/* * Copyright (c) 2020 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "efi.h" #include "printf.h" #include #include #define PUTCHAR_BUFSZ 128 /* EFI GUID for RSDP * See "Finding the RSDP on UEFI Enabled Systems" in ACPI specs. */ #define ACPI_1_0_RSDP_EFI_GUID \ { \ .Data1 = 0xeb9d2d30, \ .Data2 = 0x2d88, \ .Data3 = 0x11d3, \ .Data4 = { 0x9a, 0x16, 0x00, 0x90, 0x27, 0x3f, 0xc1, 0x4d }, \ } #define ACPI_2_0_RSDP_EFI_GUID \ { \ .Data1 = 0x8868e871, \ .Data2 = 0xe4f1, \ .Data3 = 0x11d3, \ .Data4 = { 0xbc, 0x22, 0x00, 0x80, 0xc7, 0x3c, 0x88, 0x81 }, \ } /* The linker places this dummy last in the data memory. We can't use * traditional linker address symbols because we're relocatable; the * linker doesn't know what the runtime address will be. The compiler * has to emit code to find this thing's address at runtime via an * offset from RIP. It's a qword so we can guarantee alignment of the * stuff after. */ static __attribute__((section(".runtime_data_end"))) uint64_t runtime_data_end[1] = { 0x1111aa8888aa1111L }; #define EXT_DATA_START ((void *) &runtime_data_end[1]) static struct efi_system_table *efi; static struct efi_boot_arg efi_arg; static void efi_putchar(int c) { static uint16_t efibuf[PUTCHAR_BUFSZ + 1]; static int n; if (c == '\n') { efi_putchar('\r'); } efibuf[n] = c; ++n; if (c == '\n' || n == PUTCHAR_BUFSZ) { efibuf[n] = 0U; efi->ConOut->OutputString(efi->ConOut, efibuf); n = 0; } } static inline bool efi_guid_compare(efi_guid_t *s1, efi_guid_t *s2) { return ((s1->Part1 == s2->Part1) && (s1->Part2 == s2->Part2)); } static void *efi_config_get_vendor_table_by_guid(efi_guid_t *guid) { struct efi_configuration_table *ect_tmp; int n_ct; if (efi == NULL) { return NULL; } ect_tmp = efi->ConfigurationTable; for (n_ct = 0; n_ct < efi->NumberOfTableEntries; n_ct++) { if (efi_guid_compare(&ect_tmp->VendorGuid, guid)) { return ect_tmp->VendorTable; } ect_tmp++; } return NULL; } static void efi_prepare_boot_arg(void) { efi_guid_t rsdp_guid_1 = ACPI_1_0_RSDP_EFI_GUID; efi_guid_t rsdp_guid_2 = ACPI_2_0_RSDP_EFI_GUID; /* Let's lookup for most recent ACPI table first */ efi_arg.acpi_rsdp = efi_config_get_vendor_table_by_guid(&rsdp_guid_2); if (efi_arg.acpi_rsdp == NULL) { efi_arg.acpi_rsdp = efi_config_get_vendor_table_by_guid(&rsdp_guid_1); } if (efi_arg.acpi_rsdp != NULL) { printf("RSDP found at %p\n", efi_arg.acpi_rsdp); } } /* Existing x86_64 EFI environments have a bad habit of leaving the * HPET timer running. This then fires later on, once the OS has * started. If the timing isn't right, it can happen before the OS * HPET driver gets a chance to disable it. And because we do the * handoff (necessarily) with interrupts disabled, it's not actually * possible for the OS to reliably disable it in time anyway. * * Basically: it's our job as the bootloader to ensure that no * interrupt sources are live before entering the OS. Clear the * interrupt enable bit of HPET timer zero. */ static void disable_hpet(void) { uint64_t *hpet = (uint64_t *)0xfed00000L; hpet[32] &= ~4; } /* FIXME: if you check the generated code, "ms_abi" calls like this * have to SPILL HALF OF THE SSE REGISTER SET TO THE STACK on entry * because of the way the conventions collide. Is there a way to * prevent/suppress that? */ uintptr_t __abi efi_entry(void *img_handle, struct efi_system_table *sys_tab) { (void)img_handle; efi = sys_tab; z_putchar = efi_putchar; printf("*** Zephyr EFI Loader ***\n"); efi_prepare_boot_arg(); for (int i = 0; i < sizeof(zefi_zsegs)/sizeof(zefi_zsegs[0]); i++) { int bytes = zefi_zsegs[i].sz; uint8_t *dst = (uint8_t *)zefi_zsegs[i].addr; printf("Zeroing %d bytes of memory at %p\n", bytes, dst); for (int j = 0; j < bytes; j++) { dst[j] = 0U; } } for (int i = 0; i < sizeof(zefi_dsegs)/sizeof(zefi_dsegs[0]); i++) { int bytes = zefi_dsegs[i].sz; int off = zefi_dsegs[i].off; uint8_t *dst = (uint8_t *)zefi_dsegs[i].addr; uint8_t *src = &((uint8_t *)EXT_DATA_START)[off]; printf("Copying %d data bytes to %p from image offset %d\n", bytes, dst, zefi_dsegs[i].off); for (int j = 0; j < bytes; j++) { dst[j] = src[j]; } /* Page-aligned blocks below 1M are the .locore * section, which has a jump in its first bytes for * the benefit of 32 bit entry. Those have to be * written over with NOP instructions. (See comment * about OUTRAGEOUS HACK in locore.S) before Zephyr * starts, because the very first thing it does is * install its own page table that disallows writes. */ if (((long)dst & 0xfff) == 0 && dst < (uint8_t *)0x100000L) { for (int i = 0; i < 8; i++) { dst[i] = 0x90; /* 0x90 == 1-byte NOP */ } } } unsigned char *code = (void *)zefi_entry; efi_arg.efi_systab = efi; __asm__ volatile("movq %%cr3, %0" : "=r"(efi_arg.efi_cr3)); printf("Jumping to Entry Point: %p (%x %x %x %x %x %x %x)\n", code, code[0], code[1], code[2], code[3], code[4], code[5], code[6]); disable_hpet(); /* The EFI console seems to be buffered, give it a little time * to drain before we start banging on the same UART from the * OS. */ for (volatile int i = 0; i < 50000000; i++) { } __asm__ volatile("cli; movq %0, %%rbx; jmp *%1" :: "r"(&efi_arg), "r"(code) : "rbx"); return 0; } /* Trick cribbed shamelessly from gnu-efi. We need to emit a ".reloc" * section into the image with a single dummy entry for the EFI loader * to think we're a valid PE file, gcc won't because it thinks we're * ELF. */ uint32_t relocation_dummy; __asm__(".section .reloc\n" "base_relocation_block:\n" ".long relocation_dummy - base_relocation_block\n" ".long 0x0a\n" ".word 0\n");