/* * Copyright 2023 NXP * Copyright (c) 2021 Nordic Semiconductor ASA * * based on dmic_nrfx_pdm.c * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(dmic_mcux, CONFIG_AUDIO_DMIC_LOG_LEVEL); #define DT_DRV_COMPAT nxp_dmic struct mcux_dmic_pdm_chan { dmic_channel_config_t dmic_channel_cfg; const struct device *dma; uint8_t dma_chan; }; struct mcux_dmic_drv_data { struct k_mem_slab *mem_slab; void *dma_bufs[CONFIG_DMIC_MCUX_DMA_BUFFERS]; uint8_t active_buf_idx; uint32_t block_size; DMIC_Type *base_address; struct mcux_dmic_pdm_chan **pdm_channels; uint8_t act_num_chan; struct k_msgq *rx_queue; uint32_t chan_map_lo; uint32_t chan_map_hi; enum dmic_state dmic_state; }; struct mcux_dmic_cfg { const struct pinctrl_dev_config *pcfg; const struct device *clock_dev; clock_control_subsys_t clock_name; bool use2fs; }; static int dmic_mcux_get_osr(uint32_t pcm_rate, uint32_t bit_clk, bool use_2fs) { uint32_t use2fs_div = use_2fs ? 1 : 2; /* Note that the below calculation assumes the following: * - DMIC DIVHFCLK is set to 0x0 (divide by 1) * - DMIC PHY_HALF is set to 0x0 (standard sample rate) */ return (uint32_t)(bit_clk / (2 * pcm_rate * use2fs_div)); } /* Gets hardware channel index from logical channel */ static uint8_t dmic_mcux_hw_chan(struct mcux_dmic_drv_data *drv_data, uint8_t log_chan) { enum pdm_lr lr; uint8_t hw_chan; /* This function assigns hardware channel "n" to the left channel, * and hardware channel "n+1" to the right channel. This choice is * arbitrary, but must be followed throughout the driver. */ dmic_parse_channel_map(drv_data->chan_map_lo, drv_data->chan_map_hi, log_chan, &hw_chan, &lr); if (lr == PDM_CHAN_LEFT) { return hw_chan * 2; } else { return (hw_chan * 2) + 1; } } static void dmic_mcux_activate_channels(struct mcux_dmic_drv_data *drv_data, bool enable) { /* PDM channel 0 must always be enabled, as the RM states: * "In order to output 8 channels of PDM Data, PDM_CLK01 must be used" * therefore, even if we don't intend to capture PDM data from the * channel 0 FIFO, we still enable the channel so the clock is active. */ uint32_t mask = 0x1; for (uint8_t chan = 0; chan < drv_data->act_num_chan; chan++) { /* Set bitmask of hw channel to enable */ mask |= BIT(dmic_mcux_hw_chan(drv_data, chan)); } if (enable) { DMIC_EnableChannnel(drv_data->base_address, mask); } else { /* No function to disable channels, we must bypass HAL here */ drv_data->base_address->CHANEN &= ~mask; } } static int dmic_mcux_enable_dma(struct mcux_dmic_drv_data *drv_data, bool enable) { struct mcux_dmic_pdm_chan *pdm_channel; uint8_t num_chan = drv_data->act_num_chan; uint8_t hw_chan; int ret = 0; for (uint8_t chan = 0; chan < num_chan; chan++) { /* Parse the channel map data */ hw_chan = dmic_mcux_hw_chan(drv_data, chan); pdm_channel = drv_data->pdm_channels[hw_chan]; if (enable) { ret = dma_start(pdm_channel->dma, pdm_channel->dma_chan); if (ret < 0) { LOG_ERR("Could not start DMA for HW channel %d", hw_chan); return ret; } } else { if (dma_stop(pdm_channel->dma, pdm_channel->dma_chan)) { ret = -EIO; } } DMIC_EnableChannelDma(drv_data->base_address, (dmic_channel_t)hw_chan, enable); } return ret; } /* Helper to reload DMA engine for all active channels with new buffer */ static void dmic_mcux_reload_dma(struct mcux_dmic_drv_data *drv_data, void *buffer) { int ret; uint8_t hw_chan; struct mcux_dmic_pdm_chan *pdm_channel; uint8_t num_chan = drv_data->act_num_chan; uint32_t dma_buf_size = drv_data->block_size / num_chan; uint32_t