/* * Copyright (c) 2019 Intel Corporation. * Copyright (c) 2023 Microchip Technology Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT microchip_xec_adc #define LOG_LEVEL CONFIG_ADC_LOG_LEVEL #include LOG_MODULE_REGISTER(adc_mchp_xec); #include #ifdef CONFIG_SOC_SERIES_MEC172X #include #endif #include #include #include #include #include #include #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" #define XEC_ADC_VREF_ANALOG 3300 /* ADC Control Register */ #define XEC_ADC_CTRL_SINGLE_DONE_STATUS BIT(7) #define XEC_ADC_CTRL_REPEAT_DONE_STATUS BIT(6) #define XER_ADC_CTRL_SOFT_RESET BIT(4) #define XEC_ADC_CTRL_POWER_SAVER_DIS BIT(3) #define XEC_ADC_CTRL_START_REPEAT BIT(2) #define XEC_ADC_CTRL_START_SINGLE BIT(1) #define XEC_ADC_CTRL_ACTIVATE BIT(0) /* ADC implements two interrupt signals: * One-shot(single) conversion of a set of channels * Repeat conversion of a set of channels * Channel sets for single and repeat may be different. */ enum adc_pm_policy_state_flag { ADC_PM_POLICY_STATE_SINGLE_FLAG, ADC_PM_POLICY_STATE_REPEAT_FLAG, ADC_PM_POLICY_STATE_FLAG_COUNT, }; #define XEC_ADC_MAX_HW_CHAN 16 #define XEC_ADC_CFG_CHANNELS DT_INST_PROP(0, channels) struct adc_xec_regs { uint32_t control_reg; uint32_t delay_reg; uint32_t status_reg; uint32_t single_reg; uint32_t repeat_reg; uint32_t channel_read_reg[XEC_ADC_CFG_CHANNELS]; uint32_t unused[10 + (XEC_ADC_MAX_HW_CHAN - XEC_ADC_CFG_CHANNELS)]; uint32_t config_reg; uint32_t vref_channel_reg; uint32_t vref_control_reg; uint32_t sar_control_reg; }; struct adc_xec_config { struct adc_xec_regs *regs; uint8_t girq_single; uint8_t girq_single_pos; uint8_t girq_repeat; uint8_t girq_repeat_pos; uint8_t pcr_regidx; uint8_t pcr_bitpos; const struct pinctrl_dev_config *pcfg; }; struct adc_xec_data { struct adc_context ctx; const struct device *adc_dev; uint16_t *buffer; uint16_t *repeat_buffer; #ifdef CONFIG_PM_DEVICE ATOMIC_DEFINE(pm_policy_state_flag, ADC_PM_POLICY_STATE_FLAG_COUNT); #endif }; #ifdef CONFIG_PM_DEVICE static void adc_xec_pm_policy_state_lock_get(struct adc_xec_data *data, enum adc_pm_policy_state_flag flag) { if (atomic_test_and_set_bit(data->pm_policy_state_flag, flag) == 0) { pm_policy_state_lock_get(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); } } static void adc_xec_pm_policy_state_lock_put(struct adc_xec_data *data, enum adc_pm_policy_state_flag flag) { if (atomic_test_and_clear_bit(data->pm_policy_state_flag, flag) == 1) { pm_policy_state_lock_put(PM_STATE_SUSPEND_TO_IDLE, PM_ALL_SUBSTATES); } } #endif static void adc_context_start_sampling(struct adc_context *ctx) { struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx); const struct device *adc_dev = data->adc_dev; const struct adc_xec_config * const devcfg = adc_dev->config; struct adc_xec_regs *regs = devcfg->regs; data->repeat_buffer = data->buffer; #ifdef CONFIG_PM_DEVICE adc_xec_pm_policy_state_lock_get(data, ADC_PM_POLICY_STATE_SINGLE_FLAG); #endif regs->single_reg = ctx->sequence.channels; regs->control_reg |= XEC_ADC_CTRL_START_SINGLE; } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling) { struct adc_xec_data *data = CONTAINER_OF(ctx, struct adc_xec_data, ctx); if (repeat_sampling) { data->buffer = data->repeat_buffer; } } static int adc_xec_channel_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { const struct adc_xec_config *const cfg = dev->config; struct adc_xec_regs * const regs = cfg->regs; uint32_t areg; if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) { return -EINVAL; } if (channel_cfg->channel_id >= XEC_ADC_CFG_CHANNELS) { return -EINVAL; } if (channel_cfg->gain != ADC_GAIN_1) { return -EINVAL; } /* Setup VREF */ areg = regs->vref_channel_reg; areg &= ~MCHP_ADC_CH_VREF_SEL_MASK(channel_cfg->channel_id); if (channel_cfg->reference == ADC_REF_INTERNAL) { areg |= MCHP_ADC_CH_VREF_SEL_PAD(channel_cfg->channel_id); } else if (channel_cfg->reference == ADC_REF_EXTERNAL0) { areg |= MCHP_ADC_CH_VREF_SEL_GPIO(channel_cfg->channel_id); } else { return -EINVAL; } regs->vref_channel_reg = areg; /* Differential mode? */ areg = regs->sar_control_reg; areg &= ~BIT(MCHP_ADC_SAR_CTRL_SELDIFF_POS); if (channel_cfg->differential != 0) { areg |= MCHP_ADC_SAR_CTRL_SELDIFF_EN; } regs->sar_control_reg = areg; return 0; } static bool adc_xec_validate_buffer_size(const struct adc_sequence *sequence) { int chan_count = 0; size_t buff_need; uint32_t chan_mask; for (chan_mask = 0x80; chan_mask != 0; chan_mask >>= 1) { if (chan_mask & sequence->channels) { chan_count++; } } buff_need = chan_count * sizeof(uint16_t); if (sequence->options) { buff_need *= 1 + sequence->options->extra_samplings; } if (buff_need > sequence->buffer_size) { return false; } return true; } static int adc_xec_start_read(const struct device *dev, const struct adc_sequence *sequence) { const struct adc_xec_config *const cfg = dev->config; struct adc_xec_regs * const regs = cfg->regs; struct adc_xec_data * const data = dev->data; uint32_t sar_ctrl; if (sequence->channels & ~BIT_MASK(XEC_ADC_CFG_CHANNELS)) { LOG_ERR("Incorrect channels, bitmask 0x%x", sequence->channels); return -EINVAL; } if (sequence->channels == 0UL) { LOG_ERR("No channel selected"); return -EINVAL; } if (!adc_xec_validate_buffer_size(sequence)) { LOG_ERR("Incorrect buffer size"); return -ENOMEM; } /* Setup ADC resolution */ sar_ctrl = regs->sar_control_reg; sar_ctrl &= ~(MCHP_ADC_SAR_CTRL_RES_MASK | (1 << MCHP_ADC_SAR_CTRL_SHIFTD_POS)); if (sequence->resolution == 12) { sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_12_BITS; } else if (sequence->resolution == 10) { sar_ctrl |= MCHP_ADC_SAR_CTRL_RES_10_BITS; sar_ctrl |= MCHP_ADC_SAR_CTRL_SHIFTD_EN; } else { return -EINVAL; } regs->sar_control_reg = sar_ctrl; data->buffer = sequence->buffer; adc_context_start_read(&data->ctx, sequence); return adc_context_wait_for_completion(&data->ctx); } static int adc_xec_read(const struct device *dev, const struct adc_sequence *sequence) { struct adc_xec_data * const data = dev->data; int error; adc_context_lock(&data->ctx, false, NULL); error = adc_xec_start_read(dev, sequence); adc_context_release(&data->ctx, error); return error; } #ifdef CONFIG_ADC_ASYNC static int adc_xec_read_async(const struct device *dev, const struct adc_sequence *sequence, struct k_poll_signal *async) { struct adc_xec_data * const data = dev->data; int error; adc_context_lock(&data->ctx, true, async); error = adc_xec_start_read(dev, sequence); adc_context_release(&data->ctx, error); return error; } #endif /* CONFIG_ADC_ASYNC */ static void xec_adc_get_sample(const struct device *dev) { const struct adc_xec_config *const cfg = dev->config; struct adc_xec_regs * const regs = cfg->regs; struct adc_xec_data * const data = dev->data; uint32_t idx; uint32_t channels = regs->status_reg; uint32_t ch_status = channels; uint32_t bit; /* * Using the enabled channel bit set, from * lowest channel number to highest, find out * which channel is enabled and copy the ADC * values from hardware registers to the data * buffer. */ bit = find_lsb_set(channels); while (bit != 0) { idx = bit - 1; *data->buffer = (uint16_t)regs->channel_read_reg[idx]; data->buffer++; channels &= ~BIT(idx); bit = find_lsb_set(channels); } /* Clear the status register */ regs->status_reg = ch_status; } #ifdef CONFIG_SOC_SERIES_MEC172X static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn) { mchp_xec_ecia_girq_src_clr(girq_idx, girq_posn); } static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) { mchp_xec_ecia_girq_src_en(girq_idx, girq_posn); } static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn) { mchp_xec_ecia_girq_src_dis(girq_idx, girq_posn); } #else static inline void adc_xec_girq_clr(uint8_t girq_idx, uint8_t girq_posn) { MCHP_GIRQ_SRC(girq_idx) = BIT(girq_posn); } static inline void adc_xec_girq_en(uint8_t girq_idx, uint8_t girq_posn) { MCHP_GIRQ_ENSET(girq_idx) = BIT(girq_posn); } static inline void adc_xec_girq_dis(uint8_t girq_idx, uint8_t girq_posn) { MCHP_GIRQ_ENCLR(girq_idx) = MCHP_KBC_IBF_GIRQ; } #endif