/* * Copyright (c) 2024 Linumiz * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include #include #include #include #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" LOG_MODULE_REGISTER(ads131m02, CONFIG_ADC_LOG_LEVEL); #define ADS131M02_DEVICE_ID 0x22 /* Device settings Registers */ #define ADS131M02_ID_REG 0x00 #define ADS131M02_STATUS_REG 0x01 /* Global settings Registers */ #define ADS131M02_MODE_REG 0x02 #define ADS131M02_CLOCK_REG 0x03 #define ADS131M02_GAIN_REG 0x04 #define ADS131M02_CFG_REG 0x06 #define ADS131M02_THRESH_MSB_REG 0x07 #define ADS131M02_THRESH_LSB_REG 0x08 /* Channel 0 settings Registers */ #define ADS131M02_CH0_CFG_REG 0x09 #define ADS131M02_CH0_OCAL_MSB_REG 0x0A #define ADS131M02_CH0_OCAL_LSB_REG 0x0B #define ADS131M02_CH0_GCAL_MSB_REG 0x0C #define ADS131M02_CH0_GCAL_LSB_REG 0x0D /* Channel 1 settings Registers */ #define ADS131M02_CH1_CFG_REG 0x0E #define ADS131M02_CH1_OCAL_MSB_REG 0x0F #define ADS131M02_CH1_OCAL_LSB_REG 0x10 #define ADS131M02_CH1_GCAL_MSB_REG 0x11 #define ADS131M02_CH1_GCAL_LSB_REG 0x12 /* Register Map CRC Registers */ #define ADS131M02_REGMAP_CRC_REG 0x3E #define ADC_CHANNEL_0 0 #define ADC_CHANNEL_1 1 #define ADS131M02_REF_INTERNAL 1200 #define ADS131M02_RESOLUTION 24 /* ADS131M02 cmds */ #define ADS131M02_NULL_CMD 0x0000 #define ADS131M02_RESET_CMD 0x0011 #define ADS131M02_STANDBY_CMD 0x0022 #define ADS131M02_WAKEUP_CMD 0x0033 #define ADS131M02_LOCK_CMD 0x0555 #define ADS131M02_UNLOCK_CMD 0x0655 #define ADS131M02_RREG_CMD 0xA000 #define ADS131M02_WREG_CMD 0x6000 #define ADS131M02_RESET_RSP 0xFF22 #define ADS131M02_GAIN0_MASK GENMASK(2, 0) #define ADS131M02_GAIN1_MASK GENMASK(6, 4) #define ADS131M02_CHANNEL0_ENABLE BIT(8) #define ADS131M02_CHANNEL1_ENABLE BIT(9) #define ADS131M02_DRDY_CH0_MASK BIT(0) #define ADS131M02_DRDY_CH1_MASK BIT(1) #define ADS131M02_OSR_256_MASK BIT(2) #define ADS131M02_OSR_512_MASK BIT(3) #define ADS131M02_OSR_1024_MASK BIT(3) | BIT(2) #define ADS131M02_OSR_2048_MASK BIT(4) #define ADS131M02_OSR_4096_MASK BIT(4) | BIT(2) #define ADS131M02_OSR_8192_MASK BIT(4) | BIT(3) #define ADS131M02_OSR_16384_MASK BIT(4) | BIT(3) | BIT(2) #define ADS131M02_GC_MODE_MASK BIT(8) #define ADS131M02_GC_DELAY_MASK GENMASK(12, 9) #define ADS131M02_PWR_HR BIT(1) | BIT(0) #define ADS131M02_PWR_LP BIT(0) #define ADS131M02_DISABLE_ADC 0x000E #define ADS131M02_RESET_DELAY 100 #define ADS131M02_GAIN_1 0 #define ADS131M02_GAIN_2 1 #define ADS131M02_GAIN_4 2 #define ADS131M02_GAIN_8 3 #define ADS131M02_GAIN_16 4 #define ADS131M02_GAIN_32 5 #define ADS131M02_GAIN_64 6 #define ADS131M02_GAIN_128 7 #define ADS131M02_GET_GAIN(channel_id, gain) \ FIELD_PREP(channel_id == 0 ? ADS131M02_GAIN0_MASK : \ ADS131M02_GAIN1_MASK, gain) enum ads131m02_data_rate { /* SPS */ ADS131M02_DR_250, ADS131M02_DR_500, ADS131M02_DR_1k, ADS131M02_DR_2k, ADS131M02_DR_4k, ADS131M02_DR_8k, ADS131M02_DR_16k, ADS131M02_DR_32k, }; struct ads131m02_config { const struct spi_dt_spec spi; const struct gpio_dt_spec gpio_drdy; }; struct ads131m02_data { struct adc_context ctx; struct k_sem acq_sem; struct k_sem