src, dst; /* This function reloads the DMA engine for all active DMA channels * with the provided buffer. Each DMA channel will start * at a different initial address to interleave channel data. */ for (uint8_t chan = 0; chan < num_chan; chan++) { /* Parse the channel map data */ hw_chan = dmic_mcux_hw_chan(drv_data, chan); pdm_channel = drv_data->pdm_channels[hw_chan]; src = DMIC_FifoGetAddress(drv_data->base_address, hw_chan); dst = (uint32_t)(((uint16_t *)buffer) + chan); ret = dma_reload(pdm_channel->dma, pdm_channel->dma_chan, src, dst, dma_buf_size); if (ret < 0) { LOG_ERR("Could not reload DMIC HW channel %d", hw_chan); return; } } } /* Helper to get next buffer index for DMA */ static uint8_t dmic_mcux_next_buf_idx(uint8_t current_idx) { if ((current_idx + 1) == CONFIG_DMIC_MCUX_DMA_BUFFERS) { return 0; } return current_idx + 1; } static int dmic_mcux_stop(struct mcux_dmic_drv_data *drv_data) { /* Disable active channels */ dmic_mcux_activate_channels(drv_data, false); /* Disable DMA */ dmic_mcux_enable_dma(drv_data, false); /* Free all memory slabs */ for (uint32_t i = 0; i < CONFIG_DMIC_MCUX_DMA_BUFFERS; i++) { k_mem_slab_free(drv_data->mem_slab, drv_data->dma_bufs[i]); } /* Purge the RX queue as well. */ k_msgq_purge(drv_data->rx_queue); drv_data->dmic_state = DMIC_STATE_CONFIGURED; return 0; } static void dmic_mcux_dma_cb(const struct device *dev, void *user_data, uint32_t channel, int status) { struct mcux_dmic_drv_data *drv_data = (struct mcux_dmic_drv_data *)user_data; int ret; void *done_buffer = drv_data->dma_bufs[drv_data->active_buf_idx]; void *new_buffer; LOG_DBG("CB: channel is %u", channel); if (status < 0) { /* DMA has failed, free allocated blocks */ LOG_ERR("DMA reports error"); dmic_mcux_enable_dma(drv_data, false); dmic_mcux_activate_channels(drv_data, false); /* Free all allocated DMA buffers */ dmic_mcux_stop(drv_data); drv_data->dmic_state = DMIC_STATE_ERROR; return; } /* Before we queue the current buffer, make sure we can allocate * another one to replace it. */ ret = k_mem_slab_alloc(drv_data->mem_slab, &new_buffer, K_NO_WAIT); if (ret < 0) { /* We can't allocate a new buffer to replace the current * one, so we cannot release the current buffer to the * rx queue (or the DMA would stave). Therefore, we just * leave the current buffer in place to be overwritten * by the DMA. */ LOG_ERR("Could not allocate RX buffer. Dropping RX data"); drv_data->dmic_state = DMIC_STATE_ERROR; /* Reload DMA */ dmic_mcux_reload_dma(drv_data, done_buffer); /* Advance active buffer index */ drv_data->active_buf_idx = dmic_mcux_next_buf_idx(drv_data->active_buf_idx); return; } /* DMA issues an interrupt at the completion of every block. * we should put the active buffer into the rx queue for the * application to read. The application is responsible for * freeing this buffer once it processes it. */ ret = k_msgq_put(drv_data->rx_queue, &done_buffer, K_NO_WAIT); if (ret < 0) { /* Free the newly allocated buffer, we won't need it. */ k_mem_slab_free(drv_data->mem_slab, new_buffer); /* We cannot enqueue the current buffer, so we will drop * the current buffer data and leave the current buffer * in place to be overwritten by the DMA */ LOG_ERR("RX queue overflow, dropping RX buffer data"); drv_data->dmic_state = DMIC_STATE_ERROR; /* Reload DMA */ dmic_mcux_reload_dma(drv_data, done_buffer); /* Advance active buffer index */ drv_data->active_buf_idx = dmic_mcux_next_buf_idx(drv_data->active_buf_idx); return; } /* Previous buffer