/* * Copyright (c) 2018 Nordic Semiconductor ASA * * SPDX-License-Identifier: Apache-2.0 */ #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" #include #include #include #include #define LOG_LEVEL CONFIG_ADC_LOG_LEVEL #include #include LOG_MODULE_REGISTER(adc_nrfx_saadc); #define DT_DRV_COMPAT nordic_nrf_saadc #if (NRF_SAADC_HAS_AIN_AS_PIN) #if defined(CONFIG_NRF_PLATFORM_HALTIUM) static const uint8_t saadc_psels[NRF_SAADC_AIN7 + 1] = { [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(0U, 1), [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(1U, 1), [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(2U, 1), [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(3U, 1), [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), }; #elif defined(CONFIG_SOC_NRF54L05) || defined(CONFIG_SOC_NRF54L10) || defined(CONFIG_SOC_NRF54L15) static const uint32_t saadc_psels[NRF_SAADC_DVDD + 1] = { [NRF_SAADC_AIN0] = NRF_PIN_PORT_TO_PIN_NUMBER(4U, 1), [NRF_SAADC_AIN1] = NRF_PIN_PORT_TO_PIN_NUMBER(5U, 1), [NRF_SAADC_AIN2] = NRF_PIN_PORT_TO_PIN_NUMBER(6U, 1), [NRF_SAADC_AIN3] = NRF_PIN_PORT_TO_PIN_NUMBER(7U, 1), [NRF_SAADC_AIN4] = NRF_PIN_PORT_TO_PIN_NUMBER(11U, 1), [NRF_SAADC_AIN5] = NRF_PIN_PORT_TO_PIN_NUMBER(12U, 1), [NRF_SAADC_AIN6] = NRF_PIN_PORT_TO_PIN_NUMBER(13U, 1), [NRF_SAADC_AIN7] = NRF_PIN_PORT_TO_PIN_NUMBER(14U, 1), [NRF_SAADC_VDD] = NRF_SAADC_INPUT_VDD, [NRF_SAADC_AVDD] = NRF_SAADC_INPUT_AVDD, [NRF_SAADC_DVDD] = NRF_SAADC_INPUT_DVDD, }; #endif #else BUILD_ASSERT((NRF_SAADC_AIN0 == NRF_SAADC_INPUT_AIN0) && (NRF_SAADC_AIN1 == NRF_SAADC_INPUT_AIN1) && (NRF_SAADC_AIN2 == NRF_SAADC_INPUT_AIN2) && (NRF_SAADC_AIN3 == NRF_SAADC_INPUT_AIN3) && (NRF_SAADC_AIN4 == NRF_SAADC_INPUT_AIN4) && (NRF_SAADC_AIN5 == NRF_SAADC_INPUT_AIN5) && (NRF_SAADC_AIN6 == NRF_SAADC_INPUT_AIN6) && (NRF_SAADC_AIN7 == NRF_SAADC_INPUT_AIN7) && #if defined(SAADC_CH_PSELP_PSELP_VDDHDIV5) (NRF_SAADC_VDDHDIV5 == NRF_SAADC_INPUT_VDDHDIV5) && #endif #if defined(SAADC_CH_PSELP_PSELP_VDD) (NRF_SAADC_VDD == NRF_SAADC_INPUT_VDD) && #endif 1, "Definitions from nrf-adc.h do not match those from nrf_saadc.h"); #endif #if defined(CONFIG_NRF_PLATFORM_HALTIUM) /* Haltium devices always use bounce buffers in RAM */ #define SAADC_MEMORY_SECTION \ COND_CODE_1(DT_NODE_HAS_PROP(DT_NODELABEL(adc), memory_regions), \ (__attribute__((__section__(LINKER_DT_NODE_REGION_NAME( \ DT_PHANDLE(DT_NODELABEL(adc), memory_regions)))))), \ ()) static uint16_t adc_samples_buffer[SAADC_CH_NUM] SAADC_MEMORY_SECTION; #define ADC_BUFFER_IN_RAM #endif /* defined(CONFIG_NRF_PLATFORM_HALTIUM) */ struct driver_data { struct adc_context ctx; uint8_t positive_inputs[SAADC_CH_NUM]; uint8_t single_ended_channels; #if defined(ADC_BUFFER_IN_RAM) void *samples_buffer; void *user_buffer; uint8_t active_channels; #endif }; static struct driver_data m_data = { ADC_CONTEXT_INIT_TIMER(m_data, ctx), ADC_CONTEXT_INIT_LOCK(m_data, ctx), ADC_CONTEXT_INIT_SYNC(m_data, ctx), #if defined(ADC_BUFFER_IN_RAM) .samples_buffer = adc_samples_buffer, #endif }; /* Helper function to convert number of samples to the byte representation. */ static uint32_t samples_to_bytes(const struct adc_sequence *sequence, uint16_t number_of_samples) { if (NRF_SAADC_8BIT_SAMPLE_WIDTH == 8 && sequence->resolution == 8) { return number_of_samples; } return number_of_samples * 2; } /* Helper function to convert acquisition time to register TACQ value. */ static int adc_convert_acq_time(uint16_t acquisition_time, nrf_saadc_acqtime_t *p_tacq_val) { int result = 0; #if NRF_SAADC_HAS_ACQTIME_ENUM switch (acquisition_time) { case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 