/* * Copyright (c) 2017, NXP * Copyright (c) 2020-2021 Vestas Wind Systems A/S * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT nxp_kinetis_ftm_pwm #include #include #include #include #include #include #include #include #include LOG_MODULE_REGISTER(pwm_mcux_ftm, CONFIG_PWM_LOG_LEVEL); #define MAX_CHANNELS ARRAY_SIZE(FTM0->CONTROLS) /* PWM capture operates on channel pairs */ #define MAX_CAPTURE_PAIRS (MAX_CHANNELS / 2U) #define PAIR_1ST_CH(pair) (pair * 2U) #define PAIR_2ND_CH(pair) (PAIR_1ST_CH(pair) + 1) struct mcux_ftm_config { FTM_Type *base; const struct device *clock_dev; clock_control_subsys_t clock_subsys; ftm_clock_source_t ftm_clock_source; ftm_clock_prescale_t prescale; uint8_t channel_count; ftm_pwm_mode_t mode; #ifdef CONFIG_PWM_CAPTURE void (*irq_config_func)(const struct device *dev); #endif /* CONFIG_PWM_CAPTURE */ const struct pinctrl_dev_config *pincfg; }; struct mcux_ftm_capture_data { ftm_dual_edge_capture_param_t param; pwm_capture_callback_handler_t callback; void *user_data; uint32_t first_edge_overflows; uint16_t first_edge_cnt; bool first_edge_overflow; bool pulse_capture; }; struct mcux_ftm_data { uint32_t clock_freq; uint32_t period_cycles; ftm_chnl_pwm_config_param_t channel[MAX_CHANNELS]; #ifdef CONFIG_PWM_CAPTURE uint32_t overflows; struct mcux_ftm_capture_data capture[MAX_CAPTURE_PAIRS]; #endif /* CONFIG_PWM_CAPTURE */ }; static int mcux_ftm_set_cycles(const struct device *dev, uint32_t channel, uint32_t period_cycles, uint32_t pulse_cycles, pwm_flags_t flags) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; status_t status; #ifdef CONFIG_PWM_CAPTURE uint32_t pair = channel / 2U; uint32_t irqs; #endif /* CONFIG_PWM_CAPTURE */ if (period_cycles == 0U) { LOG_ERR("Channel can not be set to inactive level"); return -ENOTSUP; } if (period_cycles > UINT16_MAX) { LOG_ERR("Period cycles must be less or equal than %u", UINT16_MAX); return -EINVAL; } if (channel >= config->channel_count) { LOG_ERR("Invalid channel"); return -ENOTSUP; } #ifdef CONFIG_PWM_CAPTURE irqs = FTM_GetEnabledInterrupts(config->base); if (irqs & BIT(PAIR_2ND_CH(pair))) { LOG_ERR("Cannot set PWM, capture in progress on pair %d", pair); return -EBUSY; } #endif /* CONFIG_PWM_CAPTURE */ data->channel[channel].dutyValue = pulse_cycles; if ((flags & PWM_POLARITY_INVERTED) == 0) { data->channel[channel].level = kFTM_HighTrue; } else { data->channel[channel].level = kFTM_LowTrue; } LOG_DBG("pulse_cycles=%d, period_cycles=%d, flags=%d", pulse_cycles, period_cycles, flags); if (period_cycles != data->period_cycles) { #ifdef CONFIG_PWM_CAPTURE if (irqs & BIT_MASK(ARRAY_SIZE(data->channel))) { LOG_ERR("Cannot change period, capture in progress"); return -EBUSY; } #endif /* CONFIG_PWM_CAPTURE */ if (data->period_cycles != 0) { /* Only warn when not changing from zero */ LOG_WRN("Changing period cycles from %d to %d" " affects all %d channels in %s", data->period_cycles, period_cycles, config->channel_count, dev->name); } data->period_cycles = period_cycles; FTM_StopTimer(config->base); FTM_SetTimerPeriod(config->base, period_cycles); FTM_SetSoftwareTrigger(config->base, true); FTM_StartTimer(config->base, config->ftm_clock_source); } status = FTM_SetupPwmMode(config->base, data->channel, config->channel_count, config->mode); if (status != kStatus_Success) { LOG_ERR("Could not set up pwm"); return -ENOTSUP; } FTM_SetSoftwareTrigger(config->base, true); return 0; } #ifdef CONFIG_PWM_CAPTURE static int mcux_ftm_configure_capture(const struct device *dev, uint32_t channel, pwm_flags_t flags, pwm_capture_callback_handler_t cb, void *user_data) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; ftm_dual_edge_capture_param_t *param; uint32_t pair = channel / 2U; if (channel & 0x1U) { LOG_ERR("PWM capture only supported on even channels"); return -ENOTSUP; } if (pair >= ARRAY_SIZE(data->capture)) { LOG_ERR("Invalid channel pair %d", pair); return -EINVAL; } if (FTM_GetEnabledInterrupts(config->base) & BIT(PAIR_2ND_CH(pair))) { LOG_ERR("Capture already active on channel pair %d", pair); return -EBUSY; } if (!(flags & PWM_CAPTURE_TYPE_MASK)) { LOG_ERR("No capture type specified"); return -EINVAL; } if ((flags & PWM_CAPTURE_TYPE_MASK) == PWM_CAPTURE_TYPE_BOTH) { LOG_ERR("Cannot capture both period and pulse width"); return -ENOTSUP; } data->capture[pair].callback = cb; data->capture[pair].user_data = user_data; param = &data->capture[pair].param; if ((flags & PWM_CAPTURE_MODE_MASK) == PWM_CAPTURE_MODE_CONTINUOUS) { param->mode = kFTM_Continuous; } else { param->mode = kFTM_OneShot; } if (flags & PWM_CAPTURE_TYPE_PERIOD) { data->capture[pair].pulse_capture = false; if (flags & PWM_POLARITY_INVERTED) { param->currChanEdgeMode = kFTM_FallingEdge; param->nextChanEdgeMode = kFTM_FallingEdge; } else { param->currChanEdgeMode = kFTM_RisingEdge; param->nextChanEdgeMode = kFTM_RisingEdge; } } else { data->capture[pair].pulse_capture = true; if (flags & PWM_POLARITY_INVERTED) { param->currChanEdgeMode = kFTM_FallingEdge; param->nextChanEdgeMode = kFTM_RisingEdge; } else { param->currChanEdgeMode = kFTM_RisingEdge; param->nextChanEdgeMode = kFTM_FallingEdge; } } return 0; } static int mcux_ftm_enable_capture(const struct device *dev, uint32_t channel) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; uint32_t pair = channel / 2U; if (channel & 0x1U) { LOG_ERR("PWM capture only supported on even channels"); return -ENOTSUP; } if (pair >= ARRAY_SIZE(data->capture)) { LOG_ERR("Invalid channel pair %d", pair); return -EINVAL; } if (!data->capture[pair].callback) { LOG_ERR("PWM capture not configured"); return -EINVAL; } if (FTM_GetEnabledInterrupts(config->base) & BIT(PAIR_2ND_CH(pair))) { LOG_ERR("Capture already active on channel pair %d", pair); return -EBUSY; } FTM_ClearStatusFlags(config->base, BIT(PAIR_1ST_CH(pair)) | BIT(PAIR_2ND_CH(pair))); FTM_SetupDualEdgeCapture(config->base, pair, &data->capture[pair].param, CONFIG_PWM_CAPTURE_MCUX_FTM_FILTER_VALUE); FTM_EnableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)) | BIT(PAIR_2ND_CH(pair))); return 0; } static int mcux_ftm_disable_capture(const struct device *dev, uint32_t channel) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; uint32_t pair = channel / 2U; if (channel & 0x1U) { LOG_ERR("PWM capture only supported on even