was enqueued, and new buffer is allocated. * Replace pointer to previous buffer in our dma slots array, * and reload DMA with next buffer. */ drv_data->dma_bufs[drv_data->active_buf_idx] = new_buffer; dmic_mcux_reload_dma(drv_data, new_buffer); /* Advance active buffer index */ drv_data->active_buf_idx = dmic_mcux_next_buf_idx(drv_data->active_buf_idx); } static int dmic_mcux_setup_dma(const struct device *dev) { struct mcux_dmic_drv_data *drv_data = dev->data; struct mcux_dmic_pdm_chan *pdm_channel; struct dma_block_config blk_cfg[CONFIG_DMIC_MCUX_DMA_BUFFERS] = {0}; struct dma_config dma_cfg = {0}; uint8_t num_chan = drv_data->act_num_chan; uint32_t dma_buf_size = drv_data->block_size / num_chan; uint8_t dma_buf_idx = 0; void *dma_buf = drv_data->dma_bufs[dma_buf_idx]; uint8_t hw_chan; int ret = 0; /* Setup DMA configuration common between all channels */ dma_cfg.user_data = drv_data; dma_cfg.channel_direction = PERIPHERAL_TO_MEMORY; dma_cfg.source_data_size = sizeof(uint16_t); /* Each sample is 16 bits */ dma_cfg.dest_data_size = sizeof(uint16_t); dma_cfg.block_count = CONFIG_DMIC_MCUX_DMA_BUFFERS; dma_cfg.head_block = &blk_cfg[0]; dma_cfg.complete_callback_en = 1; /* Callback at each block */ dma_cfg.dma_callback = dmic_mcux_dma_cb; /* When multiple channels are enabled simultaneously, the DMA * completion interrupt from one channel will signal that DMA data * from multiple channels may be collected, provided the same * amount of data was transferred. Therefore, we only enable the * DMA completion callback for the first channel we setup */ for (uint8_t chan = 0; chan < num_chan; chan++) { /* Parse the channel map data */ hw_chan = dmic_mcux_hw_chan(drv_data, chan); /* Configure blocks for hw_chan */ for (uint32_t blk = 0; blk < CONFIG_DMIC_MCUX_DMA_BUFFERS; blk++) { blk_cfg[blk].source_address = DMIC_FifoGetAddress(drv_data->base_address, hw_chan); /* We interleave samples within the output buffer * based on channel map. So for a channel map like so: * [pdm0_l, pdm0_r, pdm1_r, pdm1_l] * the resulting DMA buffer would look like: * [pdm0_l_s0, pdm0_r_s0, pdm1_r_s0, pdm1_l_s0, * pdm0_l_s1, pdm0_r_s1, pdm1_r_s1, pdm1_l_s1, ...] * Each sample is 16 bits wide. */ blk_cfg[blk].dest_address = (uint32_t)(((uint16_t *)dma_buf) + chan); blk_cfg[blk].dest_scatter_interval = num_chan * sizeof(uint16_t); blk_cfg[blk].dest_scatter_en = 1; blk_cfg[blk].source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; blk_cfg[blk].dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; blk_cfg[blk].block_size = dma_buf_size; /* Enable circular mode- when the final DMA block * is exhausted, we want the DMA controller * to restart with the first one. */ blk_cfg[blk].source_reload_en = 1; blk_cfg[blk].dest_reload_en = 1; if (blk < (CONFIG_DMIC_MCUX_DMA_BUFFERS - 1)) { blk_cfg[blk].next_block = &blk_cfg[blk + 1]; } else { /* Last block, enable circular reload */ blk_cfg[blk].next_block = NULL; } /* Select next dma buffer in array */ dma_buf_idx = dmic_mcux_next_buf_idx(dma_buf_idx); dma_buf = drv_data->dma_bufs[dma_buf_idx]; } pdm_channel = drv_data->pdm_channels[hw_chan]; /* Set configuration for hw_chan_0 */ ret = dma_config(pdm_channel->dma, pdm_channel->dma_chan, &dma_cfg); if (ret < 0) { LOG_ERR("Could not configure DMIC channel %d", hw_chan); return ret; } /* First channel is configured. Do not install callbacks for * other channels. */ dma_cfg.dma_callback = NULL; } return 0; } /* Initializes a DMIC hardware channel */ static int