3): *p_tacq_val = NRF_SAADC_ACQTIME_3US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 5): *p_tacq_val = NRF_SAADC_ACQTIME_5US; break; case ADC_ACQ_TIME_DEFAULT: case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 10): *p_tacq_val = NRF_SAADC_ACQTIME_10US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 15): *p_tacq_val = NRF_SAADC_ACQTIME_15US; break; case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 20): *p_tacq_val = NRF_SAADC_ACQTIME_20US; break; case ADC_ACQ_TIME_MAX: case ADC_ACQ_TIME(ADC_ACQ_TIME_MICROSECONDS, 40): *p_tacq_val = NRF_SAADC_ACQTIME_40US; break; default: result = -EINVAL; } #else #define MINIMUM_ACQ_TIME_IN_NS 125 #define DEFAULT_ACQ_TIME_IN_NS 10000 nrf_saadc_acqtime_t tacq = 0; uint16_t acq_time = (acquisition_time == ADC_ACQ_TIME_DEFAULT ? DEFAULT_ACQ_TIME_IN_NS : (ADC_ACQ_TIME_VALUE(acquisition_time) * (ADC_ACQ_TIME_UNIT(acquisition_time) == ADC_ACQ_TIME_MICROSECONDS ? 1000 : 1))); tacq = (nrf_saadc_acqtime_t)(acq_time / MINIMUM_ACQ_TIME_IN_NS) - 1; if ((tacq > NRF_SAADC_ACQTIME_MAX) || (acq_time < MINIMUM_ACQ_TIME_IN_NS)) { result = -EINVAL; } else { *p_tacq_val = tacq; } #endif return result; } /* Implementation of the ADC driver API function: adc_channel_setup. */ static int adc_nrfx_channel_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { nrf_saadc_channel_config_t config = { #if NRF_SAADC_HAS_CH_CONFIG_RES .resistor_p = NRF_SAADC_RESISTOR_DISABLED, .resistor_n = NRF_SAADC_RESISTOR_DISABLED, #endif .burst = NRF_SAADC_BURST_DISABLED, }; uint8_t channel_id = channel_cfg->channel_id; uint32_t input_negative = channel_cfg->input_negative; if (channel_id >= SAADC_CH_NUM) { return -EINVAL; } switch (channel_cfg->gain) { #if defined(SAADC_CH_CONFIG_GAIN_Gain1_6) case ADC_GAIN_1_6: config.gain = NRF_SAADC_GAIN1_6; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain1_5) case ADC_GAIN_1_5: config.gain = NRF_SAADC_GAIN1_5; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain1_4) || defined(SAADC_CH_CONFIG_GAIN_Gain2_8) case ADC_GAIN_1_4: config.gain = NRF_SAADC_GAIN1_4; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain1_3) || defined(SAADC_CH_CONFIG_GAIN_Gain2_6) case ADC_GAIN_1_3: config.gain = NRF_SAADC_GAIN1_3; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain2_5) case ADC_GAIN_2_5: config.gain = NRF_SAADC_GAIN2_5; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain1_2) || defined(SAADC_CH_CONFIG_GAIN_Gain2_4) case ADC_GAIN_1_2: config.gain = NRF_SAADC_GAIN1_2; break; #endif #if defined(SAADC_CH_CONFIG_GAIN_Gain2_3) case ADC_GAIN_2_3: config.gain = NRF_SAADC_GAIN2_3; break; #endif case ADC_GAIN_1: config.gain = NRF_SAADC_GAIN1; break; case ADC_GAIN_2: config.gain = NRF_SAADC_GAIN2; break; #if defined(SAADC_CH_CONFIG_GAIN_Gain4) case ADC_GAIN_4: config.gain = NRF_SAADC_GAIN4; break; #endif default: LOG_ERR("Selected ADC gain is not valid"); return -EINVAL; } switch (channel_cfg->reference) { #if defined(SAADC_CH_CONFIG_REFSEL_Internal) case ADC_REF_INTERNAL: config.reference = NRF_SAADC_REFERENCE_INTERNAL; break; #endif #if defined(SAADC_CH_CONFIG_REFSEL_VDD1_4) case ADC_REF_VDD_1_4: config.reference = NRF_SAADC_REFERENCE_VDD4; break; #endif #if defined(SAADC_CH_CONFIG_REFSEL_External) case ADC_REF_EXTERNAL0: config.reference = NRF_SAADC_REFERENCE_EXTERNAL; break; #endif default: LOG_ERR("Selected ADC reference is not valid"); return -EINVAL; } int ret = adc_convert_acq_time(channel_cfg->acquisition_time, &config.acq_time); if (ret) { LOG_ERR("Selected ADC acquisition time is not valid"); return -EINVAL; } /* Store channel mode to allow correcting negative readings in single-ended mode * after ADC sequence