/* * Copyright (c) 2022 BrainCo Inc. * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT gd_gd32_adc #include #include #include #include #include #include #include #include #include #include #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" #include LOG_MODULE_REGISTER(adc_gd32, CONFIG_ADC_LOG_LEVEL); /** * @brief gd32 adc irq have some special cases as below: * 1. adc number no larger than 3. * 2. adc0 and adc1 share the same irq number. * 3. For gd32f4xx, adc2 share the same irq number with adc0 and adc1. * * To cover this cases, gd32_adc driver use node-label 'adc0', 'adc1' and * 'adc2' to handle gd32 adc irq config directly.' * * @note Sorry for the restriction, But new added gd32 adc node-label must be 'adc0', * 'adc1' and 'adc2'. */ #define ADC0_NODE DT_NODELABEL(adc0) #define ADC1_NODE DT_NODELABEL(adc1) #define ADC2_NODE DT_NODELABEL(adc2) #define ADC0_ENABLE DT_NODE_HAS_STATUS_OKAY(ADC0_NODE) #define ADC1_ENABLE DT_NODE_HAS_STATUS_OKAY(ADC1_NODE) #define ADC2_ENABLE DT_NODE_HAS_STATUS_OKAY(ADC2_NODE) #ifndef ADC0 /** * @brief The name of gd32 ADC HAL are different between single and multi ADC SoCs. * This adjust the single ADC SoC HAL, so we can call gd32 ADC HAL in a common way. */ #undef ADC_STAT #undef ADC_CTL0 #undef ADC_CTL1 #undef ADC_SAMPT0 #undef ADC_SAMPT1 #undef ADC_RSQ2 #undef ADC_RDATA #define ADC_STAT(adc0) REG32((adc0) + 0x00000000U) #define ADC_CTL0(adc0) REG32((adc0) + 0x00000004U) #define ADC_CTL1(adc0) REG32((adc0) + 0x00000008U) #define ADC_SAMPT0(adc0) REG32((adc0) + 0x0000000CU) #define ADC_SAMPT1(adc0) REG32((adc0) + 0x00000010U) #define ADC_RSQ2(adc0) REG32((adc0) + 0x00000034U) #define ADC_RDATA(adc0) REG32((adc0) + 0x0000004CU) #endif #define SPT_WIDTH 3U #define SAMPT1_SIZE 10U #if defined(CONFIG_SOC_SERIES_GD32F4XX) #define SMP_TIME(x) ADC_SAMPLETIME_##x static const uint16_t acq_time_tbl[8] = {3, 15, 28, 56, 84, 112, 144, 480}; static const uint32_t table_samp_time[] = { SMP_TIME(3), SMP_TIME(15), SMP_TIME(28), SMP_TIME(56), SMP_TIME(84), SMP_TIME(112), SMP_TIME(144), SMP_TIME(480) }; #elif defined(CONFIG_SOC_SERIES_GD32L23X) #define SMP_TIME(x) ADC_SAMPLETIME_##x##POINT5 static const uint16_t acq_time_tbl[8] = {3, 8, 14, 29, 42, 56, 72, 240}; static const uint32_t table_samp_time[] = { SMP_TIME(2), SMP_TIME(7), SMP_TIME(13), SMP_TIME(28), SMP_TIME(41), SMP_TIME(55), SMP_TIME(71), SMP_TIME(239), }; #elif defined(CONFIG_SOC_SERIES_GD32A50X) #define SMP_TIME(x) ADC_SAMPLETIME_##x##POINT5 static const uint16_t acq_time_tbl[8] = {3, 15, 28, 56, 84, 112, 144, 480}; static const uint32_t table_samp_time[] = { SMP_TIME(2), SMP_TIME(14), SMP_TIME(27), SMP_TIME(55), SMP_TIME(83), SMP_TIME(111), SMP_TIME(143), SMP_TIME(479) }; #else #define SMP_TIME(x) ADC_SAMPLETIME_##x##POINT5 static const uint16_t acq_time_tbl[8] = {2, 8, 14, 29, 42, 56, 72, 240}; static const uint32_t table_samp_time[] = { SMP_TIME(1), SMP_TIME(7), SMP_TIME(13), SMP_TIME(28), SMP_TIME(41), SMP_TIME(55), SMP_TIME(71), SMP_TIME(239) }; #endif struct