dmic_mcux_init_channel(const struct device *dev, uint32_t osr, uint8_t chan, enum pdm_lr lr) { struct mcux_dmic_drv_data *drv_data = dev->data; if (!drv_data->pdm_channels[chan]) { /* Channel disabled at devicetree level */ return -EINVAL; } drv_data->pdm_channels[chan]->dmic_channel_cfg.osr = osr; /* Configure channel settings */ DMIC_ConfigChannel(drv_data->base_address, (dmic_channel_t)chan, lr == PDM_CHAN_LEFT ? kDMIC_Left : kDMIC_Right, &drv_data->pdm_channels[chan]->dmic_channel_cfg); /* Setup channel FIFO. We use maximum threshold to avoid triggering * DMA too frequently */ DMIC_FifoChannel(drv_data->base_address, chan, 15, true, true); /* Disable interrupts. DMA will be enabled in dmic_mcux_trigger. */ DMIC_EnableChannelInterrupt(drv_data->base_address, chan, false); return 0; } static int mcux_dmic_init(const struct device *dev) { const struct mcux_dmic_cfg *config = dev->config; struct mcux_dmic_drv_data *drv_data = dev->data; int ret; ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } DMIC_Init(drv_data->base_address); DMIC_Use2fs(drv_data->base_address, config->use2fs); #if !(defined(FSL_FEATURE_DMIC_HAS_NO_IOCFG) && FSL_FEATURE_DMIC_HAS_NO_IOCFG) /* Set IO to dual mode */ DMIC_SetIOCFG(drv_data->base_address, kDMIC_PdmDual); #endif drv_data->dmic_state = DMIC_STATE_INITIALIZED; return 0; } static int dmic_mcux_configure(const struct device *dev, struct dmic_cfg *config) { const struct mcux_dmic_cfg *drv_config = dev->config; struct mcux_dmic_drv_data *drv_data = dev->data; struct pdm_chan_cfg *channel = &config->channel; struct pcm_stream_cfg *stream = &config->streams[0]; enum pdm_lr lr_0 = 0, lr_1 = 0; uint8_t hw_chan_0 = 0, hw_chan_1 = 0; uint32_t bit_clk_rate, osr; int ret; if (drv_data->dmic_state == DMIC_STATE_ACTIVE) { LOG_ERR("Cannot configure device while it is active"); return -EBUSY; } /* Only one active channel is supported */ if (channel->req_num_streams != 1) { return -EINVAL; } /* DMIC supports up to 8 active channels. Verify user is not * requesting more */ if (channel->req_num_chan > FSL_FEATURE_DMIC_CHANNEL_NUM) { LOG_ERR("DMIC only supports 8 channels or less"); return -ENOTSUP; } if (stream->pcm_rate == 0 || stream->pcm_width == 0) { if (drv_data->dmic_state == DMIC_STATE_CONFIGURED) { DMIC_DeInit(drv_data->base_address); drv_data->dmic_state = DMIC_STATE_UNINIT; } return 0; } /* If DMIC was deinitialized, reinit here */ if (drv_data->dmic_state == DMIC_STATE_UNINIT) { ret = mcux_dmic_init(dev); if (ret < 0) { LOG_ERR("Could not reinit DMIC"); return ret; } } /* Currently, we only support 16 bit samples. This is because the DMIC * API dictates that samples should be interleaved between channels, * IE: {C0, C1, C2, C0, C1, C2}. To achieve this we must use the * "destination address increment" function of the LPC DMA IP. Since * the LPC DMA IP does not support 3 byte wide transfers, we cannot * effectively use destination address increments to interleave 24 * bit samples. */ if (stream->pcm_width != 16) { LOG_ERR("Only 16 bit samples are supported"); return -ENOTSUP; } ret = clock_control_get_rate(drv_config->clock_dev, drv_config->clock_name, &bit_clk_rate); if (ret < 0) { return ret; } /* Check bit clock rate versus what user requested */ if ((config->io.min_pdm_clk_freq > bit_clk_rate) || (config->io.max_pdm_clk_freq < bit_clk_rate)) { return -EINVAL; } /* Calculate the required OSR divider based on the PCM bit clock * rate to the DMIC. */ osr = dmic_mcux_get_osr(stream->pcm_rate, bit_clk_rate, drv_config->use2fs); /* Now, parse