ends. */ if (channel_cfg->differential) { config.mode = NRF_SAADC_MODE_DIFFERENTIAL; m_data.single_ended_channels &= ~BIT(channel_cfg->channel_id); } else { config.mode = NRF_SAADC_MODE_SINGLE_ENDED; m_data.single_ended_channels |= BIT(channel_cfg->channel_id); } #if (NRF_SAADC_HAS_AIN_AS_PIN) if ((channel_cfg->input_positive >= ARRAY_SIZE(saadc_psels)) || (channel_cfg->input_positive < NRF_SAADC_AIN0)) { return -EINVAL; } if (config.mode == NRF_SAADC_MODE_DIFFERENTIAL) { if (input_negative > NRF_SAADC_AIN7 || input_negative < NRF_SAADC_AIN0) { return -EINVAL; } input_negative = saadc_psels[input_negative]; } else { input_negative = NRF_SAADC_INPUT_DISABLED; } #endif /* Store the positive input selection in a dedicated array, * to get it later when the channel is selected for a sampling * and to mark the channel as configured (ready to be selected). */ m_data.positive_inputs[channel_id] = channel_cfg->input_positive; nrf_saadc_channel_init(NRF_SAADC, channel_id, &config); /* Keep the channel disabled in hardware (set positive input to * NRF_SAADC_INPUT_DISABLED) until it is selected to be included * in a sampling sequence. */ nrf_saadc_channel_input_set(NRF_SAADC, channel_id, NRF_SAADC_INPUT_DISABLED, input_negative); return 0; } static void adc_context_start_sampling(struct adc_context *ctx) { nrf_saadc_enable(NRF_SAADC); if (ctx->sequence.calibrate) { nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_CALIBRATEOFFSET); } else { nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START); nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE); } } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat) { ARG_UNUSED(ctx); if (!repeat) { #if defined(ADC_BUFFER_IN_RAM) m_data.user_buffer = (uint8_t *)m_data.user_buffer + samples_to_bytes(&ctx->sequence, nrfy_saadc_amount_get(NRF_SAADC)); #else nrf_saadc_value_t *buffer = (uint8_t *)nrf_saadc_buffer_pointer_get(NRF_SAADC) + samples_to_bytes(&ctx->sequence, nrfy_saadc_amount_get(NRF_SAADC)); nrfy_saadc_buffer_pointer_set(NRF_SAADC, buffer); #endif } } static int set_resolution(const struct adc_sequence *sequence) { nrf_saadc_resolution_t nrf_resolution; switch (sequence->resolution) { case 8: nrf_resolution = NRF_SAADC_RESOLUTION_8BIT; break; case 10: nrf_resolution = NRF_SAADC_RESOLUTION_10BIT; break; case 12: nrf_resolution = NRF_SAADC_RESOLUTION_12BIT; break; case 14: nrf_resolution = NRF_SAADC_RESOLUTION_14BIT; break; default: LOG_ERR("ADC resolution value %d is not valid", sequence->resolution); return -EINVAL; } nrf_saadc_resolution_set(NRF_SAADC, nrf_resolution); return 0; } static int set_oversampling(const struct adc_sequence *sequence, uint8_t active_channels) { nrf_saadc_oversample_t nrf_oversampling; if ((active_channels > 1) && (sequence->oversampling > 0)) { LOG_ERR( "Oversampling is supported for single channel only"); return -EINVAL; } switch (sequence->oversampling) { case 0: nrf_oversampling = NRF_SAADC_OVERSAMPLE_DISABLED; break; case 1: nrf_oversampling = NRF_SAADC_OVERSAMPLE_2X; break; case 2: nrf_oversampling = NRF_SAADC_OVERSAMPLE_4X; break; case 3: nrf_oversampling = NRF_SAADC_OVERSAMPLE_8X; break; case 4: nrf_oversampling = NRF_SAADC_OVERSAMPLE_16X; break; case 5: nrf_oversampling = NRF_SAADC_OVERSAMPLE_32X; break; case 6: nrf_oversampling = NRF_SAADC_OVERSAMPLE_64X; break; case 7: nrf_oversampling = NRF_SAADC_OVERSAMPLE_128X; break; case 8: nrf_oversampling = NRF_SAADC_OVERSAMPLE_256X; break; default: LOG_ERR("Oversampling value %d is not valid", sequence->oversampling); return -EINVAL; } nrf_saadc_oversample_set(NRF_SAADC, nrf_oversampling); return 0; } static int check_buffer_size(const struct