return; } copy_hdr(rx.buf); } read = cmac_mbox_read(net_buf_tail(rx.buf), rx.remaining); if (unlikely(read < 0)) { LOG_ERR("Failed to read mailbox (err %d)", read); return; } net_buf_add(rx.buf, read); rx.remaining -= read; LOG_DBG("got %d bytes, remaining %u", read, rx.remaining); LOG_DBG("Payload (len %u): %s", rx.buf->len, bt_hex(rx.buf->data, rx.buf->len)); if (rx.remaining) { return; } buf = rx.buf; rx.buf = NULL; if (rx.type == BT_HCI_H4_EVT) { bt_buf_set_type(buf, BT_BUF_EVT); } else { bt_buf_set_type(buf, BT_BUF_ACL_IN); } reset_rx(); LOG_DBG("Putting buf %p to rx fifo", buf); k_fifo_put(&rx.fifo, buf); } static inline void read_header(void) { switch (rx.type) { case BT_HCI_H4_NONE: h4_get_type(); return; case BT_HCI_H4_EVT: get_evt_hdr(); break; case BT_HCI_H4_ACL: get_acl_hdr(); break; case BT_HCI_H4_ISO: if (IS_ENABLED(CONFIG_BT_ISO)) { get_iso_hdr(); break; } __fallthrough; default: CODE_UNREACHABLE; return; } if (rx.have_hdr && rx.buf) { if (rx.remaining > net_buf_tailroom(rx.buf)) { LOG_ERR("Not enough space in buffer"); rx.discard = rx.remaining; reset_rx(); } else { copy_hdr(rx.buf); } } } static inline void process_rx(void) { LOG_DBG("remaining %u discard %u have_hdr %u rx.buf %p len %u", rx.remaining, rx.discard, rx.have_hdr, rx.buf, rx.buf ? rx.buf->len : 0); if (rx.discard) { rx.discard -= h4_discard(rx.discard); return; } if (rx.have_hdr) { read_payload(); } else { read_header(); } } /* Called by HAL when data in CMAC mailbox is available to read */ void cmac_read_req(void) { while (!rx.deferred && cmac_mbox_has_data()) { process_rx(); } } /* Called by HAL when CMAC requests host to put more data in rng buffer */ void cmac_rng_req(void) { k_sem_give(&rng_sem); } static void rng_thread(void *p1, void *p2, void *p3) { uint32_t word; ARG_UNUSED(p1); ARG_UNUSED(p2); ARG_UNUSED(p3); while (1) { k_sem_take(&rng_sem, K_FOREVER); while (cmac_rand_needs_data()) { word = sys_rand32_get(); cmac_rand_fill(&word, 1); } cmac_signal(); } } static int bt_da1469x_open(const struct device *dev, bt_hci_recv_t recv) { struct hci_data *hci = dev->data; k_tid_t tid; tid = k_thread_create(&rx_thread_data, rx_thread_stack, K_KERNEL_STACK_SIZEOF(rx_thread_stack), rx_thread, (void *)dev, NULL, NULL, K_PRIO_COOP(CONFIG_BT_RX_PRIO), 0, K_NO_WAIT); k_thread_name_set(tid, "bt_rx_thread"); k_sem_init(&rng_sem, 0, 1); tid = k_thread_create(&rng_thread_data, rng_thread_stack, K_KERNEL_STACK_SIZEOF(rng_thread_stack), rng_thread, NULL, NULL, NULL, K_PRIO_COOP(CONFIG_BT_RX_PRIO), 0, K_NO_WAIT); k_thread_name_set(tid, "bt_rng_thread"); hci->recv = recv; cmac_enable(); irq_enable(CMAC2SYS_IRQn); return 0; } #ifdef CONFIG_BT_HCI_HOST static int bt_da1469x_close(const struct device *dev) { struct hci_data *hci = dev->data; irq_disable(CMAC2SYS_IRQn); cmac_disable(); hci->recv = NULL; return 0; } #endif /* CONFIG_BT_HCI_HOST */ static int bt_da1469x_send(const struct device *dev, struct net_buf *buf) { ARG_UNUSED(dev); switch (bt_buf_get_type(buf)) { case BT_BUF_ACL_OUT: LOG_DBG("ACL: buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len); net_buf_push_u8(buf, BT_HCI_H4_ACL); break; case BT_BUF_CMD: LOG_DBG("CMD: buf %p type %u len %u", buf, bt_buf_get_type(buf), buf->len); net_buf_push_u8(buf, BT_HCI_H4_CMD); break; default: LOG_ERR("Unsupported type"); return -EINVAL; } cmac_mbox_write(buf->data, buf->len); net_buf_unref(buf); return 0; } static DEVICE_API(bt_hci, drv) = { .open = bt_da1469x_open, .close = bt_da1469x_close, .send = bt_da1469x_send, }; static int bt_da1469x_init(const struct device *dev) { irq_disable(CMAC2SYS_IRQn); cmac_disable(); cmac_load_image(); cmac_configure_pdc(); cmac_configure_shm(); IRQ_CONNECT(CMAC2SYS_IRQn, 0, cmac_cmac2sys_isr, NULL, 0); return 0; } #define HCI_DEVICE_INIT(inst) \ static struct hci_data hci_data_##inst = { \ }; \ DEVICE_DT_INST_DEFINE(inst, bt_da1469x_init, NULL, &hci_data_##inst, NULL, \ POST_KERNEL, CONFIG_KERNEL_INIT_PRIORITY_DEVICE, &drv) /* Only one instance supported right now */ HCI_DEVICE_INIT(0)