/* * Copyright (c) 2014 Wind River Systems, Inc. * Copyright (c) 2017 Oticon A/S * * SPDX-License-Identifier: Apache-2.0 * * SW side of the IRQ handling */ #include #include "irq_handler.h" #include #include #include "kernel_internal.h" #include "kswap.h" #include "irq_ctrl.h" #include "posix_core.h" #include "board_soc.h" #include #include "soc.h" #include typedef void (*normal_irq_f_ptr)(const void *); typedef int (*direct_irq_f_ptr)(void); typedef struct _isr_list isr_table_entry_t; static isr_table_entry_t irq_vector_table[N_IRQS] = { { 0 } }; static int currently_running_irq = -1; static inline void vector_to_irq(int irq_nbr, int *may_swap) { sys_trace_isr_enter(); if (irq_vector_table[irq_nbr].func == NULL) { /* LCOV_EXCL_BR_LINE */ /* LCOV_EXCL_START */ posix_print_error_and_exit("Received irq %i without a " "registered handler\n", irq_nbr); /* LCOV_EXCL_STOP */ } else { if (irq_vector_table[irq_nbr].flags & ISR_FLAG_DIRECT) { *may_swap |= ((direct_irq_f_ptr) irq_vector_table[irq_nbr].func)(); } else { #ifdef CONFIG_PM posix_irq_check_idle_exit(); #endif ((normal_irq_f_ptr)irq_vector_table[irq_nbr].func) (irq_vector_table[irq_nbr].param); *may_swap = 1; } } sys_trace_isr_exit(); } /** * When an interrupt is raised, this function is called to handle it and, if * needed, swap to a re-enabled thread * * Note that even that this function is executing in a Zephyr thread, it is * effectively the model of the interrupt controller passing context to the IRQ * handler and therefore its priority handling */ void posix_irq_handler(void) { uint64_t irq_lock; int irq_nbr; static int may_swap; irq_lock = hw_irq_ctrl_get_current_lock(); if (irq_lock) { /* "spurious" wakes can happen with interrupts locked */ return; } if (_kernel.cpus[0].nested == 0) { may_swap = 0; } _kernel.cpus[0].nested++; while ((irq_nbr = hw_irq_ctrl_get_highest_prio_irq()) != -1) { int last_current_running_prio = hw_irq_ctrl_get_cur_prio(); int last_running_irq = currently_running_irq; hw_irq_ctrl_set_cur_prio(hw_irq_ctrl_get_prio(irq_nbr)); hw_irq_ctrl_clear_irq(irq_nbr); currently_running_irq = irq_nbr; vector_to_irq(irq_nbr, &may_swap); currently_running_irq = last_running_irq; hw_irq_ctrl_set_cur_prio(last_current_running_prio); } _kernel.cpus[0].nested--; /* Call swap if all the following is true: * 1) may_swap was enabled * 2) We are not nesting irq_handler calls (interrupts) * 3) Next thread to run in the ready queue is not this thread */ if (may_swap && (hw_irq_ctrl_get_cur_prio() == 256) && (_kernel.ready_q.cache) && (_kernel.ready_q.cache != arch_current_thread())) { (void)z_swap_irqlock(irq_lock); } } /** * Thru this function the IRQ controller can raise an immediate interrupt which * will interrupt the SW itself * (this function should only be called from the HW model code, from SW threads) */ void posix_irq_handler_im_from_sw(void) { /* * if a higher priority interrupt than the possibly currently running is * pending we go immediately into irq_handler() to vector into its * handler */ if (hw_irq_ctrl_get_highest_prio_irq() != -1) { if (!posix_is_cpu_running()) { /* LCOV_EXCL_BR_LINE */ /* LCOV_EXCL_START */ posix_print_error_and_exit("programming error: %s " "called from a HW model thread\n", __func__); /* LCOV_EXCL_STOP */ } posix_irq_handler(); } } /** * @brief Disable all interrupts on the CPU * * This routine disables interrupts. It can be called from either interrupt, * task or fiber level. This routine returns an architecture-dependent * lock-out key representing the "interrupt disable state" prior to the call; * this key can be passed to irq_unlock() to re-enable interrupts. * * The lock-out key should only be used as the argument to the irq_unlock() * API. It should never be used to manually re-enable interrupts or to inspect * or manipulate the contents of the source register. * * This function can be called recursively: it will return a key to return