the channel map and set up each channel we should * make active. We parse two channels at once, that way we can * check to make sure that the L/R channels of each PDM controller * are adjacent. */ channel->act_num_chan = 0; /* Save channel request data */ drv_data->chan_map_lo = channel->req_chan_map_lo; drv_data->chan_map_hi = channel->req_chan_map_hi; for (uint8_t chan = 0; chan < channel->req_num_chan; chan += 2) { /* Get the channel map data for channel pair */ dmic_parse_channel_map(channel->req_chan_map_lo, channel->req_chan_map_hi, chan, &hw_chan_0, &lr_0); if ((chan + 1) < channel->req_num_chan) { /* Paired channel is enabled */ dmic_parse_channel_map(channel->req_chan_map_lo, channel->req_chan_map_hi, chan + 1, &hw_chan_1, &lr_1); /* Verify that paired channels use same hardware index */ if ((lr_0 == lr_1) || (hw_chan_0 != hw_chan_1)) { return -EINVAL; } } /* Configure selected channels in DMIC */ ret = dmic_mcux_init_channel(dev, osr, dmic_mcux_hw_chan(drv_data, chan), lr_0); if (ret < 0) { return ret; } channel->act_num_chan++; if ((chan + 1) < channel->req_num_chan) { /* Paired channel is enabled */ ret = dmic_mcux_init_channel(dev, osr, dmic_mcux_hw_chan(drv_data, chan + 1), lr_1); if (ret < 0) { return ret; } channel->act_num_chan++; } } channel->act_chan_map_lo = channel->req_chan_map_lo; channel->act_chan_map_hi = channel->req_chan_map_hi; drv_data->mem_slab = stream->mem_slab; drv_data->block_size = stream->block_size; drv_data->act_num_chan = channel->act_num_chan; drv_data->dmic_state = DMIC_STATE_CONFIGURED; return 0; } static int dmic_mcux_start(const struct device *dev) { struct mcux_dmic_drv_data *drv_data = dev->data; int ret; /* Allocate the initial set of buffers reserved for use by the hardware. * We queue buffers so that when the DMA is operating on buffer "n", * buffer "n+1" is already queued in the DMA hardware. When buffer "n" * completes, we allocate another buffer and add it to the tail of the * DMA descriptor chain. This approach requires the driver to allocate * a minimum of two buffers */ for (uint32_t i = 0; i < CONFIG_DMIC_MCUX_DMA_BUFFERS; i++) { /* Allocate buffers for DMA */ ret = k_mem_slab_alloc(drv_data->mem_slab, &drv_data->dma_bufs[i], K_NO_WAIT); if (ret < 0) { LOG_ERR("failed to allocate buffer"); return -ENOBUFS; } } ret = dmic_mcux_setup_dma(dev); if (ret < 0) { return ret; } ret = dmic_mcux_enable_dma(drv_data, true); if (ret < 0) { return ret; } dmic_mcux_activate_channels(drv_data, true); return 0; } static int dmic_mcux_trigger(const struct device *dev, enum dmic_trigger cmd) { struct mcux_dmic_drv_data *drv_data = dev->data; switch (cmd) { case DMIC_TRIGGER_PAUSE: /* Disable active channels */ if (drv_data->dmic_state == DMIC_STATE_ACTIVE) { dmic_mcux_activate_channels(drv_data, false); } drv_data->dmic_state = DMIC_STATE_PAUSED; break; case DMIC_TRIGGER_STOP: if (drv_data->dmic_state == DMIC_STATE_ACTIVE) { dmic_mcux_stop(drv_data); } drv_data->dmic_state = DMIC_STATE_CONFIGURED; break; case DMIC_TRIGGER_RELEASE: /* Enable active channels */ if (drv_data->dmic_state == DMIC_STATE_PAUSED) { dmic_mcux_activate_channels(drv_data, true); } drv_data->dmic_state = DMIC_STATE_ACTIVE; break; case DMIC_TRIGGER_START: if ((drv_data->dmic_state != DMIC_STATE_CONFIGURED) && (drv_data->dmic_state != DMIC_STATE_ACTIVE)) { LOG_ERR("Device is not configured"); return -EIO; } else if (drv_data->dmic_state != DMIC_STATE_ACTIVE) { if (dmic_mcux_start(dev) < 