/* * Copyright 2023 NXP * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nxp_fs26_wdog #include #include #include #include #define LOG_LEVEL CONFIG_WDT_LOG_LEVEL #include LOG_MODULE_REGISTER(wdt_nxp_fs26); #include "wdt_nxp_fs26.h" #if defined(CONFIG_BIG_ENDIAN) #define SWAP_ENDIANNESS #endif #define FS26_CRC_TABLE_SIZE 256U #define FS26_CRC_INIT 0xff #define FS26_FS_WD_TOKEN_DEFAULT 0x5ab2 #define FS26_INIT_FS_TIMEOUT_MS 1000U /* Helper macros to set register values from Kconfig options */ #define WD_ERR_LIMIT(x) _CONCAT(WD_ERR_LIMIT_, x) #define WD_RFR_LIMIT(x) _CONCAT(WD_RFR_LIMIT_, x) #define WDW_PERIOD(x) _CONCAT(_CONCAT(WDW_PERIOD_, x), MS) #define BAD_WD_REFRESH_ERROR_STRING(x) \ ((((x) & BAD_WD_DATA) ? "error in the data" : \ (((x) & BAD_WD_TIMING) ? "error in the timing (window)" \ : "unknown error"))) enum fs26_wd_type { FS26_WD_SIMPLE, FS26_WD_CHALLENGER }; struct fs26_spi_rx_frame { union { struct { uint8_t m_aval : 1; uint8_t fs_en : 1; uint8_t fs_g : 1; uint8_t com_g : 1; uint8_t wio_g : 1; uint8_t vsup_g : 1; uint8_t reg_g : 1; uint8_t tsd_g : 1; }; uint8_t raw; } status; uint16_t data; }; struct fs26_spi_tx_frame { bool write; uint8_t addr; uint16_t data; }; struct wdt_nxp_fs26_config { struct spi_dt_spec spi; enum fs26_wd_type wd_type; struct gpio_dt_spec int_gpio; }; struct wdt_nxp_fs26_data { wdt_callback_t callback; uint16_t token; /* local copy of the watchdog token */ bool timeout_installed; uint8_t window_period; uint8_t window_duty_cycle; uint8_t fs_reaction; struct gpio_callback int_gpio_cb; struct k_sem int_sem; struct k_thread int_thread; K_KERNEL_STACK_MEMBER(int_thread_stack, CONFIG_WDT_NXP_FS26_INT_THREAD_STACK_SIZE); }; /* * Allowed values for watchdog period and duty cycle (CLOSED window). * The index is the value to write to the register. Keep values in ascending order. */ static const uint32_t fs26_period_values[] = { 0, 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 64, 128, 256, 512, 1024 }; static const double fs26_dc_closed_values[] = { 0.3125, 0.375, 0.5, 0.625, 0.6875, 0.75, 0.8125 }; /* CRC lookup table */ static const uint8_t FS26_CRC_TABLE[FS26_CRC_TABLE_SIZE] = { 0x00u, 0x1du, 0x3au, 0x27u, 0x74u, 0x69u, 0x4eu, 0x53u, 0xe8u, 0xf5u, 0xd2u, 0xcfu, 0x9cu, 0x81u, 0xa6u, 0xbbu, 0xcdu, 0xd0u, 0xf7u, 0xeau, 0xb9u, 0xa4u, 0x83u, 0x9eu, 0x25u, 0x38u, 0x1fu, 0x02u, 0x51u, 0x4cu, 0x6bu, 0x76u, 0x87u, 0x9au, 0xbdu, 0xa0u, 0xf3u, 0xeeu, 0xc9u, 0xd4u, 0x6fu, 0x72u, 0x55u, 0x48u, 0x1bu, 0x06u, 0x21u, 0x3cu, 0x4au, 0x57u, 0x70u, 0x6du, 0x3eu, 0x23u, 0x04u, 0x19u, 0xa2u, 0xbfu, 0x98u, 0x85u, 0xd6u, 0xcbu, 0xecu, 0xf1u, 0x13u, 0x0eu, 0x29u, 0x34u, 0x67u, 0x7au, 0x5du, 0x40u, 0xfbu, 0xe6u, 0xc1u, 0xdcu, 0x8fu, 0x92u, 0xb5u, 0xa8u, 0xdeu, 0xc3u, 0xe4u, 0xf9u, 0xaau, 0xb7u, 0x90u, 0x8du, 0x36u, 0x2bu, 