adc_sequence *sequence, uint8_t active_channels) { size_t needed_buffer_size; needed_buffer_size = samples_to_bytes(sequence, active_channels); if (sequence->options) { needed_buffer_size *= (1 + sequence->options->extra_samplings); } if (sequence->buffer_size < needed_buffer_size) { LOG_ERR("Provided buffer is too small (%u/%u)", sequence->buffer_size, needed_buffer_size); return -ENOMEM; } return 0; } static bool has_single_ended(const struct adc_sequence *sequence) { return sequence->channels & m_data.single_ended_channels; } static void correct_single_ended(const struct adc_sequence *sequence) { uint16_t channel_bit = BIT(0); uint8_t selected_channels = sequence->channels; uint8_t single_ended_channels = m_data.single_ended_channels; int16_t *sample = nrf_saadc_buffer_pointer_get(NRF_SAADC); while (channel_bit <= single_ended_channels) { if (channel_bit & selected_channels) { if ((channel_bit & single_ended_channels) && (*sample < 0)) { *sample = 0; } sample++; } channel_bit <<= 1; } } static int start_read(const struct device *dev, const struct adc_sequence *sequence) { int error; uint32_t selected_channels = sequence->channels; uint8_t resolution = sequence->resolution; uint8_t active_channels; uint8_t channel_id; /* Signal an error if channel selection is invalid (no channels or * a non-existing one is selected). */ if (!selected_channels || (selected_channels & ~BIT_MASK(SAADC_CH_NUM))) { LOG_ERR("Invalid selection of channels"); return -EINVAL; } active_channels = 0U; /* Enable only the channels selected for the pointed sequence. * Disable all the rest. */ channel_id = 0U; do { if (selected_channels & BIT(channel_id)) { /* Signal an error if a selected channel has not been * configured yet. */ if (m_data.positive_inputs[channel_id] == 0U) { LOG_ERR("Channel %u not configured", channel_id); return -EINVAL; } /* Signal an error if the channel is configured as * single ended with a resolution which is identical * to the sample bit size. The SAADC's "single ended" * mode is really differential mode with the * negative input tied to ground. We can therefore * observe negative values if the positive input falls * below ground. If the sample bitsize is larger than * the resolution, we can detect negative values and * correct them to 0 after the sequencen has ended. */ if ((m_data.single_ended_channels & BIT(channel_id)) && (NRF_SAADC_8BIT_SAMPLE_WIDTH == 8 && resolution == 8)) { LOG_ERR("Channel %u invalid single ended resolution", channel_id); return -EINVAL; } /* When oversampling is used, the burst mode needs to * be activated. Unfortunately, this mode cannot be * activated permanently in the channel setup, because * then the multiple channel sampling fails (the END * event is not generated) after switching to a single * channel sampling and back. Thus, when oversampling * is not used (hence, the multiple channel sampling is * possible), the burst mode have to be deactivated. */ nrf_saadc_burst_set(NRF_SAADC, channel_id, (sequence->oversampling != 0U ? NRF_SAADC_BURST_ENABLED : NRF_SAADC_BURST_DISABLED)); nrf_saadc_channel_pos_input_set( NRF_SAADC, channel_id, #if NRF_SAADC_HAS_AIN_AS_PIN saadc_psels[m_data.positive_inputs[channel_id]] #else m_data.positive_inputs[channel_id] #endif ); ++active_channels; } else { nrf_saadc_burst_set( NRF_SAADC, channel_id, NRF_SAADC_BURST_DISABLED); nrf_saadc_channel_pos_input_set( NRF_SAADC, channel_id, NRF_SAADC_INPUT_DISABLED); } } while (++channel_id < SAADC_CH_NUM); error = set_resolution(sequence); if (error) { return error; } error = set_oversampling(sequence, active_channels); if (error) { return error; } error = check_buffer_size(sequence, active_channels); if (error) { return error; } #if defined(ADC_BUFFER_IN_RAM) m_data.user_buffer = sequence->buffer; m_data.active_channels = active_channels; nrf_saadc_buffer_init(NRF_SAADC, (nrf_saadc_value_t *)m_data.samples_buffer, active_channels); #else nrf_saadc_buffer_init(NRF_SAADC, (nrf_saadc_value_t *)sequence->buffer, active_channels); #endif adc_context_start_read(&m_data.ctx, sequence); return adc_context_wait_for_completion(&m_data.ctx); } /* Implementation of the ADC driver API function: adc_read. */ static int adc_nrfx_read(const struct device *dev, const struct adc_sequence *sequence) { int error; adc_context_lock(&m_data.ctx, false, NULL); error = start_read(dev, sequence); adc_context_release(&m_data.ctx, error); return error; } #ifdef CONFIG_ADC_ASYNC /* Implementation of the ADC driver API function: adc_read_async. */ static int adc_nrfx_read_async(const struct device *dev, const struct adc_sequence *sequence, struct k_poll_signal *async) { int error; adc_context_lock(&m_data.ctx, true, async); error = start_read(dev, sequence); adc_context_release(&m_data.ctx, error); return error; } #endif /* CONFIG_ADC_ASYNC */ static void saadc_irq_handler(const struct device *dev) { if (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_END)) { nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END); nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP); nrf_saadc_disable(NRF_SAADC); if (has_single_ended(&m_data.ctx.sequence)) { correct_single_ended(&m_data.ctx.sequence); } #if defined(ADC_BUFFER_IN_RAM) memcpy(m_data.user_buffer, m_data.samples_buffer, samples_to_bytes(&m_data.ctx.sequence, m_data.active_channels)); #endif adc_context_on_sampling_done(&m_data.ctx, dev); } else if (nrf_saadc_event_check(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE)) { nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE); /* * The workaround for Nordic nRF52832 anomalies 86 and * 178 is an explicit STOP after CALIBRATEOFFSET * before issuing START. */ nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_STOP); nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_START); nrf_saadc_task_trigger(NRF_SAADC, NRF_SAADC_TASK_SAMPLE); } } static int init_saadc(const struct device *dev) { nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_END); nrf_saadc_event_clear(NRF_SAADC, NRF_SAADC_EVENT_CALIBRATEDONE); nrf_saadc_int_enable(NRF_SAADC, NRF_SAADC_INT_END | NRF_SAADC_INT_CALIBRATEDONE); NRFX_IRQ_ENABLE(DT_INST_IRQN(0)); IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), saadc_irq_handler, DEVICE_DT_INST_GET(0), 0); adc_context_unlock_unconditionally(&m_data.ctx); return 0; } static DEVICE_API(adc, adc_nrfx_driver_api) = { .channel_setup = adc_nrfx_channel_setup, .read = adc_nrfx_read, #ifdef CONFIG_ADC_ASYNC .read_async = adc_nrfx_read_async, #endif #if defined(CONFIG_SOC_NRF54L05) || defined(CONFIG_SOC_NRF54L10) || defined(CONFIG_SOC_NRF54L15) .ref_internal = 900, #elif defined(CONFIG_NRF_PLATFORM_HALTIUM) .ref_internal = 1024, #else .ref_internal = 600, #endif }; /* * There is only one instance on supported SoCs, so inst is guaranteed * to be 0 if any instance is okay. (We use adc_0 above, so the driver * is relying on the numeric instance value in a way that happens to * be safe.) * * Just in case that assumption becomes invalid in the future, we use * a BUILD_ASSERT(). */ #define SAADC_INIT(inst) \ BUILD_ASSERT((inst) == 0, \ "multiple instances not supported"); \ DEVICE_DT_INST_DEFINE(0, \ init_saadc, \ NULL, \ NULL, \ NULL, \ POST_KERNEL, \ CONFIG_ADC_INIT_PRIORITY, \ &adc_nrfx_driver_api); DT_INST_FOREACH_STATUS_OKAY(SAADC_INIT)