/* * Copyright (c) 2023-2024 Analog Devices, Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT adi_max32_adc #include #include #include #include #include #include #include LOG_MODULE_REGISTER(adc_max32, CONFIG_ADC_LOG_LEVEL); #include #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" /* reference voltage for the ADC */ #define MAX32_ADC_VREF_MV DT_INST_PROP(0, vref_mv) struct max32_adc_config { uint8_t channel_count; mxc_adc_regs_t *regs; int clock_divider; int track_count; int idle_count; const struct pinctrl_dev_config *pctrl; const struct device *clock; struct max32_perclk perclk; void (*irq_func)(void); }; struct max32_adc_data { const struct device *dev; struct adc_context ctx; uint16_t *buffer; uint16_t *repeat_buffer; uint32_t channels; uint32_t sample_channels; const uint8_t resolution; }; #ifdef CONFIG_ADC_ASYNC static void adc_complete_cb(void *req, int error) { ARG_UNUSED(req); ARG_UNUSED(error); } #endif /* CONFIG_ADC_ASYNC */ static void adc_max32_start_channel(const struct device *dev) { struct max32_adc_data *data = dev->data; int ret = 0; #if defined(CONFIG_ADC_ASYNC) if (data->ctx.asynchronous) { ret = Wrap_MXC_ADC_StartConversionAsync(&data->sample_channels, adc_complete_cb); if (ret < 0) { LOG_ERR("Error starting conversion (%d)", ret); } } else { #endif /* CONFIG_ADC_ASYNC */ while (data->sample_channels) { ret = Wrap_MXC_ADC_StartConversion(&data->sample_channels); if (ret < 0) { LOG_ERR("Error starting conversion (%d)", ret); return; } Wrap_MXC_ADC_GetData(&data->buffer); } Wrap_MXC_ADC_DisableConversion(); adc_context_on_sampling_done(&data->ctx, dev); #if defined(CONFIG_ADC_ASYNC) } #endif /* CONFIG_ADC_ASYNC */ } static void adc_context_start_sampling(struct adc_context *ctx) { struct max32_adc_data *data = CONTAINER_OF(ctx, struct max32_adc_data, ctx); data->sample_channels = ctx->sequence.channels; data->repeat_buffer = data->buffer; adc_max32_start_channel(data->dev); } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling) { struct max32_adc_data *data = CONTAINER_OF(ctx, struct max32_adc_data, ctx); if (repeat_sampling) { data->buffer = data->repeat_buffer; } } static int start_read(const struct device *dev, const struct adc_sequence *seq) { struct max32_adc_data *data = dev->data; uint32_t num_of_sample_channels = POPCOUNT(seq->channels); uint32_t num_of_sample = 1; int ret = 0; if (seq->resolution != data->resolution) { LOG_ERR("Unsupported resolution (%d)", seq->resolution); return -ENOTSUP; } if (seq->channels == 0) { return -EINVAL; } if ((data->channels & seq->channels) != seq->channels) { return -EINVAL; } ret = Wrap_MXC_ADC_AverageConfig(seq->oversampling); if (ret != 0) { return -EINVAL; } if (seq->options) { num_of_sample += seq->options->extra_samplings; } if (seq->buffer_size < (num_of_sample * num_of_sample_channels)) { /* Buffer size control */ return -ENOMEM; } data->buffer = seq->buffer; adc_context_start_read(&data->ctx, seq); return adc_context_wait_for_completion(&data->ctx); } static int adc_max32_read(const struct device *dev, const struct adc_sequence *seq) { struct max32_adc_data *data = dev->data; int ret; adc_context_lock(&data->ctx, false, NULL); ret = start_read(dev, seq); adc_context_release(&data->ctx, ret); return ret; } #ifdef CONFIG_ADC_ASYNC static int adc_max32_read_async(const struct device *dev, const struct adc_sequence *seq, struct k_poll_signal *async) { struct max32_adc_data *data = dev->data; int ret; adc_context_lock(&data->ctx, true, async); ret = start_read(dev, seq); adc_context_release(&data->ctx, ret); return ret; } #endif /* CONFIG_ADC_ASYNC */ static int adc_max32_channel_setup(const struct device *dev, const struct adc_channel_cfg *cfg) { const struct max32_adc_config *conf = dev->config; struct max32_adc_data *data = dev->data; wrap_mxc_adc_scale_t wrap_mxc_scale; uint8_t adc_reference; int ret = 0; if (cfg->channel_id >= conf->channel_count) { LOG_ERR("Invalid channel (%u)", cfg->channel_id); return -EINVAL; } if (cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) { LOG_ERR("Invalid channel acquisition