static void adc_xec_single_isr(const struct device *dev) { const struct adc_xec_config *const cfg = dev->config; struct adc_xec_regs * const regs = cfg->regs; struct adc_xec_data * const data = dev->data; uint32_t ctrl; /* Clear START_SINGLE bit and clear SINGLE_DONE_STATUS */ ctrl = regs->control_reg; ctrl &= ~XEC_ADC_CTRL_START_SINGLE; ctrl |= XEC_ADC_CTRL_SINGLE_DONE_STATUS; regs->control_reg = ctrl; /* Also clear GIRQ source status bit */ adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos); xec_adc_get_sample(dev); #ifdef CONFIG_PM_DEVICE adc_xec_pm_policy_state_lock_put(data, ADC_PM_POLICY_STATE_SINGLE_FLAG); #endif adc_context_on_sampling_done(&data->ctx, dev); LOG_DBG("ADC ISR triggered."); } #ifdef CONFIG_PM_DEVICE static int adc_xec_pm_action(const struct device *dev, enum pm_device_action action) { const struct adc_xec_config *const devcfg = dev->config; struct adc_xec_regs * const adc_regs = devcfg->regs; int ret; switch (action) { case PM_DEVICE_ACTION_RESUME: ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_DEFAULT); /* ADC activate */ adc_regs->control_reg |= XEC_ADC_CTRL_ACTIVATE; break; case PM_DEVICE_ACTION_SUSPEND: /* ADC deactivate */ adc_regs->control_reg &= ~(XEC_ADC_CTRL_ACTIVATE); /* If application does not want to turn off ADC pins it will * not define pinctrl-1 for this node. */ ret = pinctrl_apply_state(devcfg->pcfg, PINCTRL_STATE_SLEEP); if (ret == -ENOENT) { /* pinctrl-1 does not exist. */ ret = 0; } break; default: ret = -ENOTSUP; } return ret; } #endif /* CONFIG_PM_DEVICE */ static DEVICE_API(adc, adc_xec_api) = { .channel_setup = adc_xec_channel_setup, .read = adc_xec_read, #if defined(CONFIG_ADC_ASYNC) .read_async = adc_xec_read_async, #endif .ref_internal = XEC_ADC_VREF_ANALOG, }; /* ADC Config Register */ #define XEC_ADC_CFG_CLK_VAL(clk_time) ( \ (clk_time << MCHP_ADC_CFG_CLK_LO_TIME_POS) | \ (clk_time << MCHP_ADC_CFG_CLK_HI_TIME_POS)) static int adc_xec_init(const struct device *dev) { const struct adc_xec_config *const cfg = dev->config; struct adc_xec_regs * const regs = cfg->regs; struct adc_xec_data * const data = dev->data; int ret; data->adc_dev = dev; ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret != 0) { LOG_ERR("XEC ADC V2 pinctrl setup failed (%d)", ret); return ret; } regs->config_reg = XEC_ADC_CFG_CLK_VAL(DT_INST_PROP(0, clktime)); regs->control_reg = XEC_ADC_CTRL_ACTIVATE | XEC_ADC_CTRL_POWER_SAVER_DIS | XEC_ADC_CTRL_SINGLE_DONE_STATUS | XEC_ADC_CTRL_REPEAT_DONE_STATUS; adc_xec_girq_dis(cfg->girq_repeat, cfg->girq_repeat_pos); adc_xec_girq_clr(cfg->girq_repeat, cfg->girq_repeat_pos); adc_xec_girq_dis(cfg->girq_single, cfg->girq_single_pos); adc_xec_girq_clr(cfg->girq_single, cfg->girq_single_pos); adc_xec_girq_en(cfg->girq_single, cfg->girq_single_pos); IRQ_CONNECT(DT_INST_IRQN(0), DT_INST_IRQ(0, priority), adc_xec_single_isr, DEVICE_DT_INST_GET(0), 0); irq_enable(DT_INST_IRQN(0)); adc_context_unlock_unconditionally(&data->ctx); return 0; } PINCTRL_DT_INST_DEFINE(0); static struct adc_xec_config adc_xec_dev_cfg_0 = { .regs = (struct adc_xec_regs *)(DT_INST_REG_ADDR(0)), .girq_single = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 0)), .girq_single_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 1)), .girq_repeat = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 2)), .girq_repeat_pos = (uint8_t)(DT_INST_PROP_BY_IDX(0, girqs, 3)), .pcr_regidx = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 0)), .pcr_bitpos = (uint8_t)(DT_INST_PROP_BY_IDX(0, pcrs, 1)), .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(0), }; static struct adc_xec_data adc_xec_dev_data_0 = { ADC_CONTEXT_INIT_TIMER(adc_xec_dev_data_0, ctx), ADC_CONTEXT_INIT_LOCK(adc_xec_dev_data_0, ctx), ADC_CONTEXT_INIT_SYNC(adc_xec_dev_data_0, ctx), }; PM_DEVICE_DT_INST_DEFINE(0, adc_xec_pm_action); DEVICE_DT_INST_DEFINE(0, adc_xec_init, PM_DEVICE_DT_INST_GET(0), &adc_xec_dev_data_0, &adc_xec_dev_cfg_0, PRE_KERNEL_1, CONFIG_ADC_INIT_PRIORITY, &adc_xec_api);