0x0cu, 0x11u, 0x42u, 0x5fu, 0x78u, 0x65u, 0x94u, 0x89u, 0xaeu, 0xb3u, 0xe0u, 0xfdu, 0xdau, 0xc7u, 0x7cu, 0x61u, 0x46u, 0x5bu, 0x08u, 0x15u, 0x32u, 0x2fu, 0x59u, 0x44u, 0x63u, 0x7eu, 0x2du, 0x30u, 0x17u, 0x0au, 0xb1u, 0xacu, 0x8bu, 0x96u, 0xc5u, 0xd8u, 0xffu, 0xe2u, 0x26u, 0x3bu, 0x1cu, 0x01u, 0x52u, 0x4fu, 0x68u, 0x75u, 0xceu, 0xd3u, 0xf4u, 0xe9u, 0xbau, 0xa7u, 0x80u, 0x9du, 0xebu, 0xf6u, 0xd1u, 0xccu, 0x9fu, 0x82u, 0xa5u, 0xb8u, 0x03u, 0x1eu, 0x39u, 0x24u, 0x77u, 0x6au, 0x4du, 0x50u, 0xa1u, 0xbcu, 0x9bu, 0x86u, 0xd5u, 0xc8u, 0xefu, 0xf2u, 0x49u, 0x54u, 0x73u, 0x6eu, 0x3du, 0x20u, 0x07u, 0x1au, 0x6cu, 0x71u, 0x56u, 0x4bu, 0x18u, 0x05u, 0x22u, 0x3fu, 0x84u, 0x99u, 0xbeu, 0xa3u, 0xf0u, 0xedu, 0xcau, 0xd7u, 0x35u, 0x28u, 0x0fu, 0x12u, 0x41u, 0x5cu, 0x7bu, 0x66u, 0xddu, 0xc0u, 0xe7u, 0xfau, 0xa9u, 0xb4u, 0x93u, 0x8eu, 0xf8u, 0xe5u, 0xc2u, 0xdfu, 0x8cu, 0x91u, 0xb6u, 0xabu, 0x10u, 0x0du, 0x2au, 0x37u, 0x64u, 0x79u, 0x5eu, 0x43u, 0xb2u, 0xafu, 0x88u, 0x95u, 0xc6u, 0xdbu, 0xfcu, 0xe1u, 0x5au, 0x47u, 0x60u, 0x7du, 0x2eu, 0x33u, 0x14u, 0x09u, 0x7fu, 0x62u, 0x45u, 0x58u, 0x0bu, 0x16u, 0x31u, 0x2cu, 0x97u, 0x8au, 0xadu, 0xb0u, 0xe3u, 0xfeu, 0xd9u, 0xc4u }; static uint8_t fs26_calcrc(const uint8_t *data, size_t size) { uint8_t crc; uint8_t tableidx; uint8_t i; /* Set CRC token value */ crc = FS26_CRC_INIT; for (i = size; i > 0; i--) { tableidx = crc ^ data[i]; crc = FS26_CRC_TABLE[tableidx]; } return crc; } static int fs26_spi_transceive(const struct spi_dt_spec *spi, struct fs26_spi_tx_frame *tx_frame, struct fs26_spi_rx_frame *rx_frame) { uint32_t tx_buf; uint32_t rx_buf; uint8_t crc; int retval; struct spi_buf spi_tx_buf = { .buf = &tx_buf, .len = sizeof(tx_buf) }; struct spi_buf spi_rx_buf = { .buf = &rx_buf, .len = sizeof(rx_buf) }; struct spi_buf_set spi_tx_set = { .buffers = &spi_tx_buf, .count = 1U }; struct spi_buf_set spi_rx_set = { .buffers = &spi_rx_buf, .count = 1U }; /* Create frame to Tx, always for Fail Safe */ tx_buf = (uint32_t)(FS26_SET_REG_ADDR(tx_frame->addr) | FS26_SET_DATA(tx_frame->data) | (tx_frame->write ? FS26_RW : 0)); crc = fs26_calcrc((uint8_t *)&tx_buf, sizeof(tx_buf) - 1); tx_buf |= (uint32_t)FS26_SET_CRC(crc); #if defined(SWAP_ENDIANNESS) tx_buf = __builtin_bswap32(tx_buf); #endif retval = spi_transceive_dt(spi, &spi_tx_set, &spi_rx_set); if (retval) { goto error; } #if defined(SWAP_ENDIANNESS) rx_buf = __builtin_bswap32(rx_buf); #endif /* Verify CRC of Rx frame */ crc = fs26_calcrc((uint8_t *)&rx_buf, sizeof(rx_buf) - 1); if (crc != ((uint8_t)FS26_GET_CRC(rx_buf))) { LOG_ERR("Rx invalid CRC"); retval = -EIO; goto error; } if (rx_frame) { rx_frame->status.raw = (uint8_t)FS26_GET_DEV_STATUS(rx_buf); rx_frame->data = (uint16_t)FS26_GET_DATA(rx_buf); } error: return retval; } /** * @brief Get value of register with