# Lint as: python3 # Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Test for train.py.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import unittest import numpy as np import tensorflow as tf from train import build_cnn from train import build_lstm from train import load_data from train import reshape_function class TestTrain(unittest.TestCase): def setUp(self): # pylint: disable=g-missing-super-call self.seq_length = 128 self.train_len, self.train_data, self.valid_len, self.valid_data, \ self.test_len, self.test_data = \ load_data("./data/train", "./data/valid", "./data/test", self.seq_length) def test_load_data(self): self.assertIsInstance(self.train_data, tf.data.Dataset) self.assertIsInstance(self.valid_data, tf.data.Dataset) self.assertIsInstance(self.test_data, tf.data.Dataset) def test_build_net(self): cnn, cnn_path = build_cnn(self.seq_length) lstm, lstm_path = build_lstm(self.seq_length) cnn_data = np.random.rand(60, 128, 3, 1) lstm_data = np.random.rand(60, 128, 3) cnn_prob = cnn(tf.constant(cnn_data, dtype="float32")).numpy() lstm_prob = lstm(tf.constant(lstm_data, dtype="float32")).numpy() self.assertIsInstance(cnn, tf.keras.Sequential) self.assertIsInstance(lstm, tf.keras.Sequential) self.assertEqual(cnn_path, "./netmodels/CNN") self.assertEqual(lstm_path, "./netmodels/LSTM") self.assertEqual(cnn_prob.shape, (60, 4)) self.assertEqual(lstm_prob.shape, (60, 4)) def test_reshape_function(self): for data, label in self.train_data: original_data_shape = data.numpy().shape original_label_shape = label.numpy().shape break self.train_data = self.train_data.map(reshape_function) for data, label in self.train_data: reshaped_data_shape = data.numpy().shape reshaped_label_shape = label.numpy().shape break self.assertEqual( reshaped_data_shape, (int(original_data_shape[0] * original_data_shape[1] / 3), 3, 1)) self.assertEqual(reshaped_label_shape, original_label_shape) if __name__ == "__main__": unittest.main()