0) { LOG_ERR("Could not start DMIC"); return -EIO; } drv_data->dmic_state = DMIC_STATE_ACTIVE; } break; case DMIC_TRIGGER_RESET: /* Reset DMIC to uninitialized state */ DMIC_DeInit(drv_data->base_address); drv_data->dmic_state = DMIC_STATE_UNINIT; break; default: LOG_ERR("Invalid command: %d", cmd); return -EINVAL; } return 0; } static int dmic_mcux_read(const struct device *dev, uint8_t stream, void **buffer, size_t *size, int32_t timeout) { struct mcux_dmic_drv_data *drv_data = dev->data; int ret; ARG_UNUSED(stream); if (drv_data->dmic_state == DMIC_STATE_ERROR) { LOG_ERR("Device reports an error, please reset and reconfigure it"); return -EIO; } if ((drv_data->dmic_state != DMIC_STATE_CONFIGURED) && (drv_data->dmic_state != DMIC_STATE_ACTIVE) && (drv_data->dmic_state != DMIC_STATE_PAUSED)) { LOG_ERR("Device state is not valid for read"); return -EIO; } ret = k_msgq_get(drv_data->rx_queue, buffer, SYS_TIMEOUT_MS(timeout)); if (ret < 0) { return ret; } *size = drv_data->block_size; LOG_DBG("read buffer = %p", *buffer); return 0; } static const struct _dmic_ops dmic_ops = { .configure = dmic_mcux_configure, .trigger = dmic_mcux_trigger, .read = dmic_mcux_read, }; /* Converts integer gainshift into 5 bit 2's complement value for GAINSHIFT reg */ #define PDM_DMIC_GAINSHIFT(val) \ (val >= 0) ? (val & 0xF) : (BIT(4) | (0x10 - (val & 0xF))) /* Defines structure for a given PDM channel node */ #define PDM_DMIC_CHAN_DEFINE(pdm_node) \ static struct mcux_dmic_pdm_chan \ pdm_channel_##pdm_node = { \ .dma = DEVICE_DT_GET(DT_DMAS_CTLR(pdm_node)), \ .dma_chan = DT_DMAS_CELL_BY_IDX(pdm_node, 0, channel), \ .dmic_channel_cfg = { \ .gainshft = PDM_DMIC_GAINSHIFT(DT_PROP(pdm_node, \ gainshift)), \ .preac2coef = DT_ENUM_IDX(pdm_node, compensation_2fs), \ .preac4coef = DT_ENUM_IDX(pdm_node, compensation_4fs), \ .dc_cut_level = DT_ENUM_IDX(pdm_node, dc_cutoff), \ .post_dc_gain_reduce = DT_PROP(pdm_node, dc_gain), \ .sample_rate = kDMIC_PhyFullSpeed, \ .saturate16bit = 1U, \ }, \ }; /* Defines structures for all enabled PDM channels */ #define PDM_DMIC_CHANNELS_DEFINE(idx) \ DT_INST_FOREACH_CHILD_STATUS_OKAY(idx, PDM_DMIC_CHAN_DEFINE) /* Gets pointer for a given PDM channel node */ #define PDM_DMIC_CHAN_GET(pdm_node) \ COND_CODE_1(DT_NODE_HAS_STATUS_OKAY(pdm_node), \ (&pdm_channel_##pdm_node), (NULL)), /* Gets array of pointers to PDM channels */ #define PDM_DMIC_CHANNELS_GET(idx) \ DT_INST_FOREACH_CHILD(idx, PDM_DMIC_CHAN_GET) #define MCUX_DMIC_DEVICE(idx) \ PDM_DMIC_CHANNELS_DEFINE(idx); \ static struct mcux_dmic_pdm_chan \ *pdm_channels##idx[FSL_FEATURE_DMIC_CHANNEL_NUM] = { \ PDM_DMIC_CHANNELS_GET(idx) \ }; \ K_MSGQ_DEFINE(dmic_msgq##idx, sizeof(void *), \ CONFIG_DMIC_MCUX_QUEUE_SIZE, 1); \ static struct mcux_dmic_drv_data mcux_dmic_data##idx = { \ .pdm_channels = pdm_channels##idx, \ .base_address = (DMIC_Type *) DT_INST_REG_ADDR(idx), \ .dmic_state = DMIC_STATE_UNINIT, \ .rx_queue = &dmic_msgq##idx, \ .active_buf_idx = 0U, \ }; \ \ PINCTRL_DT_INST_DEFINE(idx); \ static struct mcux_dmic_cfg mcux_dmic_cfg##idx = { \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \ .clock_name = (clock_control_subsys_t) \ DT_INST_CLOCKS_CELL(idx, name), \ .use2fs = DT_INST_PROP(idx, use2fs), \ }; \ \ DEVICE_DT_INST_DEFINE(idx, mcux_dmic_init, NULL, \ &mcux_dmic_data##idx, &mcux_dmic_cfg##idx, \ POST_KERNEL, CONFIG_AUDIO_DMIC_INIT_PRIORITY, \ &dmic_ops); /* Existing SoCs only have one PDM instance. */ DT_INST_FOREACH_STATUS_OKAY(MCUX_DMIC_DEVICE)