address @p addr * * @param spi SPI specs for interacting with the device * @param addr Register address * @param rx_frame SPI frame containing read data and device status flags * * @return 0 on success, error code otherwise */ static int fs26_getreg(const struct spi_dt_spec *spi, uint8_t addr, struct fs26_spi_rx_frame *rx_frame) { struct fs26_spi_tx_frame tx_frame = { .addr = addr, .write = 0, .data = 0 }; return fs26_spi_transceive(spi, &tx_frame, rx_frame); } /** * @brief Set @p regval value in register with address @p addr * * @param spi SPI specs for interacting with the device * @param addr Register address * @param regval Register value to set * * @return 0 on success, error code otherwise */ static int fs26_setreg(const struct spi_dt_spec *spi, uint8_t addr, uint16_t regval) { struct fs26_spi_tx_frame tx_frame = { .addr = addr, .write = true, .data = regval }; return fs26_spi_transceive(spi, &tx_frame, NULL); } /** * @brief Calculate watchdog answer based on received token * * @return answer value to write to FS_WD_ANSWER */ static inline uint16_t fs26_wd_compute_answer(uint16_t token) { uint32_t tmp = token; tmp *= 4U; tmp += 6U; tmp -= 4U; tmp = ~tmp; tmp /= 4U; return (uint16_t)tmp; } /** * @brief Refresh the watchdog and verify the refresh was good. * * @return 0 on success, error code otherwise */ static int fs26_wd_refresh(const struct device *dev) { const struct wdt_nxp_fs26_config *config = dev->config; struct wdt_nxp_fs26_data *data = dev->data; int retval = 0; int key; uint16_t answer; struct fs26_spi_rx_frame rx_frame; if (config->wd_type == FS26_WD_SIMPLE) { if (fs26_setreg(&config->spi, FS26_FS_WD_ANSWER, data->token) == 0) { LOG_ERR("Failed to write answer"); retval = -EIO; } } else if (config->wd_type == FS26_WD_CHALLENGER) { key = irq_lock(); /* Read challenge token generated by the device */ if (fs26_getreg(&config->spi, FS26_FS_WD_TOKEN, &rx_frame)) { LOG_ERR("Failed to obtain watchdog token"); retval = -EIO; } else { data->token = rx_frame.data; LOG_DBG("Watchdog token is %x", data->token); answer = fs26_wd_compute_answer(data->token); if (fs26_setreg(&config->spi, FS26_FS_WD_ANSWER, answer)) { LOG_ERR("Failed to write answer"); retval = -EIO; } } irq_unlock(key); } else { retval = -EINVAL; } /* Check if watchdog refresh was successful */ if (!retval) { if (!fs26_getreg(&config->spi, FS26_FS_GRL_FLAGS, &rx_frame)) { if ((rx_frame.data & FS_WD_G_MASK) == FS_WD_G) { if (!fs26_getreg(&config->spi, FS26_FS_DIAG_SAFETY1, &rx_frame)) { LOG_ERR("Bad watchdog refresh, %s", BAD_WD_REFRESH_ERROR_STRING(rx_frame.data)); } retval = -EIO; } else { LOG_DBG("Refreshed the watchdog"); } } } return retval; } /** * @brief Wait for state machine to be at in INIT_FS state * * @return 0 on success, -ETIMEDOUT if timedout */ static