adc_gd32_config { uint32_t reg; #ifdef CONFIG_SOC_SERIES_GD32F3X0 uint32_t rcu_clock_source; #endif uint16_t clkid; struct reset_dt_spec reset; uint8_t channels; const struct pinctrl_dev_config *pcfg; uint8_t irq_num; void (*irq_config_func)(void); }; struct adc_gd32_data { struct adc_context ctx; const struct device *dev; uint16_t *buffer; uint16_t *repeat_buffer; }; static void adc_gd32_isr(const struct device *dev) { struct adc_gd32_data *data = dev->data; const struct adc_gd32_config *cfg = dev->config; if (ADC_STAT(cfg->reg) & ADC_STAT_EOC) { *data->buffer++ = ADC_RDATA(cfg->reg); /* Disable EOC interrupt. */ ADC_CTL0(cfg->reg) &= ~ADC_CTL0_EOCIE; /* Clear EOC bit. */ ADC_STAT(cfg->reg) &= ~ADC_STAT_EOC; adc_context_on_sampling_done(&data->ctx, dev); } } static void adc_context_start_sampling(struct adc_context *ctx) { struct adc_gd32_data *data = CONTAINER_OF(ctx, struct adc_gd32_data, ctx); const struct device *dev = data->dev; const struct adc_gd32_config *cfg = dev->config; data->repeat_buffer = data->buffer; /* Enable EOC interrupt */ ADC_CTL0(cfg->reg) |= ADC_CTL0_EOCIE; /* Set ADC software conversion trigger. */ ADC_CTL1(cfg->reg) |= ADC_CTL1_SWRCST; } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling) { struct adc_gd32_data *data = CONTAINER_OF(ctx, struct adc_gd32_data, ctx); if (repeat_sampling) { data->buffer = data->repeat_buffer; } } static inline void adc_gd32_calibration(const struct adc_gd32_config *cfg) { ADC_CTL1(cfg->reg) |= ADC_CTL1_RSTCLB; /* Wait for calibration registers initialized. */ while (ADC_CTL1(cfg->reg) & ADC_CTL1_RSTCLB) { } ADC_CTL1(cfg->reg) |= ADC_CTL1_CLB; /* Wait for calibration complete. */ while (ADC_CTL1(cfg->reg) & ADC_CTL1_CLB) { } } static int adc_gd32_configure_sampt(const struct adc_gd32_config *cfg, uint8_t channel, uint16_t acq_time) { uint8_t index = 0, offset; if (acq_time != ADC_ACQ_TIME_DEFAULT) { /* Acquisition time unit is adc clock cycle. */ if (ADC_ACQ_TIME_UNIT(acq_time) != ADC_ACQ_TIME_TICKS) { return -EINVAL; } for ( ; index < ARRAY_SIZE(acq_time_tbl); index++) { if (ADC_ACQ_TIME_VALUE(acq_time) <= acq_time_tbl[index]) { break; } } if (ADC_ACQ_TIME_VALUE(acq_time) != acq_time_tbl[index]) { return -ENOTSUP; } } if (channel < SAMPT1_SIZE) { offset = SPT_WIDTH * channel; ADC_SAMPT1(cfg->reg) &= ~(ADC_SAMPTX_SPTN << offset); ADC_SAMPT1(cfg->reg) |= table_samp_time[index] << offset; } else { offset = SPT_WIDTH * (channel - SAMPT1_SIZE); ADC_SAMPT0(cfg->reg) &= ~(ADC_SAMPTX_SPTN << offset); ADC_SAMPT0(cfg->reg) |= table_samp_time[index] << offset; } return 0; } static int adc_gd32_channel_setup(const struct device *dev, const struct adc_channel_cfg *chan_cfg) { const struct adc_gd32_config *cfg = dev->config; if (chan_cfg->gain != ADC_GAIN_1) { LOG_ERR("Gain is not valid"); return -ENOTSUP; } if (chan_cfg->reference != ADC_REF_INTERNAL) { LOG_ERR("Reference is not valid"); return -ENOTSUP; } if (chan_cfg->differential) { LOG_ERR("Differential sampling not supported"); return -ENOTSUP; } if (chan_cfg->channel_id >= cfg->channels) { LOG_ERR("Invalid channel (%u)", chan_cfg->channel_id); return -EINVAL; } return adc_gd32_configure_sampt(cfg, chan_cfg->channel_id, chan_cfg->acquisition_time); } static int adc_gd32_start_read(const struct device *dev, const struct adc_sequence *sequence) { struct adc_gd32_data *data = dev->data; const struct adc_gd32_config *cfg = dev->config; uint8_t resolution_id; uint32_t index; index = find_lsb_set(sequence->channels) - 1; if (sequence->channels > BIT(index)) { LOG_ERR("Only single channel supported"); return -ENOTSUP; } switch (sequence->resolution) { case 12U: resolution_id = 0U; break; case 10U: resolution_id = 1U; break; case 8U: resolution_id = 2U; break; case 6U: resolution_id = 3U; break; default: return -EINVAL; } #if defined(CONFIG_SOC_SERIES_GD32F4XX) || \ defined(CONFIG_SOC_SERIES_GD32F3X0) || \ defined(CONFIG_SOC_SERIES_GD32L23X) ADC_CTL0(cfg->reg) &= ~ADC_CTL0_DRES; ADC_CTL0(cfg->reg) |= CTL0_DRES(resolution_id); #elif defined(CONFIG_SOC_SERIES_GD32F403) || \ defined(CONFIG_SOC_SERIES_GD32A50X) ADC_OVSAMPCTL(cfg->reg) &= ~ADC_OVSAMPCTL_DRES; ADC_OVSAMPCTL(cfg->reg) |= OVSAMPCTL_DRES(resolution_id); #elif defined(CONFIG_SOC_SERIES_GD32VF103) ADC_OVSCR(cfg->reg) &= ~ADC_OVSCR_DRES; ADC_OVSCR(cfg->reg) |= OVSCR_DRES(resolution_id); #endif if (sequence->calibrate) { adc_gd32_calibration(cfg); } /* Signle conversion mode with regular group. */ ADC_RSQ2(cfg->reg) &= ~ADC_RSQX_RSQN; ADC_RSQ2(cfg->reg) = index; data->buffer = sequence->buffer; adc_context_start_read(&data->ctx, sequence); return adc_context_wait_for_completion(&data->ctx); } static int adc_gd32_read(const struct device *dev, const struct adc_sequence *sequence) { struct adc_gd32_data *data = dev->data; int error; adc_context_lock(&data->ctx, false, NULL); error = adc_gd32_start_read(dev, sequence); adc_context_release(&data->ctx, error); return error; } #ifdef CONFIG_ADC_ASYNC static int adc_gd32_read_async(const struct device *dev, const struct adc_sequence *sequence, struct k_poll_signal *async) { struct adc_gd32_data *data = dev->data; int error; adc_context_lock(&data->ctx, true, async); error = adc_gd32_start_read(dev, sequence); adc_context_release(&data->ctx, error); return error; } #endif /* CONFIG_ADC_ASYNC */ static DEVICE_API(adc, adc_gd32_driver_api) = { .channel_setup = adc_gd32_channel_setup, .read = adc_gd32_read, #ifdef CONFIG_ADC_ASYNC .read_async = adc_gd32_read_async, #endif /* CONFIG_ADC_ASYNC */ }; static int adc_gd32_init(const struct device *dev) { struct adc_gd32_data *data = dev->data; const struct adc_gd32_config *cfg = dev->config; int ret; data->dev = dev; ret = pinctrl_apply_state(cfg->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } #ifdef CONFIG_SOC_SERIES_GD32F3X0 /* Select adc clock source and its prescaler. */ rcu_adc_clock_config(cfg->rcu_clock_source); #endif (void)clock_control_on(GD32_CLOCK_CONTROLLER, (clock_control_subsys_t)&cfg->clkid); (void)reset_line_toggle_dt(&cfg->reset); #if