/* * Copyright (c) 2023 Grinn * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT adi_ad559x_adc #include #include #include #include #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" #include LOG_MODULE_REGISTER(adc_ad559x, CONFIG_ADC_LOG_LEVEL); #define AD559X_ADC_RD_POINTER_SIZE 1 #define AD559X_ADC_RD_POINTER 0x40 #define AD559X_ADC_RESOLUTION 12U #define AD559X_ADC_VREF_MV 2500U #define AD559X_ADC_RES_IND_BIT BIT(15) #define AD559X_ADC_RES_CHAN_MASK GENMASK(14, 12) #define AD559X_ADC_RES_VAL_MASK GENMASK(11, 0) struct adc_ad559x_config { const struct device *mfd_dev; bool double_input_range; }; struct adc_ad559x_data { struct adc_context ctx; const struct device *dev; uint8_t adc_conf; uint16_t *buffer; uint16_t *repeat_buffer; uint8_t channels; struct k_thread thread; struct k_sem sem; K_KERNEL_STACK_MEMBER(stack, CONFIG_ADC_AD559X_ACQUISITION_THREAD_STACK_SIZE); }; static int adc_ad559x_channel_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { const struct adc_ad559x_config *config = dev->config; struct adc_ad559x_data *data = dev->data; if (channel_cfg->channel_id >= AD559X_PIN_MAX) { LOG_ERR("invalid channel id %d", channel_cfg->channel_id); return -EINVAL; } data->adc_conf |= BIT(channel_cfg->channel_id); return mfd_ad559x_write_reg(config->mfd_dev, AD559X_REG_ADC_CONFIG, data->adc_conf); } static int adc_ad559x_validate_buffer_size(const struct device *dev, const struct adc_sequence *sequence) { uint8_t channels; size_t needed; channels = POPCOUNT(sequence->channels); needed = channels * sizeof(uint16_t); if (sequence->buffer_size < needed) { return -ENOMEM; } return 0; } static int adc_ad559x_start_read(const struct device *dev, const struct adc_sequence *sequence) { struct adc_ad559x_data *data = dev->data; int ret; if (sequence->resolution != AD559X_ADC_RESOLUTION) { LOG_ERR("invalid resolution %d", sequence->resolution); return -EINVAL; } if (find_msb_set(sequence->channels) > AD559X_PIN_MAX) { LOG_ERR("invalid channels in mask: 0x%08x", sequence->channels); return -EINVAL; } ret = adc_ad559x_validate_buffer_size(dev, sequence); if (ret < 0) { LOG_ERR("insufficient buffer size"); return ret; } data->buffer = sequence->buffer; adc_context_start_read(&data->ctx, sequence); return adc_context_wait_for_completion(&data->ctx); } static int adc_ad559x_read_channel(const struct device *dev, uint8_t channel, uint16_t *result) { const struct adc_ad559x_config *config = dev->config; uint16_t val; uint8_t conv_channel; int ret; /* Select channel */ ret = mfd_ad559x_write_reg(config->mfd_dev, AD559X_REG_SEQ_ADC, BIT(channel)); if (ret < 0) { return ret; } if (mfd_ad559x_has_pointer_byte_map(config->mfd_dev)) { /* Start readback */ val = AD559X_ADC_RD_POINTER; ret = mfd_ad559x_write_raw(config->mfd_dev, (uint8_t *)&val, AD559X_ADC_RD_POINTER_SIZE); if (ret < 0) { return ret; } /* Read channel */ ret = mfd_ad559x_read_raw(config->mfd_dev, (uint8_t *)&val, sizeof(val)); if (ret < 0) { return ret; } } else { /* * Invalid data: * See Figure 46. Single-Channel ADC Conversion Sequence. * The first conversion result always returns invalid data. */ (void)mfd_ad559x_read_raw(config->mfd_dev, (uint8_t *)&val, sizeof(val)); ret = mfd_ad559x_read_raw(config->mfd_dev, (uint8_t *)&val, sizeof(val)); if (ret < 0) { return ret; } } val = sys_be16_to_cpu(val); /* * Invalid data: * See AD5592 "ADC section" in "Theory of operation" chapter. * Valid ADC result has MSB bit set to 0. */ if ((val & AD559X_ADC_RES_IND_BIT) != 0) { return -EAGAIN; } /* * Invalid channel converted: * See AD5592 "ADC section" in "Theory of operation" chapter. * Conversion result contains channel number which should match requested channel. */ conv_channel = FIELD_GET(AD559X_ADC_RES_CHAN_MASK, val); if (conv_channel != channel) { return -EIO; } *result = val & AD559X_ADC_RES_VAL_MASK; return 0; } static void adc_context_start_sampling(struct adc_context *ctx) { struct adc_ad559x_data *data = CONTAINER_OF(ctx, struct adc_ad559x_data, ctx); data->channels = ctx->sequence.channels; data->repeat_buffer = data->buffer; k_sem_give(&data->sem); } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling) { struct adc_ad559x_data *data = CONTAINER_OF(ctx, struct adc_ad559x_data, ctx); if (repeat_sampling) { data->buffer = data->repeat_buffer; } } static void adc_ad559x_acquisition_thread(struct adc_ad559x_data *data) { uint16_t result; uint8_t channel; int ret; while (true) { k_sem_take(&data->sem, K_FOREVER); while (data->channels != 0) { channel = find_lsb_set(data->channels) - 1; ret = adc_ad559x_read_channel(data->dev, channel, &result); if (ret < 0) { LOG_ERR("failed to read channel %d (ret %d)", channel, ret); adc_context_complete(&data->ctx, ret); break; } *data->buffer++ = result; WRITE_BIT(data->channels, channel, 0); } adc_context_on_sampling_done(&data->ctx, data->dev); } } static int adc_ad559x_read_async(const struct device *dev, const struct adc_sequence *sequence, struct k_poll_signal *async) { struct adc_ad559x_data *data = dev->data; int ret; adc_context_lock(&data->ctx, async ? true : false, async); ret = adc_ad559x_start_read(dev, sequence); adc_context_release(&data->ctx, ret); return ret; } static int adc_ad559x_read(const struct device *dev, const struct adc_sequence *sequence) { return adc_ad559x_read_async(dev, sequence, NULL); } static int adc_ad559x_init(const struct device *dev) { const struct adc_ad559x_config *config = dev->config; struct adc_ad559x_data *data = dev->data; k_tid_t tid; int ret; uint16_t reg_val; if (!device_is_ready(config->mfd_dev)) { return -ENODEV; } ret = mfd_ad559x_read_reg(config->mfd_dev, AD559X_REG_GEN_CTRL, 0, ®_val); if (ret < 0) { return ret; } if (config->double_input_range) { reg_val |= AD559X_ADC_RANGE; } else { reg_val &= ~AD559X_ADC_RANGE; } ret = mfd_ad559x_write_reg(config->mfd_dev, AD559X_REG_GEN_CTRL, reg_val); if (ret < 0) { return ret; } ret = mfd_ad559x_write_reg(config->mfd_dev, AD559X_REG_PD_REF_CTRL, AD559X_EN_REF); if (ret < 0) { return ret; } data->dev = dev; k_sem_init(&data->sem, 0, 1); adc_context_init(&data->ctx); tid = k_thread_create(&data->thread, data->stack, K_KERNEL_STACK_SIZEOF(data->stack), (k_thread_entry_t)adc_ad559x_acquisition_thread, data, NULL, NULL, CONFIG_ADC_AD559X_ACQUISITION_THREAD_PRIO, 0, K_NO_WAIT); if (IS_ENABLED(CONFIG_THREAD_NAME)) { ret = k_thread_name_set(tid, "adc_ad559x"); if (ret < 0) { return ret; } } adc_context_unlock_unconditionally(&data->ctx); return 0; } #ifdef CONFIG_ADC_ASYNC #define ADC_AD559X_ASYNC() .read_async = adc_ad559x_read_async, #else #define ADC_AD559X_ASYNC() #endif #define ADC_AD559X_DRIVER_API(inst) \ static DEVICE_API(adc, adc_ad559x_api##inst) = { \ .channel_setup = adc_ad559x_channel_setup, \ .read = adc_ad559x_read, \ .ref_internal = AD559X_ADC_VREF_MV * (1 + DT_INST_PROP(inst, double_input_range)), \ ADC_AD559X_ASYNC()} #define ADC_AD559X_DEFINE(inst) \ ADC_AD559X_DRIVER_API(inst); \ \ static const struct adc_ad559x_config adc_ad559x_config##inst = { \ .mfd_dev = DEVICE_DT_GET(DT_INST_PARENT(inst)), \ .double_input_range = DT_INST_PROP(inst, double_input_range), \ }; \ \ static struct adc_ad559x_data adc_ad559x_data##inst; \ \ DEVICE_DT_INST_DEFINE(inst, adc_ad559x_init, NULL, &adc_ad559x_data##inst, \ &adc_ad559x_config##inst, POST_KERNEL, CONFIG_MFD_INIT_PRIORITY, \ &adc_ad559x_api##inst); DT_INST_FOREACH_STATUS_OKAY(ADC_AD559X_DEFINE)