channels"); return -ENOTSUP; } if (pair >= ARRAY_SIZE(data->capture)) { LOG_ERR("Invalid channel pair %d", pair); return -EINVAL; } FTM_DisableInterrupts(config->base, BIT(PAIR_1ST_CH(pair)) | BIT(PAIR_2ND_CH(pair))); /* Clear Dual Edge Capture Enable bit */ config->base->COMBINE &= ~(1UL << (FTM_COMBINE_DECAP0_SHIFT + (FTM_COMBINE_COMBINE1_SHIFT * pair))); return 0; } static void mcux_ftm_capture_first_edge(const struct device *dev, uint32_t channel, uint16_t cnt, bool overflow) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; struct mcux_ftm_capture_data *capture; uint32_t pair = channel / 2U; __ASSERT_NO_MSG(pair < ARRAY_SIZE(data->capture)); capture = &data->capture[pair]; FTM_DisableInterrupts(config->base, BIT(PAIR_1ST_CH(pair))); capture->first_edge_cnt = cnt; capture->first_edge_overflows = data->overflows; capture->first_edge_overflow = overflow; LOG_DBG("pair = %d, 1st cnt = %u, 1st ovf = %d", pair, cnt, overflow); } static void mcux_ftm_capture_second_edge(const struct device *dev, uint32_t channel, uint16_t cnt, bool overflow) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; uint32_t second_edge_overflows = data->overflows; struct mcux_ftm_capture_data *capture; uint32_t pair = channel / 2U; uint32_t overflows; uint32_t first_cnv; uint32_t second_cnv; uint32_t cycles = 0; int status = 0; __ASSERT_NO_MSG(pair < ARRAY_SIZE(data->capture)); capture = &data->capture[pair]; first_cnv = config->base->CONTROLS[PAIR_1ST_CH(pair)].CnV; second_cnv = config->base->CONTROLS[PAIR_2ND_CH(pair)].CnV; if (capture->pulse_capture) { /* Clear both edge flags for pulse capture to capture first edge overflow counter */ FTM_ClearStatusFlags(config->base, BIT(PAIR_1ST_CH(pair)) | BIT(PAIR_2ND_CH(pair))); } else { /* Only clear second edge flag for period capture as next first edge is this edge */ FTM_ClearStatusFlags(config->base, BIT(PAIR_2ND_CH(pair))); } if (unlikely(capture->first_edge_overflow && first_cnv > capture->first_edge_cnt)) { /* Compensate for the overflow registered in the same IRQ */ capture->first_edge_overflows--; } if (unlikely(overflow && second_cnv > cnt)) { /* Compensate for the overflow registered in the same IRQ */ second_edge_overflows--; } overflows = second_edge_overflows - capture->first_edge_overflows; /* Calculate cycles, check for overflows */ if (overflows > 0) { if (u32_mul_overflow(overflows, config->base->MOD, &cycles)) { LOG_ERR("overflow while calculating cycles"); status = -ERANGE; } else { cycles -= first_cnv; if (u32_add_overflow(cycles, second_cnv, &cycles)) { LOG_ERR("overflow while calculating cycles"); cycles = 0; status = -ERANGE; } } } else { cycles = second_cnv - first_cnv; } LOG_DBG("pair = %d, 1st ovfs = %u, 2nd ovfs = %u, ovfs = %u, 1st cnv = %u, " "2nd cnv = %u, cycles = %u, 2nd cnt = %u, 2nd ovf = %d", pair, capture->first_edge_overflows, second_edge_overflows, overflows, first_cnv, second_cnv, cycles, cnt, overflow); if (capture->pulse_capture) { capture->callback(dev, pair, 0, cycles, status, capture->user_data); } else { capture->callback(dev, pair, cycles, 0, status, capture->user_data); } if (capture->param.mode == kFTM_OneShot) { /* One-shot