int fs26_poll_for_init_fs_state(const struct device *dev) { const struct wdt_nxp_fs26_config *config = dev->config; struct fs26_spi_rx_frame rx_frame; uint32_t regval = 0; int64_t timeout; int64_t now; timeout = k_uptime_get() + FS26_INIT_FS_TIMEOUT_MS; do { if (!fs26_getreg(&config->spi, FS26_FS_STATES, &rx_frame)) { regval = rx_frame.data; } k_sleep(K_MSEC(1)); now = k_uptime_get(); } while ((now < timeout) && (regval & FS_STATES_MASK) != FS_STATES_INIT_FS); if (now >= timeout) { LOG_ERR("Timedout waiting for INIT_FS state"); return -ETIMEDOUT; } return 0; } /** * @brief Go to INIT_FS state from any FS state after INIT_FS * * After INIT_FS closure, it is possible to come back to INIT_FS with the * GOTO_INIT bit in FS_SAFE_IOS_1 register from any FS state after INIT_FS. * * @return 0 on success, error code otherwise */ static int fs26_goto_init_fs_state(const struct device *dev) { const struct wdt_nxp_fs26_config *config = dev->config; struct fs26_spi_rx_frame rx_frame; uint32_t current_state; int retval = -EIO; if (!fs26_getreg(&config->spi, FS26_FS_STATES, &rx_frame)) { current_state = rx_frame.data & FS_STATES_MASK; if (current_state < FS_STATES_INIT_FS) { LOG_ERR("Cannot go to INIT_FS from current state %x", current_state); retval = -EIO; } else if (current_state == FS_STATES_INIT_FS) { retval = 0; } else { fs26_setreg(&config->spi, FS26_FS_SAFE_IOS_1, (uint32_t)FS_GOTO_INIT); retval = fs26_poll_for_init_fs_state(dev); } } return retval; } /** * @brief Close INIT_FS phase with a (good) watchdog refresh. * * @return 0 on success, error code otherwise */ static inline int fs26_exit_init_fs_state(const struct device *dev) { return fs26_wd_refresh(dev); } static int wdt_nxp_fs26_feed(const struct device *dev, int channel_id) { struct wdt_nxp_fs26_data *data = dev->data; if (channel_id != 0) { LOG_ERR("Invalid channel ID"); return -EINVAL; } if (!data->timeout_installed) { LOG_ERR("No timeout installed"); return -EINVAL; } return fs26_wd_refresh(dev); } static int wdt_nxp_fs26_setup(const struct device *dev, uint8_t options) { const struct wdt_nxp_fs26_config *config = dev->config; struct wdt_nxp_fs26_data *data = dev->data; uint32_t regval; if (!data->timeout_installed) { LOG_ERR("No timeout installed"); return -EINVAL; } if ((options & WDT_OPT_PAUSE_IN_SLEEP) || (options & WDT_OPT_PAUSE_HALTED_BY_DBG)) { return -ENOTSUP; } /* * Apply fail-safe reaction configuration on RSTB and/or the safety output(s), * configurable during the initialization phase. */ if (fs26_goto_init_fs_state(dev)) { LOG_ERR("Failed to go to INIT_FS"); return -EIO; } regval = WD_ERR_LIMIT(CONFIG_WDT_NXP_FS26_ERROR_COUNTER_LIMIT) | WD_RFR_LIMIT(CONFIG_WDT_NXP_FS26_REFRESH_COUNTER_LIMIT) | ((data->fs_reaction << WD_FS_REACTION_SHIFT) & WD_FS_REACTION_MASK); fs26_setreg(&config->spi, FS26_FS_I_WD_CFG, regval); fs26_setreg(&config->spi, FS26_FS_I_NOT_WD_CFG, ~regval); /* Apply watchdog window configuration, configurable during any FS state */ regval = ((data->window_period << WDW_PERIOD_SHIFT) & WDW_PERIOD_MASK) | ((data->window_duty_cycle << WDW_DC_SHIFT) & WDW_DC_MASK) | WDW_RECOVERY_DISABLE; fs26_setreg(&config->spi, FS26_FS_WDW_DURATION, regval); fs26_setreg(&config->spi, FS26_FS_NOT_WDW_DURATION, ~regval); /* * The new watchdog window is effective after the next watchdog refresh, * so feed the watchdog once to make it effective after exiting this * function. Also it's required to close init phase. */ if (fs26_exit_init_fs_state(dev)) { LOG_ERR("Failed to close INIT_FS"); return -EIO; } return 0; } static int wdt_nxp_fs26_install_timeout(const struct device *dev, const struct wdt_timeout_cfg *cfg) { struct wdt_nxp_fs26_data *data = dev->data; uint32_t window_min; uint8_t i; if (data->timeout_installed) { LOG_ERR("No more timeouts can be installed"); return -ENOMEM; } if ((cfg->window.max == 0) || (cfg->window.max > 1024) || (cfg->window.max <= cfg->window.min)) { LOG_ERR("Invalid timeout value"); return -EINVAL; } /* Find nearest period value (rounded up) */ for (i = 0; i < ARRAY_SIZE(fs26_period_values); i++) { if (fs26_period_values[i] >= cfg->window.max) { break; } } data->window_period = i; LOG_DBG("window.max requested %d ms, using %d ms", cfg->window.max, fs26_period_values[data->window_period]); /* * Find nearest duty cycle value based on new period, that results in a * window's minimum near the requested (rounded up) */ for (i = 0; i < ARRAY_SIZE(fs26_dc_closed_values); i++) { window_min = (uint32_t)(fs26_dc_closed_values[i] * fs26_period_values[data->window_period]); if (window_min >= cfg->window.min) { break; } } if (i >= ARRAY_SIZE(fs26_dc_closed_values)) { LOG_ERR("Watchdog opened window too small"); return -EINVAL; } data->window_duty_cycle = i; LOG_DBG("window.min requested %d ms, using %d ms (%.2f%%)", cfg->window.min, window_min, fs26_dc_closed_values[data->window_duty_cycle] * 100); /* Fail-safe reaction configuration */ switch (cfg->flags) { case WDT_FLAG_RESET_SOC: __fallthrough; case WDT_FLAG_RESET_CPU_CORE: data->fs_reaction = WD_FS_REACTION_RSTB_FS0B >> WD_FS_REACTION_SHIFT; LOG_DBG("Configuring reset mode"); break; case WDT_FLAG_RESET_NONE: data->fs_reaction = WD_FS_REACTION_NO_ACTION >> WD_FS_REACTION_SHIFT; LOG_DBG("Configuring non-reset mode"); break; default: LOG_ERR("Unsupported watchdog configuration flag"); return -EINVAL; } data->callback = cfg->callback; data->timeout_installed = true; /* Always return channel ID equal to 0 */ return 0; } static int wdt_nxp_fs26_disable(const struct device *dev) { const struct wdt_nxp_fs26_config *config = dev->config; struct