the * state of interrupt locking to the previous level. * * WARNINGS * Invoking a kernel routine with interrupts locked may result in * interrupts being re-enabled for an unspecified period of time. If the * called routine blocks, interrupts will be re-enabled while another * thread executes, or while the system is idle. * * The "interrupt disable state" is an attribute of a thread. Thus, if a * fiber or task disables interrupts and subsequently invokes a kernel * routine that causes the calling thread to block, the interrupt * disable state will be restored when the thread is later rescheduled * for execution. * * @return An architecture-dependent lock-out key representing the * "interrupt disable state" prior to the call. * */ unsigned int posix_irq_lock(void) { return hw_irq_ctrl_change_lock(true); } /** * @brief Enable all interrupts on the CPU * * This routine re-enables interrupts on the CPU. The @a key parameter is a * board-dependent lock-out key that is returned by a previous invocation of * board_irq_lock(). * * This routine can be called from either interrupt, task or fiber level. */ void posix_irq_unlock(unsigned int key) { hw_irq_ctrl_change_lock(key); } void posix_irq_full_unlock(void) { hw_irq_ctrl_change_lock(false); } void posix_irq_enable(unsigned int irq) { hw_irq_ctrl_enable_irq(irq); } void posix_irq_disable(unsigned int irq) { hw_irq_ctrl_disable_irq(irq); } int posix_irq_is_enabled(unsigned int irq) { return hw_irq_ctrl_is_irq_enabled(irq); } int posix_get_current_irq(void) { return currently_running_irq; } /** * Configure a static interrupt. * * posix_isr_declare will populate the interrupt table table with the * interrupt's parameters, the vector table and the software ISR table. * * We additionally set the priority in the interrupt controller at * runtime. * * @param irq_p IRQ line number * @param flags [plug it directly (1), or as a SW managed interrupt (0)] * @param isr_p Interrupt service routine * @param isr_param_p ISR parameter * @param flags_p IRQ options */ void posix_isr_declare(unsigned int irq_p, int flags, void isr_p(const void *), const void *isr_param_p) { if (irq_p >= N_IRQS) { posix_print_error_and_exit("Attempted to configure not existent interrupt %u\n", irq_p); return; } irq_vector_table[irq_p].irq = irq_p; irq_vector_table[irq_p].func = isr_p; irq_vector_table[irq_p].param = isr_param_p; irq_vector_table[irq_p].flags = flags; } /** * @internal * * @brief Set an interrupt's priority * * Lower values take priority over higher values. */ void posix_irq_priority_set(unsigned int irq, unsigned int prio, uint32_t flags) { hw_irq_ctrl_prio_set(irq, prio); } /** * Similar to ARM's NVIC_SetPendingIRQ * set a pending IRQ from SW * * Note that this will interrupt immediately if the interrupt is not masked and * IRQs are not locked, and this interrupt has higher priority than a possibly * currently running interrupt */ void posix_sw_set_pending_IRQ(unsigned int IRQn) { hw_irq_ctrl_raise_im_from_sw(IRQn); } /** * Similar to ARM's NVIC_ClearPendingIRQ * clear a pending irq from SW */ void posix_sw_clear_pending_IRQ(unsigned int IRQn) { hw_irq_ctrl_clear_irq(IRQn); } #ifdef CONFIG_IRQ_OFFLOAD /** * Storage for functions offloaded to IRQ */ static void (*off_routine)(const void *); static const void *off_parameter; /** * IRQ handler for the SW interrupt assigned to irq_offload() */ static void offload_sw_irq_handler(const void *a) { ARG_UNUSED(a); off_routine(off_parameter); } /** * @brief Run a function in interrupt context * * Raise the SW IRQ assigned to handled this */ void posix_irq_offload(void (*routine)(const void *), const void *parameter) { off_routine = routine; off_parameter = parameter; posix_isr_declare(OFFLOAD_SW_IRQ, 0, offload_sw_irq_handler, NULL); posix_irq_enable(OFFLOAD_SW_IRQ); posix_sw_set_pending_IRQ(OFFLOAD_SW_IRQ); posix_irq_disable(OFFLOAD_SW_IRQ); } #endif /* CONFIG_IRQ_OFFLOAD */