/* * Copyright 2021 Google LLC * Copyright 2022 TOKITA Hiroshi * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT raspberrypi_pico_adc #include #include #include #include #include #include #include LOG_MODULE_REGISTER(adc_rpi, CONFIG_ADC_LOG_LEVEL); #define ADC_CONTEXT_USES_KERNEL_TIMER #include "adc_context.h" #define ADC_RPI_MAX_RESOLUTION 12 /** Bits numbers of rrobin register mean an available number of channels. */ #define ADC_RPI_CHANNEL_NUM (ADC_CS_RROBIN_MSB - ADC_CS_RROBIN_LSB + 1) /** * @brief RaspberryPi Pico ADC config * * This structure contains constant data for given instance of RaspberryPi Pico ADC. */ struct adc_rpi_config { /** Number of supported channels */ uint8_t num_channels; /** pinctrl configs */ const struct pinctrl_dev_config *pcfg; /** function pointer to irq setup */ void (*irq_configure)(void); /** Pointer to clock controller device */ const struct device *clk_dev; /** Clock id of ADC clock */ clock_control_subsys_t clk_id; /** Reset controller config */ const struct reset_dt_spec reset; }; /** * @brief RaspberryPi Pico ADC data * * This structure contains data structures used by a RaspberryPi Pico ADC. */ struct adc_rpi_data { /** Structure that handle state of ongoing read operation */ struct adc_context ctx; /** Pointer to RaspberryPi Pico ADC own device structure */ const struct device *dev; /** Pointer to memory where next sample will be written */ uint16_t *buf; /** Pointer to where will be data stored in case of repeated sampling */ uint16_t *repeat_buf; /** Mask with channels that will be sampled */ uint32_t channels; }; static inline void adc_start_once(void) { hw_set_bits(&adc_hw->cs, ADC_CS_START_ONCE_BITS); } static inline uint16_t adc_get_result(void) { return (uint16_t)adc_hw->result; } static inline bool adc_get_err(void) { return (adc_hw->cs & ADC_CS_ERR_BITS) ? true : false; } static inline void adc_clear_errors(void) { /* write 1 to clear */ hw_set_bits(&adc_hw->fcs, ADC_FCS_OVER_BITS); hw_set_bits(&adc_hw->fcs, ADC_FCS_UNDER_BITS); hw_set_bits(&adc_hw->fcs, ADC_FCS_ERR_BITS); hw_set_bits(&adc_hw->cs, ADC_CS_ERR_STICKY_BITS); } static inline void adc_enable(void) { adc_hw->cs = ADC_CS_EN_BITS; while (!(adc_hw->cs & ADC_CS_READY_BITS)) ; } static int adc_rpi_channel_setup(const struct device *dev, const struct adc_channel_cfg *channel_cfg) { const struct adc_rpi_config *config = dev->config; if (channel_cfg->channel_id >= config->num_channels) { LOG_ERR("unsupported channel id '%d'", channel_cfg->channel_id); return -ENOTSUP; } if (channel_cfg->acquisition_time != ADC_ACQ_TIME_DEFAULT) { LOG_ERR("Acquisition time is not valid"); return -EINVAL; } if (channel_cfg->differential) { LOG_ERR("unsupported differential mode"); return -ENOTSUP; } if (channel_cfg->gain != ADC_GAIN_1) { LOG_ERR("Gain is not valid"); return -EINVAL; } return 0; } /** * @brief Check if buffer in @p sequence is big enough to hold all ADC samples * * @param dev RaspberryPi Pico ADC device * @param sequence ADC sequence description * * @return 0 on success * @return -ENOMEM if buffer is not big enough */ static int adc_rpi_check_buffer_size(const struct device *dev, const struct adc_sequence *sequence) { const struct adc_rpi_config *config = dev->config; uint8_t channels = 0; size_t needed; uint32_t mask; for (mask = BIT(config->num_channels - 1); mask != 0; mask >>= 1) { if (mask & sequence->channels) { channels++; } } needed = channels * sizeof(uint16_t); if (sequence->options) { needed *= (1 + sequence->options->extra_samplings); } if (sequence->buffer_size < needed) { return -ENOMEM; } return 0; } /** * @brief Start processing read request * * @param dev RaspberryPi Pico ADC device * @param sequence ADC sequence description * * @return 0 on success * @return -ENOTSUP if requested resolution or channel is out side of supported * range * @return -ENOMEM if buffer is not big enough * (see @ref adc_rpi_check_buffer_size) * @return other error code returned by adc_context_wait_for_completion */ static int adc_rpi_start_read(const struct device *dev, const struct adc_sequence *sequence) { const struct adc_rpi_config *config = dev->config; struct adc_rpi_data *data = dev->data; int err; if (sequence->resolution > ADC_RPI_MAX_RESOLUTION || sequence->resolution == 0) { LOG_ERR("unsupported resolution %d", sequence->resolution); return -ENOTSUP; } if (find_msb_set(sequence->channels) > config->num_channels) { LOG_ERR("unsupported channels in mask: 0x%08x", sequence->channels); return -ENOTSUP; } err = adc_rpi_check_buffer_size(dev, sequence); if (err) { LOG_ERR("buffer size too small"); return err; } data->buf = sequence->buffer; adc_context_start_read(&data->ctx, sequence); return adc_context_wait_for_completion(&data->ctx); } /** * Interrupt handler */ static void adc_rpi_isr(const struct device *dev) { struct adc_rpi_data *data = dev->data; uint16_t result; uint8_t ainsel; /* Fetch result */ result = adc_get_result(); ainsel = adc_get_selected_input(); /* Drain FIFO */ while (!adc_fifo_is_empty()) { (void)adc_fifo_get(); } /* Abort converting if error detected. */ if (adc_get_err()) { adc_context_complete(&data->ctx, -EIO); return; } /* Copy to buffer and mark this channel as completed to channels bitmap. */ *data->buf++ = result; data->channels &= ~(BIT(ainsel)); /* Notify result if all data gathered. */ if (data->channels == 0) { adc_context_on_sampling_done(&data->ctx, dev); return; } /* Kick next channel conversion */ ainsel = (uint8_t)(find_lsb_set(data->channels) - 1); adc_select_input(ainsel); adc_start_once(); } static int adc_rpi_read_async(const struct device *dev, const struct adc_sequence *sequence, struct k_poll_signal *async) { struct adc_rpi_data *data = dev->data; int err; adc_context_lock(&data->ctx, async ? true : false, async); err = adc_rpi_start_read(dev, sequence); adc_context_release(&data->ctx, err); return err; } static int adc_rpi_read(const struct device *dev, const struct adc_sequence *sequence) { return adc_rpi_read_async(dev, sequence, NULL); } static void adc_context_start_sampling(struct adc_context *ctx) { struct adc_rpi_data *data = CONTAINER_OF(ctx, struct adc_rpi_data, ctx); data->channels = ctx->sequence.channels; data->repeat_buf = data->buf; adc_clear_errors(); /* Find next channel and start conversion */ adc_select_input(find_lsb_set(data->channels) - 1); adc_start_once(); } static void adc_context_update_buffer_pointer(struct adc_context *ctx, bool repeat_sampling) { struct adc_rpi_data *data = CONTAINER_OF(ctx, struct adc_rpi_data, ctx); if (repeat_sampling) { data->buf = data->repeat_buf; } } /** * @brief Function called on init for each RaspberryPi Pico ADC device. It setups all * channels to return constant 0 mV and create acquisition thread. * * @param dev RaspberryPi Pico ADC device * * @return 0 on success */ static int adc_rpi_init(const struct device *dev) { const struct adc_rpi_config *config = dev->config; struct adc_rpi_data *data = dev->data; int ret; ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } ret = clock_control_on(config->clk_dev, config->clk_id); if (ret < 0) { return ret; } ret = reset_line_toggle_dt(&config->reset); if (ret < 0) { return ret; } config->irq_configure(); /* * Configure the FIFO control register. * Set the threshold as 1 for getting notification immediately * on converting completed. */ adc_fifo_setup(true, false, 1, true, true); /* Set max speed to conversion */ adc_set_clkdiv(0.f); /* Enable ADC and wait becoming READY */ adc_enable(); /* Enable FIFO interrupt */ adc_irq_set_enabled(true); adc_context_unlock_unconditionally(&data->ctx); return 0; } #define IRQ_CONFIGURE_FUNC(idx) \ static void adc_rpi_configure_func_##idx(void) \ { \ IRQ_CONNECT(DT_INST_IRQN(idx), DT_INST_IRQ(idx, priority), \ adc_rpi_isr, DEVICE_DT_INST_GET(idx), 0); \ irq_enable(DT_INST_IRQN(idx)); \ } #define IRQ_CONFIGURE_DEFINE(idx) .irq_configure = adc_rpi_configure_func_##idx #define ADC_RPI_INIT(idx) \ IRQ_CONFIGURE_FUNC(idx) \ PINCTRL_DT_INST_DEFINE(idx); \ static struct adc_driver_api adc_rpi_api_##idx = { \ .channel_setup = adc_rpi_channel_setup, \ .read = adc_rpi_read, \ .ref_internal = DT_INST_PROP(idx, vref_mv), \ IF_ENABLED(CONFIG_ADC_ASYNC, (.read_async = adc_rpi_read_async,)) \ }; \ static const struct adc_rpi_config adc_rpi_config_##idx = { \ .num_channels = ADC_RPI_CHANNEL_NUM, \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(idx), \ .clk_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(idx)), \ .clk_id = (clock_control_subsys_t)DT_INST_PHA_BY_IDX(idx, clocks, 0, clk_id), \ .reset = RESET_DT_SPEC_INST_GET(idx), \ IRQ_CONFIGURE_DEFINE(idx), \ }; \ static struct adc_rpi_data adc_rpi_data_##idx = { \ ADC_CONTEXT_INIT_TIMER(adc_rpi_data_##idx, ctx), \ ADC_CONTEXT_INIT_LOCK(adc_rpi_data_##idx, ctx), \ ADC_CONTEXT_INIT_SYNC(adc_rpi_data_##idx, ctx), \ .dev = DEVICE_DT_INST_GET(idx), \ }; \ \ DEVICE_DT_INST_DEFINE(idx, adc_rpi_init, NULL, \ &adc_rpi_data_##idx, \ &adc_rpi_config_##idx, POST_KERNEL, \ CONFIG_ADC_INIT_PRIORITY, \ &adc_rpi_api_##idx) DT_INST_FOREACH_STATUS_OKAY(ADC_RPI_INIT);