wdt_nxp_fs26_data *data = dev->data; struct fs26_spi_rx_frame rx_frame; uint32_t regval; if (fs26_getreg(&config->spi, FS26_FS_WDW_DURATION, &rx_frame)) { return -EIO; } if ((rx_frame.data & WDW_PERIOD_MASK) == WDW_PERIOD_DISABLE) { LOG_ERR("Watchdog already disabled"); return -EFAULT; } /* The watchdog window can be disabled only during the initialization phase */ if (fs26_goto_init_fs_state(dev)) { LOG_ERR("Failed to go to INIT_FS"); return -EIO; } regval = WDW_PERIOD_DISABLE | WDW_RECOVERY_DISABLE; fs26_setreg(&config->spi, FS26_FS_WDW_DURATION, regval); fs26_setreg(&config->spi, FS26_FS_NOT_WDW_DURATION, ~regval); /* The watchdog disabling is effective when the initialization phase is closed */ if (fs26_exit_init_fs_state(dev)) { LOG_ERR("Failed to close INIT_FS"); return -EIO; } LOG_DBG("Watchdog disabled"); data->timeout_installed = false; return 0; } static void wdt_nxp_fs26_int_thread(void *p1, void *p2, void *p3) { ARG_UNUSED(p2); ARG_UNUSED(p3); const struct device *dev = p1; const struct wdt_nxp_fs26_config *config = dev->config; struct wdt_nxp_fs26_data *data = dev->data; struct fs26_spi_rx_frame rx_frame; uint32_t regval; while (1) { k_sem_take(&data->int_sem, K_FOREVER); if ((!fs26_getreg(&config->spi, FS26_FS_GRL_FLAGS, &rx_frame)) && ((rx_frame.data & FS_WD_G_MASK) == FS_WD_G)) { if ((!fs26_getreg(&config->spi, FS26_FS_DIAG_SAFETY1, &rx_frame)) && (rx_frame.data & BAD_WD_TIMING)) { /* Clear flag */ regval = BAD_WD_TIMING; fs26_setreg(&config->spi, FS26_FS_DIAG_SAFETY1, regval); /* Invoke user callback */ if (data->callback && data->timeout_installed) { data->callback(dev, 0); } } } } } static void wdt_nxp_fs26_int_callback(const struct device *dev, struct gpio_callback *cb, uint32_t pins) { struct wdt_nxp_fs26_data *data = CONTAINER_OF(cb, struct wdt_nxp_fs26_data, int_gpio_cb); ARG_UNUSED(dev); ARG_UNUSED(pins); k_sem_give(&data->int_sem); } static int wdt_nxp_fs26_init(const struct device *dev) { const struct wdt_nxp_fs26_config *config = dev->config; struct wdt_nxp_fs26_data *data = dev->data; struct fs26_spi_rx_frame rx_frame; uint32_t regval; /* Validate bus is ready */ if (!spi_is_ready_dt(&config->spi)) { return -ENODEV; } k_sem_init(&data->int_sem, 0, 1); /* Configure GPIO used for INTB signal */ if (!gpio_is_ready_dt(&config->int_gpio)) { LOG_ERR("GPIO port %s not ready", config->int_gpio.port->name); return -ENODEV; } if (gpio_pin_configure_dt(&config->int_gpio, GPIO_INPUT)) { LOG_ERR("Unable to configure GPIO pin %u", config->int_gpio.pin); return -EIO; } gpio_init_callback(&(data->int_gpio_cb), wdt_nxp_fs26_int_callback, BIT(config->int_gpio.pin)); if (gpio_add_callback(config->int_gpio.port, &(data->int_gpio_cb))) { return -EINVAL; } if (gpio_pin_interrupt_configure_dt(&config->int_gpio, GPIO_INT_EDGE_FALLING)) { return -EINVAL; } k_thread_create(&data->int_thread, data->int_thread_stack, CONFIG_WDT_NXP_FS26_INT_THREAD_STACK_SIZE, wdt_nxp_fs26_int_thread, (void *)dev, NULL, NULL, K_PRIO_COOP(CONFIG_WDT_NXP_FS26_INT_THREAD_PRIO), 0, K_NO_WAIT); /* Verify FS BIST before proceeding */ if (fs26_getreg(&config->spi, FS26_FS_DIAG_SAFETY1, &rx_frame)) { return -EIO; } if ((rx_frame.data & (ABIST1_PASS_MASK | LBIST_STATUS_MASK)) != (ABIST1_PASS | LBIST_STATUS_OK)) { LOG_ERR("BIST failed 0x%x", rx_frame.data); return -EIO; } /* Get FS state machine state */ if (fs26_getreg(&config->spi, FS26_FS_STATES, &rx_frame)) { return -EIO; } /* Verify if in DEBUG mode */ if ((rx_frame.data & DBG_MODE_MASK) == DBG_MODE) { if (IS_ENABLED(CONFIG_WDT_NXP_FS26_EXIT_DEBUG_MODE)) { LOG_DBG("Exiting DEBUG mode"); regval = rx_frame.data | EXIT_DBG_MODE; fs26_setreg(&config->spi, FS26_FS_STATES, regval); } else { LOG_ERR("In DEBUG mode, watchdog is disabled"); return -EIO; } } /* Go to INIT_FS state, if not already there */ if (fs26_goto_init_fs_state(dev)) { LOG_ERR("Failed to go to INIT_FS"); return -EIO; } /* Clear pending FS diagnostic flags before initializing */ regval = BAD_WD_DATA | BAD_WD_TIMING | ABIST2_PASS | ABIST2_DONE | SPI_FS_CLK | SPI_FS_REQ | SPI_FS_CRC | FS_OSC_DRIFT; fs26_setreg(&config->spi, FS26_FS_DIAG_SAFETY1, regval); /* * Perform the following sequence for all INIT_FS registers (FS_I_xxxx) * - Write the desired data in the FS_I_Register_A (data) * - Write the opposite in the FS_I_NOT_Register_A (~data) */ /* OVUV_SAFE_REACTION1 */ regval = VMON_PRE_OV_FS_REACTION_NO_EFFECT | VMON_PRE_UV_FS_REACTION_NO_EFFECT | VMON_CORE_OV_FS_REACTION_NO_EFFECT | VMON_CORE_UV_FS_REACTION_NO_EFFECT | VMON_LDO1_OV_FS_REACTION_NO_EFFECT | VMON_LDO1_UV_FS_REACTION_NO_EFFECT | VMON_LDO2_OV_FS_REACTION_NO_EFFECT | VMON_LDO2_UV_FS_REACTION_NO_EFFECT; fs26_setreg(&config->spi, FS26_FS_I_OVUV_SAFE_REACTION1, regval); fs26_setreg(&config->spi, FS26_FS_I_NOT_OVUV_SAFE_REACTION1, ~regval); /* OVUV_SAFE_REACTION2 */ regval = VMON_EXT_OV_FS_REACTION_NO_EFFECT | VMON_EXT_UV_FS_REACTION_NO_EFFECT | VMON_REF_OV_FS_REACTION_NO_EFFECT | VMON_REF_UV_FS_REACTION_NO_EFFECT | VMON_TRK2_OV_FS_REACTION_NO_EFFECT | VMON_TRK2_UV_FS_REACTION_NO_EFFECT | VMON_TRK1_OV_FS_REACTION_NO_EFFECT | VMON_TRK1_UV_FS_REACTION_NO_EFFECT; fs26_setreg(&config->spi, FS26_FS_I_OVUV_SAFE_REACTION2, regval); fs26_setreg(&config->spi, FS26_FS_I_NOT_OVUV_SAFE_REACTION2, ~regval); /* FS_I_SAFE_INPUTS */ regval = FCCU_CFG_NO_MONITORING | ERRMON_ACK_TIME_32MS; fs26_setreg(&config->spi, FS26_FS_I_SAFE_INPUTS, regval); fs26_setreg(&config->spi, FS26_FS_I_NOT_SAFE_INPUTS, ~regval); /* FS_I_FSSM */ regval = FLT_ERR_REACTION_NO_EFFECT | CLK_MON_DIS | DIS8S; fs26_setreg(&config->spi, FS26_FS_I_FSSM, regval); fs26_setreg(&config->spi, FS26_FS_I_NOT_FSSM, ~regval); /* FS_I_WD_CFG */ regval = WD_ERR_LIMIT(CONFIG_WDT_NXP_FS26_ERROR_COUNTER_LIMIT) | WD_RFR_LIMIT(CONFIG_WDT_NXP_FS26_REFRESH_COUNTER_LIMIT) | WD_FS_REACTION_NO_ACTION; fs26_setreg(&config->spi, FS26_FS_I_WD_CFG, regval); fs26_setreg(&config->spi, FS26_FS_I_NOT_WD_CFG, ~regval); /* FS_WDW_DURATION */ /* Watchdog always disabled at boot */ regval = WDW_PERIOD_DISABLE | WDW_RECOVERY_DISABLE; fs26_setreg(&config->spi, FS26_FS_WDW_DURATION, regval); fs26_setreg(&config->spi, FS26_FS_NOT_WDW_DURATION, ~regval); /* Set watchdog seed if not using the default */ if (data->token != FS26_FS_WD_TOKEN_DEFAULT) { LOG_DBG("Set seed to %x", data->token); fs26_setreg(&config->spi, FS26_FS_WD_TOKEN, data->token); } /* Mask all Fail-Safe interrupt sources except for watchdog bad refresh */ regval = ~BAD_WD_M; fs26_setreg(&config->spi, FS26_FS_INTB_MASK, regval); /* Mask all main interrupt souces */ regval = 0xffff; fs26_setreg(&config->spi, FS26_M_TSD_MSK, regval); fs26_setreg(&config->spi, FS26_M_REG_MSK, regval); fs26_setreg(&config->spi, FS26_M_VSUP_MSK, regval); fs26_setreg(&config->spi, FS26_M_WIO_MSK, regval); fs26_setreg(&config->spi, FS26_M_COM_MSK, regval); /* INIT_FS must be closed before the 256 ms timeout */ if (fs26_exit_init_fs_state(dev)) { LOG_ERR("Failed to close INIT_FS"); return -EIO; } /* After INIT_FS is completed, check for data corruption in init registers */ if (!fs26_getreg(&config->spi, FS26_FS_STATES, &rx_frame)) { if ((rx_frame.data & REG_CORRUPT_MASK) == REG_CORRUPT) { LOG_ERR("Data content corruption detected in init registers"); return -EIO; } } return 0; } static const struct wdt_driver_api wdt_nxp_fs26_api = { .setup = wdt_nxp_fs26_setup, .disable = wdt_nxp_fs26_disable, .install_timeout = wdt_nxp_fs26_install_timeout, .feed = wdt_nxp_fs26_feed, }; #define FS26_WDT_DEVICE_INIT(n) \ COND_CODE_1(DT_INST_ENUM_IDX(n, type), \ (BUILD_ASSERT(CONFIG_WDT_NXP_FS26_SEED != 0x0, \ "Seed value 0x0000 is not allowed");), \ (BUILD_ASSERT((CONFIG_WDT_NXP_FS26_SEED != 0x0) \ && (CONFIG_WDT_NXP_FS26_SEED != 0xffff), \ "Seed values 0x0000 and 0xffff are not allowed");)) \ \ static struct wdt_nxp_fs26_data wdt_nxp_fs26_data_##n = { \ .token = CONFIG_WDT_NXP_FS26_SEED, \ }; \ \ static const struct wdt_nxp_fs26_config wdt_nxp_fs26_config_##n = { \ .spi = SPI_DT_SPEC_INST_GET(n, \ SPI_OP_MODE_MASTER | SPI_MODE_CPHA | SPI_WORD_SET(32), 0), \ .wd_type = _CONCAT(FS26_WD_, DT_INST_STRING_UPPER_TOKEN(n, type)), \ .int_gpio = GPIO_DT_SPEC_INST_GET(n, int_gpios), \ }; \ \ DEVICE_DT_INST_DEFINE(n, \ wdt_nxp_fs26_init, \ NULL, \ &wdt_nxp_fs26_data_##n, \ &wdt_nxp_fs26_config_##n, \ POST_KERNEL, \ CONFIG_WDT_NXP_FS26_INIT_PRIORITY, \ &wdt_nxp_fs26_api); DT_INST_FOREACH_STATUS_OKAY(FS26_WDT_DEVICE_INIT)