capture done */ FTM_DisableInterrupts(config->base, BIT(PAIR_2ND_CH(pair))); } else if (capture->pulse_capture) { /* Prepare for first edge of next pulse capture */ FTM_EnableInterrupts(config->base, BIT(PAIR_1ST_CH(pair))); } else { /* First edge of next period capture is second edge of this capture (this edge) */ capture->first_edge_cnt = cnt; capture->first_edge_overflows = second_edge_overflows; capture->first_edge_overflow = false; } } static bool mcux_ftm_handle_overflow(const struct device *dev) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; if (FTM_GetStatusFlags(config->base) & kFTM_TimeOverflowFlag) { data->overflows++; FTM_ClearStatusFlags(config->base, kFTM_TimeOverflowFlag); return true; } return false; } static void mcux_ftm_irq_handler(const struct device *dev, uint32_t chan_start, uint32_t chan_end) { const struct mcux_ftm_config *config = dev->config; bool overflow; uint32_t flags; uint32_t irqs; uint16_t cnt; uint32_t ch; flags = FTM_GetStatusFlags(config->base); irqs = FTM_GetEnabledInterrupts(config->base); cnt = config->base->CNT; overflow = mcux_ftm_handle_overflow(dev); for (ch = chan_start; ch < chan_end; ch++) { if ((flags & BIT(ch)) && (irqs & BIT(ch))) { if (ch & 1) { mcux_ftm_capture_second_edge(dev, ch, cnt, overflow); } else { mcux_ftm_capture_first_edge(dev, ch, cnt, overflow); } } } } #endif /* CONFIG_PWM_CAPTURE */ static int mcux_ftm_get_cycles_per_sec(const struct device *dev, uint32_t channel, uint64_t *cycles) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; *cycles = data->clock_freq >> config->prescale; return 0; } static int mcux_ftm_init(const struct device *dev) { const struct mcux_ftm_config *config = dev->config; struct mcux_ftm_data *data = dev->data; ftm_chnl_pwm_config_param_t *channel = data->channel; ftm_config_t ftm_config; int i; int err; err = pinctrl_apply_state(config->pincfg, PINCTRL_STATE_DEFAULT); if (err != 0) { return err; } if (config->channel_count > ARRAY_SIZE(data->channel)) { LOG_ERR("Invalid channel count"); return -EINVAL; } if (!device_is_ready(config->clock_dev)) { LOG_ERR("clock control device not ready"); return -ENODEV; } if (clock_control_get_rate(config->clock_dev, config->clock_subsys, &data->clock_freq)) { LOG_ERR("Could not get clock frequency"); return -EINVAL; } for (i = 0; i < config->channel_count; i++) { channel->chnlNumber = i; channel->level = kFTM_NoPwmSignal; channel->dutyValue = 0; channel->firstEdgeValue = 0; channel++; } FTM_GetDefaultConfig(&ftm_config); ftm_config.prescale = config->prescale; FTM_Init(config->base, &ftm_config); #ifdef CONFIG_PWM_CAPTURE config->irq_config_func(dev); FTM_EnableInterrupts(config->base, kFTM_TimeOverflowInterruptEnable); data->period_cycles = 0xFFFFU; FTM_SetTimerPeriod(config->base, data->period_cycles); FTM_SetSoftwareTrigger(config->base, true); FTM_StartTimer(config->base, config->ftm_clock_source); #endif /* CONFIG_PWM_CAPTURE */ return 0; } static const struct pwm_driver_api mcux_ftm_driver_api = { .set_cycles = mcux_ftm_set_cycles, .get_cycles_per_sec = mcux_ftm_get_cycles_per_sec, #ifdef CONFIG_PWM_CAPTURE .configure_capture = mcux_ftm_configure_capture, .enable_capture = mcux_ftm_enable_capture, .disable_capture = mcux_ftm_disable_capture, #endif /* CONFIG_PWM_CAPTURE */ }; #define TO_FTM_PRESCALE_DIVIDE(val) _DO_CONCAT(kFTM_Prescale_Divide_, val) #ifdef CONFIG_PWM_CAPTURE #if IS_EQ(DT_NUM_IRQS(DT_DRV_INST(0)), 1) static void mcux_ftm_isr(const struct device *dev) { const struct mcux_ftm_config *cfg = dev->config; mcux_ftm_irq_handler(dev, 0, cfg->channel_count); } #define FTM_CONFIG_FUNC(n) \ static void mcux_ftm_config_func_##n(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQN(n), DT_INST_IRQ(n, priority), \ mcux_ftm_isr, DEVICE_DT_INST_GET(n), 0); \ irq_enable(DT_INST_IRQN(n)); \ } #else /* Multiple interrupts */ #define FTM_ISR_FUNC_NAME(suffix) _DO_CONCAT(mcux_ftm_isr_, suffix) #define FTM_ISR_FUNC(chan_start, chan_end) \ static void mcux_ftm_isr_##chan_start##_##chan_end(const struct device *dev) \ { \ mcux_ftm_irq_handler(dev, chan_start, chan_end + 1); \ } #define FTM_ISR_CONFIG(node_id, prop, idx) \ do { \ IRQ_CONNECT(DT_IRQ_BY_IDX(node_id, idx, irq), \ DT_IRQ_BY_IDX(node_id, idx, priority), \ FTM_ISR_FUNC_NAME(DT_STRING_TOKEN_BY_IDX(node_id, prop, idx)), \ DEVICE_DT_GET(node_id), \ 0); \ irq_enable(DT_IRQ_BY_IDX(node_id, idx, irq)); \ } while (false); #define FTM_CONFIG_FUNC(n) \ static void mcux_ftm_config_func_##n(const struct device *dev) \ { \ DT_INST_FOREACH_PROP_ELEM(n, interrupt_names, FTM_ISR_CONFIG) \ } #if DT_INST_IRQ_HAS_NAME(0, overflow) static void mcux_ftm_isr_overflow(const struct device *dev) { mcux_ftm_handle_overflow(dev); } #endif #if DT_INST_IRQ_HAS_NAME(0, 0_1) FTM_ISR_FUNC(0, 1) #endif #if DT_INST_IRQ_HAS_NAME(0, 2_3) FTM_ISR_FUNC(2, 3) #endif #if DT_INST_IRQ_HAS_NAME(0, 4_5) FTM_ISR_FUNC(4, 5) #endif #if DT_INST_IRQ_HAS_NAME(0, 6_7) FTM_ISR_FUNC(6, 7) #endif #endif /* IS_EQ(DT_NUM_IRQS(DT_DRV_INST(0)), 1) */ #define FTM_CFG_CAPTURE_INIT(n) \ .irq_config_func = mcux_ftm_config_func_##n #define FTM_INIT_CFG(n) FTM_DECLARE_CFG(n, FTM_CFG_CAPTURE_INIT(n)) #else /* !CONFIG_PWM_CAPTURE */ #define FTM_CONFIG_FUNC(n) #define FTM_CFG_CAPTURE_INIT #define FTM_INIT_CFG(n) FTM_DECLARE_CFG(n, FTM_CFG_CAPTURE_INIT) #endif /* !CONFIG_PWM_CAPTURE */ #define FTM_DECLARE_CFG(n, CAPTURE_INIT) \ static const struct mcux_ftm_config mcux_ftm_config_##n = { \ .base = (FTM_Type *)DT_INST_REG_ADDR(n),\ .clock_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(n)), \ .clock_subsys = (clock_control_subsys_t) \ DT_INST_CLOCKS_CELL(n, name), \ .ftm_clock_source = kFTM_FixedClock, \ .prescale = TO_FTM_PRESCALE_DIVIDE(DT_INST_PROP(n, prescaler)),\ .channel_count = FSL_FEATURE_FTM_CHANNEL_COUNTn((FTM_Type *) \ DT_INST_REG_ADDR(n)), \ .mode = kFTM_EdgeAlignedPwm, \ .pincfg = PINCTRL_DT_INST_DEV_CONFIG_GET(n), \ CAPTURE_INIT \ } #define FTM_DEVICE(n) \ PINCTRL_DT_INST_DEFINE(n); \ static struct mcux_ftm_data mcux_ftm_data_##n; \ static const struct mcux_ftm_config mcux_ftm_config_##n; \ DEVICE_DT_INST_DEFINE(n, &mcux_ftm_init, \ NULL, &mcux_ftm_data_##n, \ &mcux_ftm_config_##n, \ POST_KERNEL, CONFIG_PWM_INIT_PRIORITY, \ &mcux_ftm_driver_api); \ FTM_CONFIG_FUNC(n) \ FTM_INIT_CFG(n); DT_INST_FOREACH_STATUS_OKAY(FTM_DEVICE)