time"); return -EINVAL; } if (cfg->differential) { LOG_ERR("Differential sampling not supported"); return -ENOTSUP; } switch (cfg->reference) { case ADC_REF_INTERNAL: adc_reference = ADI_MAX32_ADC_REF_INTERNAL; break; case ADC_REF_VDD_1_2: adc_reference = ADI_MAX32_ADC_REF_VDD_1_2; break; case ADC_REF_EXTERNAL0: adc_reference = ADI_MAX32_ADC_REF_EXT0; break; default: return -ENOTSUP; } ret = Wrap_MXC_ADC_ReferenceSelect(adc_reference); if (ret != 0) { LOG_ERR("Reference is not supported."); return -ENOTSUP; } switch (cfg->gain) { case ADC_GAIN_1_6: wrap_mxc_scale = WRAP_MXC_ADC_SCALE_6; break; case ADC_GAIN_1_4: wrap_mxc_scale = WRAP_MXC_ADC_SCALE_4; break; case ADC_GAIN_1_3: wrap_mxc_scale = WRAP_MXC_ADC_SCALE_3; break; case ADC_GAIN_1_2: wrap_mxc_scale = WRAP_MXC_ADC_SCALE_2; break; case ADC_GAIN_1: wrap_mxc_scale = WRAP_MXC_ADC_SCALE_1; break; case ADC_GAIN_2: wrap_mxc_scale = WRAP_MXC_ADC_SCALE_2X; break; default: return -ENOTSUP; } ret = Wrap_MXC_ADC_SetExtScale(wrap_mxc_scale); if (ret != 0) { LOG_ERR("Gain value is not supported."); return -ENOTSUP; } data->channels |= BIT(cfg->channel_id); return 0; } static int adc_max32_init(const struct device *dev) { const struct max32_adc_config *config = dev->config; struct max32_adc_data *data = dev->data; uint32_t ret; wrap_mxc_adc_req_t req = { .clock = config->perclk.clk_src, .clkdiv = config->clock_divider, .cal = 1, /* Initial calibration enabled. */ .ref = 1, /* Reference set to internal reference until user define it. */ .trackCount = config->track_count, .idleCount = config->idle_count}; /* Enable clock */ ret = clock_control_on(config->clock, (clock_control_subsys_t)&config->perclk); if (ret) { return ret; } ret = Wrap_MXC_ADC_Init(&req); if (ret) { return -EINVAL; } ret = pinctrl_apply_state(config->pctrl, PINCTRL_STATE_DEFAULT); if (ret) { return ret; } config->irq_func(); data->dev = dev; adc_context_unlock_unconditionally(&data->ctx); return 0; } static void adc_max32_isr(const struct device *dev) { struct max32_adc_data *const data = dev->data; uint32_t flags = MXC_ADC_GetFlags(); MXC_ADC_Handler(); MXC_ADC_ClearFlags(flags); if (flags & WRAP_MXC_F_ADC_CONV_DONE_IF) { Wrap_MXC_ADC_GetData(&data->buffer); if (data->sample_channels != 0) { adc_max32_start_channel(dev); } else { Wrap_MXC_ADC_DisableConversion(); adc_context_on_sampling_done(&data->ctx, dev); } } } static DEVICE_API(adc, adc_max32_driver_api) = { .channel_setup = adc_max32_channel_setup, .read = adc_max32_read, #ifdef CONFIG_ADC_ASYNC .read_async = adc_max32_read_async, #endif /* CONFIG_ADC_ASYNC */ .ref_internal = MAX32_ADC_VREF_MV, }; #define MAX32_ADC_INIT(_num) \ PINCTRL_DT_INST_DEFINE(_num); \ static void max32_adc_irq_init_##_num(void) \ { \ IRQ_CONNECT(DT_INST_IRQN(_num), DT_INST_IRQ(_num, priority), adc_max32_isr, \ DEVICE_DT_INST_GET(_num), 0); \ irq_enable(DT_INST_IRQN(_num)); \ }; \ static const struct max32_adc_config max32_adc_config_##_num = { \ .channel_count = DT_INST_PROP(_num, channel_count), \ .regs = (mxc_adc_regs_t *)DT_INST_REG_ADDR(_num), \ .pctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(_num), \ .clock = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(_num)), \ .clock_divider = DT_INST_PROP_OR(_num, clock_divider, 1), \ .track_count = DT_INST_PROP_OR(_num, track_count, 0), \ .idle_count = DT_INST_PROP_OR(_num, idle_count, 0), \ .perclk.bus = DT_INST_CLOCKS_CELL(_num, offset), \ .perclk.bit = DT_INST_CLOCKS_CELL(_num, bit), \ .perclk.clk_src = \ DT_INST_PROP_OR(_num, clock_source, ADI_MAX32_PRPH_CLK_SRC_PCLK), \ .irq_func = max32_adc_irq_init_##_num, \ }; \ static struct max32_adc_data max32_adc_data_##_num = { \ ADC_CONTEXT_INIT_TIMER(max32_adc_data_##_num, ctx), \ ADC_CONTEXT_INIT_LOCK(max32_adc_data_##_num, ctx), \ ADC_CONTEXT_INIT_SYNC(max32_adc_data_##_num, ctx), \ .resolution = DT_INST_PROP(_num, resolution), \ }; \ DEVICE_DT_INST_DEFINE(_num, &adc_max32_init, NULL, &max32_adc_data_##_num, \ &max32_adc_config_##_num, POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \ &adc_max32_driver_api); DT_INST_FOREACH_STATUS_OKAY(MAX32_ADC_INIT)