defined(CONFIG_SOC_SERIES_GD32F403) || \ defined(CONFIG_SOC_SERIES_GD32VF103) || \ defined(CONFIG_SOC_SERIES_GD32F3X0) || \ defined(CONFIG_SOC_SERIES_GD32L23X) /* Set SWRCST as the regular channel external trigger. */ ADC_CTL1(cfg->reg) &= ~ADC_CTL1_ETSRC; ADC_CTL1(cfg->reg) |= CTL1_ETSRC(7); /* Enable external trigger for regular channel. */ ADC_CTL1(cfg->reg) |= ADC_CTL1_ETERC; #endif #ifdef CONFIG_SOC_SERIES_GD32A50X ADC_CTL1(cfg->reg) |= ADC_CTL1_ETSRC; ADC_CTL1(cfg->reg) |= ADC_CTL1_ETERC; #endif /* Enable ADC */ ADC_CTL1(cfg->reg) |= ADC_CTL1_ADCON; adc_gd32_calibration(cfg); cfg->irq_config_func(); adc_context_unlock_unconditionally(&data->ctx); return 0; } #define HANDLE_SHARED_IRQ(n, active_irq) \ static const struct device *const dev_##n = DEVICE_DT_INST_GET(n); \ const struct adc_gd32_config *cfg_##n = dev_##n->config; \ \ if ((cfg_##n->irq_num == active_irq) && \ (ADC_CTL0(cfg_##n->reg) & ADC_CTL0_EOCIE)) { \ adc_gd32_isr(dev_##n); \ } static void adc_gd32_global_irq_handler(const struct device *dev) { const struct adc_gd32_config *cfg = dev->config; LOG_DBG("global irq handler: %u", cfg->irq_num); DT_INST_FOREACH_STATUS_OKAY_VARGS(HANDLE_SHARED_IRQ, (cfg->irq_num)); } static void adc_gd32_global_irq_cfg(void) { static bool global_irq_init = true; if (!global_irq_init) { return; } global_irq_init = false; #if ADC0_ENABLE /* Shared irq config default to adc0. */ IRQ_CONNECT(DT_IRQN(ADC0_NODE), DT_IRQ(ADC0_NODE, priority), adc_gd32_global_irq_handler, DEVICE_DT_GET(ADC0_NODE), 0); irq_enable(DT_IRQN(ADC0_NODE)); #elif ADC1_ENABLE IRQ_CONNECT(DT_IRQN(ADC1_NODE), DT_IRQ(ADC1_NODE, priority), adc_gd32_global_irq_handler, DEVICE_DT_GET(ADC1_NODE), 0); irq_enable(DT_IRQN(ADC1_NODE)); #endif #if (ADC0_ENABLE || ADC1_ENABLE) && \ defined(CONFIG_SOC_SERIES_GD32F4XX) /* gd32f4xx adc2 share the same irq number with adc0 and adc1. */ #elif ADC2_ENABLE IRQ_CONNECT(DT_IRQN(ADC2_NODE), DT_IRQ(ADC2_NODE, priority), adc_gd32_global_irq_handler, DEVICE_DT_GET(ADC2_NODE), 0); irq_enable(DT_IRQN(ADC2_NODE)); #endif } #ifdef CONFIG_SOC_SERIES_GD32F3X0 #define ADC_CLOCK_SOURCE(n) \ .rcu_clock_source = DT_INST_PROP(n, rcu_clock_source) #else #define ADC_CLOCK_SOURCE(n) #endif #define ADC_GD32_INIT(n) \ PINCTRL_DT_INST_DEFINE(n); \ static struct adc_gd32_data adc_gd32_data_##n = { \ ADC_CONTEXT_INIT_TIMER(adc_gd32_data_##n, ctx), \ ADC_CONTEXT_INIT_LOCK(adc_gd32_data_##n, ctx), \ ADC_CONTEXT_INIT_SYNC(adc_gd32_data_##n, ctx), \ }; \ const static struct adc_gd32_config adc_gd32_config_##n = { \ .reg = DT_INST_REG_ADDR(n), \ .clkid = DT_INST_CLOCKS_CELL(n, id), \ .reset = RESET_DT_SPEC_INST_GET(n), \ .channels = DT_INST_PROP(n, channels), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ .irq_num = DT_INST_IRQN(n), \ .irq_config_func = adc_gd32_global_irq_cfg, \ ADC_CLOCK_SOURCE(n) \ }; \ DEVICE_DT_INST_DEFINE(n, \ &adc_gd32_init, NULL, \ &adc_gd32_data_##n, &adc_gd32_config_##n, \ POST_KERNEL, CONFIG_ADC_INIT_PRIORITY, \ &adc_gd32_driver_api); \ DT_INST_FOREACH_STATUS_OKAY(ADC_GD32_INIT)