drdy_sem; struct gpio_callback callback_drdy; int32_t *buffer; int32_t *buffer_ptr; }; static inline int ads131m02_transceive(const struct device *dev, uint8_t *send_buf, size_t send_buf_len, uint8_t *recv_buf, size_t recv_buf_len) { int ret; const struct ads131m02_config *cfg = dev->config; struct spi_buf tx_buf = { .buf = send_buf, .len = send_buf_len, }; const struct spi_buf_set tx = { .buffers = &tx_buf, .count = 1 }; struct spi_buf rx_buf = { .buf = recv_buf, .len = recv_buf_len, }; const struct spi_buf_set rx = { .buffers = &rx_buf, .count = 1, }; ret = spi_transceive_dt(&cfg->spi, &tx, NULL); if (ret != 0) { return ret; } return spi_read_dt(&cfg->spi, &rx); } static int ads131m02_reg_read(const struct device *dev, uint16_t addr, uint8_t *read_buf, size_t read_buf_len) { uint16_t temp; uint8_t tx_buf[3] = {0}; temp = (uint16_t)(ADS131M02_RREG_CMD | (addr << 7)); sys_put_be16(temp, tx_buf); return ads131m02_transceive(dev, tx_buf, sizeof(tx_buf), read_buf, read_buf_len); } static int ads131m02_reg_write(const struct device *dev, uint16_t addr, uint16_t write_data) { uint16_t temp; uint8_t tx_buf[6] = {0}; uint8_t rx_buf[3] = {0}; temp = (uint16_t)(ADS131M02_WREG_CMD | (addr << 7)); sys_put_be16(temp, tx_buf); sys_put_be16(write_data, &tx_buf[3]); return ads131m02_transceive(dev, tx_buf, sizeof(tx_buf), rx_buf, sizeof(rx_buf)); } static inline int ads131m02_configure_gain(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { uint16_t gain_cfg; switch (channel_cfg->gain) { case ADC_GAIN_1: gain_cfg = ADS131M02_GET_GAIN(channel_cfg->channel_id, ADS131M02_GAIN_1); break; case ADC_GAIN_2: gain_cfg = ADS131M02_GET_GAIN(channel_cfg->channel_id, ADS131M02_GAIN_2); break; case ADC_GAIN_4: gain_cfg = ADS131M02_GET_GAIN(channel_cfg->channel_id, ADS131M02_GAIN_4); break; case ADC_GAIN_8: gain_cfg = ADS131M02_GET_GAIN(channel_cfg->channel_id, ADS131M02_GAIN_8); break; case ADC_GAIN_16: gain_cfg = ADS131M02_GET_GAIN(channel_cfg->channel_id, ADS131M02_GAIN_16); break; case ADC_GAIN_32: gain_cfg = ADS131M02_GET_GAIN(channel_cfg->channel_id, ADS131M02_GAIN_32); break; case ADC_GAIN_64: gain_cfg = ADS131M02_GET_GAIN(channel_cfg->channel_id, ADS131M02_GAIN_64); break; case ADC_GAIN_128: gain_cfg = ADS131M02_GET_GAIN(channel_cfg->channel_id, ADS131M02_GAIN_128); break; default: return -EINVAL; } return ads131m02_reg_write(dev, ADS131M02_GAIN_REG, gain_cfg); } static inline int ads131m02_acquistion_time(uint16_t acq_time, uint16_t *enable) { uint16_t acq_value = ADC_ACQ_TIME_VALUE(acq_time); if (acq_time == ADC_ACQ_TIME_DEFAULT) { *enable |= ADS131M02_OSR_1024_MASK; return 0; } if (ADC_ACQ_TIME_UNIT(acq_time) != ADC_ACQ_TIME_TICKS) { return -EINVAL; } if (acq_time == ADC_ACQ_TIME_MAX) { *enable |= ADS131M02_OSR_16384_MASK; return 0; } switch (acq_value) { case ADS131M02_DR_250: *enable |= ADS131M02_OSR_16384_MASK; break; case ADS131M02_DR_500: *enable |= ADS131M02_OSR_8192_MASK; break; case ADS131M02_DR_1k: *enable |= ADS131M02_OSR_4096_MASK; break; case ADS131M02_DR_2k: *enable |= ADS131M02_OSR_2048_MASK; break; case ADS131M02_DR_4k: *enable |= ADS131M02_OSR_1024_MASK; break; case ADS131M02_DR_8k: *enable |= ADS131M02_OSR_512_MASK; break; case ADS131M02_DR_16k: *enable |= ADS131M02_OSR_256_MASK; break; default: return -EINVAL; } return 0; } static int ads131m02_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { int ret; uint16_t enable; uint8_t read_data[3] = {0}; ret = ads131m02_reg_read(dev, ADS131M02_CLOCK_REG, read_data, sizeof(read_data)); if (ret != 0) { return ret; } enable = sys_get_be16(read_data); switch (channel_cfg->channel_id) { case ADC_CHANNEL_0: enable |= ADS131M02_CHANNEL0_ENABLE; break; case ADC_CHANNEL_1: enable |= ADS131M02_CHANNEL1_ENABLE; break; default: return -EINVAL; } enable &= ~(ADS131M02_OSR_16384_MASK); ret = ads131m02_acquistion_time(channel_cfg->acquisition_time, &enable); if (ret < 0) { return ret; } return ads131m02_reg_write(dev, ADS131M02_CLOCK_REG, enable); } static int ads131m02_channel_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { int ret; if (channel_cfg->channel_id != 0 && channel_cfg->channel_id != 1) { return -EINVAL; } if (channel_cfg->reference != ADC_REF_INTERNAL) { LOG_DBG("Unsupported Reference Voltage"); return -ENOTSUP; } if (!channel_cfg->differential) { return -EINVAL; } ret = ads131m02_configure_gain(dev, channel_cfg); if (ret != 0) { return ret; } ret = ads131m02_setup(dev, channel_cfg); if (ret != 0) { return ret; } return 0; } static int ads131m02_validate_buffer_size(const struct adc_sequence *sequence) { size_t needed = sizeof(int32_t); if (sequence->options) { needed *= (1 + sequence->options->extra_samplings); } if (sequence->buffer_size < needed) { return -ENOMEM; } return 0; } static int ads131m02_validate_sequence(const struct adc_sequence *sequence) { if (sequence->resolution != ADS131M02_RESOLUTION) { return -EINVAL; } if (sequence->channels != BIT(0) && sequence->channels != BIT(1)) { LOG_ERR("invalid channel"); return -EINVAL; } if (sequence->oversampling) { return -EINVAL; } return ads131m02_validate_buffer_size(sequence); } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling) { struct ads131m02_data *data = CONTAINER_OF(ctx, struct ads131m02_data, ctx); if (repeat_sampling) { data->buffer = data->buffer_ptr; } } static void adc_context_start_sampling(struct adc_context *ctx) { struct ads131m02_data *data = CONTAINER_OF(ctx, struct ads131m02_data, ctx); data->buffer_ptr = data->buffer; k_sem_give(&data->acq_sem); } static int ads131m02_adc_start_read(const struct device *dev, const struct adc_sequence *sequence, bool wait) { int ret; struct ads131m02_data *data = dev->data; ret = ads131m02_validate_sequence(sequence); if (ret != 0) { LOG_ERR("sequence validation failed"); return ret; } data->buffer = sequence->buffer; adc_context_start_read(&data->ctx, sequence); if (wait) { ret = adc_context_wait_for_completion(&data->ctx); } return ret; } static int ads131m02_wait_drdy(const struct device *dev) { struct ads131m02_data *data = dev->data; return k_sem_take(&data->drdy_sem, ADC_CONTEXT_WAIT_FOR_COMPLETION_TIMEOUT); } static int ads131m02_read_sample(const struct device *dev, uint32_t channels, uint32_t *buffer) { int ret; uint16_t int_status; uint8_t tx_buf[4] = {0}; uint8_t rx_buf[12] = {0}; ret = ads131m02_transceive(dev, tx_buf, sizeof(tx_buf), rx_buf, sizeof(rx_buf)); if (ret != 0) { return ret; } int_status = sys_get_be16(&rx_buf[0]); if ((int_status & ADS131M02_DRDY_CH0_MASK) && (channels & BIT(0))) { *buffer = sys_get_be24(&rx_buf[3]); } else if ((int_status & ADS131M02_DRDY_CH1_MASK) && (channels & BIT(1))) { *buffer = sys_get_be24(&rx_buf[6]); } else { LOG_INF("No ADC Data Available"); } return 0; } static int ads131m02_perform_read(const struct device *dev, const struct adc_sequence *sequence) { int ret; struct ads131m02_data *data = dev->data; k_sem_take(&data->acq_sem, K_FOREVER); k_sem_reset(&data->drdy_sem); ret = ads131m02_wait_drdy(dev); if (ret != 0) { goto error; } ret = ads131m02_read_sample(dev, sequence->channels, data->buffer); if (ret != 0) { goto error; } data->buffer++; adc_context_on_sampling_done(&data->ctx, dev); return 0; error: adc_context_complete(&data->ctx, ret); return ret; } static int ads131m02_read(const struct device *dev, const struct adc_sequence *seq) { int ret; struct ads131m02_data *data = dev->data; adc_context_lock(&data->ctx, false, NULL); ret = ads131m02_adc_start_read(dev, seq, false); while (ret == 0 && k_sem_take(&data->ctx.sync, K_NO_WAIT) != 0) { ret = ads131m02_perform_read(dev, seq); } adc_context_release(&data->ctx, ret); return ret; } static void ads131m02_data_ready_handler(const struct device *dev, struct gpio_callback *gpio_cb, uint32_t pins) { ARG_UNUSED(dev); ARG_UNUSED(pins); struct ads131m02_data *data = CONTAINER_OF(gpio_cb, struct ads131m02_data, callback_drdy); k_sem_give(&data->drdy_sem); } static int ads131m02_configure_gpio(const struct device *dev) { int ret; const struct ads131m02_config *cfg = dev->config; struct ads131m02_data *data = dev->data; ret = gpio_pin_configure_dt(&cfg->gpio_drdy, GPIO_INPUT); if (ret != 0) { return ret; } ret = gpio_pin_interrupt_configure_dt(&cfg->gpio_drdy, GPIO_INT_EDGE_TO_ACTIVE); if (ret != 0) { return ret; } gpio_init_callback(&data->callback_drdy, ads131m02_data_ready_handler, BIT(cfg->gpio_drdy.pin)); return gpio_add_callback(cfg->gpio_drdy.port, &data->callback_drdy); } static int ads131m02_device_reset(const struct device *dev) { int ret; uint8_t tx_buf[12] = {0}; uint8_t rx_buf[3] = {0}; sys_put_be16(ADS131M02_RESET_CMD, tx_buf); ret = ads131m02_transceive(dev, tx_buf, sizeof(tx_buf), rx_buf, sizeof(rx_buf)); if (ret != 0) { return ret; } if (sys_get_be16(rx_buf) != ADS131M02_RESET_RSP) { return -EIO; } k_msleep(ADS131M02_RESET_DELAY); return 0; } #if defined CONFIG_PM_DEVICE static int ads131m02_pm(const struct device *dev, uint16_t cmd) { int ret; uint8_t tx_buf[3] = {0}; uint8_t rx_buf[3] = {0}; sys_put_be16(cmd, tx_buf); ret = ads131m02_transceive(dev, tx_buf, sizeof(tx_buf), rx_buf, sizeof(rx_buf)); if (ret != 0) { return ret; } if (rx_buf[1] != cmd) { return -EIO; } return 0; } static int ads131m02_pm_action(const struct device *dev, enum pm_device_action action) { switch (action) { case PM_DEVICE_ACTION_RESUME: return ads131m02_pm(dev, ADS131M02_WAKEUP_CMD); case PM_DEVICE_ACTION_SUSPEND: return ads131m02_pm(dev, ADS131M02_STANDBY_CMD); default: return -EINVAL; } } #endif /* CONFIG_PM_DEVICE */ int ads131m02_set_adc_mode(const struct device *dev, enum ads131m02_adc_mode mode, enum ads131m02_gc_delay gc_delay) { uint16_t temp = 0; switch (mode) { case ADS131M02_CONTINUOUS_MODE: break; case ADS131M02_GLOBAL_CHOP_MODE: temp |= ADS131M02_GC_MODE_MASK; temp |= FIELD_PREP(ADS131M02_GC_DELAY_MASK, gc_delay); break; default: return -EINVAL; } return ads131m02_reg_write(dev, ADS131M02_CFG_REG, temp); } int ads131m02_set_power_mode(const struct device *dev, enum ads131m02_adc_power_mode mode) { int ret; uint16_t temp; uint8_t buf[3] = {0}; ret = ads131m02_reg_read(dev, ADS131M02_CLOCK_REG, buf, sizeof(buf)); if (ret != 0) { return ret; } temp = sys_get_be16(buf); temp &= ~(ADS131M02_PWR_HR); switch (mode) { case ADS131M02_VLP: break; case ADS131M02_LP: temp |= ADS131M02_PWR_LP; break; case ADS131M02_HR: temp |= ADS131M02_PWR_HR; break; default: return -EINVAL; } return ads131m02_reg_write(dev, ADS131M02_CLOCK_REG, temp); } static const struct adc_driver_api ads131m02_api = { .channel_setup = ads131m02_channel_setup, .read = ads131m02_read, .ref_internal = ADS131M02_REF_INTERNAL, }; static int ads131m02_init(const struct device *dev) { int ret; uint8_t buf[3] = {0}; const struct ads131m02_config *cfg = dev->config; struct ads131m02_data *data = dev->data; if (!spi_is_ready_dt(&cfg->spi)) { LOG_ERR("ADS131M02 is not ready"); return -ENODEV; } adc_context_init(&data->ctx); k_sem_init(&data->acq_sem, 0, 1); k_sem_init(&data->drdy_sem, 0, 1); ret = ads131m02_configure_gpio(dev); if (ret != 0) { LOG_ERR("GPIO config failed %d", ret); return ret; } ret = ads131m02_reg_read(dev, ADS131M02_ID_REG, buf, sizeof(buf)); if (ret != 0) { return ret; } if (buf[0] != ADS131M02_DEVICE_ID) { LOG_ERR("Device ID mismatch %d", buf[0]); return -ENODEV; } ret = ads131m02_device_reset(dev); if (ret != 0) { LOG_WRN("Device is not reset"); } /* By default, adc is configured, so disabling it */ ret = ads131m02_reg_write(dev, ADS131M02_CLOCK_REG, ADS131M02_DISABLE_ADC); if (ret != 0) { return ret; } adc_context_unlock_unconditionally(&data->ctx); #if defined CONFIG_PM_DEVICE ret = ads131m02_pm(dev, ADS131M02_STANDBY_CMD); if (ret != 0) { return ret; } pm_device_init_suspended(dev); #endif /* CONFIG_PM_DEVICE */ LOG_INF("ADS131M02 Initialised"); return 0; } #define DT_DRV_COMPAT ti_ads131m02 #define ADC_ADS131M02_INST_DEFINE(n) \ PM_DEVICE_DT_INST_DEFINE(n, ads131m02_pm_action); \ static const struct ads131m02_config config_##n = { \ .spi = SPI_DT_SPEC_INST_GET( \ n, SPI_OP_MODE_MASTER | SPI_MODE_CPHA | \ SPI_WORD_SET(8), 0), \ .gpio_drdy = GPIO_DT_SPEC_INST_GET(n, drdy_gpios), \ }; \ static struct ads131m02_data data_##n; \ DEVICE_DT_INST_DEFINE(n, ads131m02_init, \ PM_DEVICE_DT_INST_GET(n), \ &data_##n, &config_##n, POST_KERNEL, \ CONFIG_ADC_INIT_PRIORITY, &ads131m02_api); DT_INST_FOREACH_STATUS_OKAY(ADC_ADS131M02_INST_DEFINE)