/* * Copyright 2022 NXP * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #include #include #include #include #include "sd_utils.h" #include "sd_ops.h" LOG_MODULE_DECLARE(sd, CONFIG_SD_LOG_LEVEL); static inline void sdmmc_decode_scr(struct sd_scr *scr, uint32_t *raw_scr, uint8_t *version) { uint32_t tmp_version = 0; scr->flags = 0U; scr->scr_structure = (uint8_t)((raw_scr[0U] & 0xF0000000U) >> 28U); scr->sd_spec = (uint8_t)((raw_scr[0U] & 0xF000000U) >> 24U); if ((uint8_t)((raw_scr[0U] & 0x800000U) >> 23U)) { scr->flags |= SD_SCR_DATA_STATUS_AFTER_ERASE; } scr->sd_sec = (uint8_t)((raw_scr[0U] & 0x700000U) >> 20U); scr->sd_width = (uint8_t)((raw_scr[0U] & 0xF0000U) >> 16U); if ((uint8_t)((raw_scr[0U] & 0x8000U) >> 15U)) { scr->flags |= SD_SCR_SPEC3; } scr->sd_ext_sec = (uint8_t)((raw_scr[0U] & 0x7800U) >> 10U); scr->cmd_support = (uint8_t)(raw_scr[0U] & 0x3U); scr->rsvd = raw_scr[1U]; /* Get specification version. */ switch (scr->sd_spec) { case 0U: tmp_version = SD_SPEC_VER1_0; break; case 1U: tmp_version = SD_SPEC_VER1_1; break; case 2U: tmp_version = SD_SPEC_VER2_0; if (scr->flags & SD_SCR_SPEC3) { tmp_version = SD_SPEC_VER3_0; } break; default: break; } if (version && tmp_version) { *version = tmp_version; } } /* Helper to send SD app command */ static int sdmmc_app_command(struct sd_card *card, int relative_card_address) { return card_app_command(card, relative_card_address); } /* Reads OCR from SPI mode card using CMD58 */ static int sdmmc_spi_send_ocr(struct sd_card *card, uint32_t arg) { struct sdhc_command cmd; int ret; cmd.opcode = SD_SPI_READ_OCR; cmd.arg = arg; cmd.response_type = SD_SPI_RSP_TYPE_R3; ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { LOG_DBG("CMD58 failed: %d", ret); return ret; } card->ocr = cmd.response[1]; if (card->ocr == 0) { LOG_DBG("No OCR detected"); return -ENOTSUP; } return ret; } /* Sends OCR to card using ACMD41 */ static int sdmmc_send_ocr(struct sd_card *card, int ocr) { struct sdhc_command cmd; int ret; int retries; cmd.opcode = SD_APP_SEND_OP_COND; cmd.arg = ocr; cmd.response_type = (SD_RSP_TYPE_R3 | SD_SPI_RSP_TYPE_R1); cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; /* Send initialization ACMD41 */ for (retries = 0; retries < CONFIG_SD_OCR_RETRY_COUNT; retries++) { ret = sdmmc_app_command(card, 0U); if (ret == SD_RETRY) { /* Retry */ continue; } else if (ret) { return ret; } ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { /* OCR failed */ return ret; } if (ocr == 0) { /* Just probing, don't wait for card to exit busy state */ return 0; } /* * Check to see if card is busy with power up. PWR_BUSY * flag will be cleared when card finishes power up sequence */ if (card->host_props.is_spi) { if (!(cmd.response[0] & SD_SPI_R1IDLE_STATE)) { break; } } else { if ((cmd.response[0U] & SD_OCR_PWR_BUSY_FLAG)) { break; } } sd_delay(10); } if (retries >= CONFIG_SD_OCR_RETRY_COUNT) { /* OCR timed out */ LOG_ERR("Card never left busy state"); return -ETIMEDOUT; } LOG_DBG("SDMMC responded to ACMD41 after %d attempts", retries); if (!card->host_props.is_spi) { /* Save OCR */ card->ocr = cmd.response[0U]; } return 0; } /* Reads SD configuration register */ static int sdmmc_read_scr(struct sd_card *card) { struct sdhc_command cmd = {0}; struct sdhc_data data = {0}; /* Place SCR struct on stack to reduce flash usage */ struct sd_scr card_scr; int ret; /* DMA onto stack is unsafe, so we use an internal card buffer */ uint32_t *scr = (uint32_t *)card->card_buffer; uint32_t raw_scr[2]; ret = sdmmc_app_command(card, card->relative_addr); if (ret) { LOG_DBG("SD app command failed for SD SCR"); return ret; } cmd.opcode = SD_APP_SEND_SCR; cmd.arg = 0; cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; data.block_size = 8U; data.blocks = 1U; data.data = scr; data.timeout_ms = CONFIG_SD_DATA_TIMEOUT; ret = sdhc_request(card->sdhc, &cmd, &data); if (ret) { LOG_DBG("ACMD51 failed: %d", ret); return ret; } /* Decode SCR */ raw_scr[0] = sys_be32_to_cpu(scr[0]); raw_scr[1] = sys_be32_to_cpu(scr[1]); sdmmc_decode_scr(&card_scr, raw_scr, &card->sd_version); LOG_DBG("SD reports specification version %d", card->sd_version); /* Check card supported bus width */ if (card_scr.sd_width & 0x4U) { card->flags |= SD_4BITS_WIDTH; } /* Check if card supports speed class command (CMD20) */ if (card_scr.cmd_support & 0x1U) { card->flags |= SD_SPEED_CLASS_CONTROL_FLAG; } /* Check for set block count (CMD 23) support */ if (card_scr.cmd_support & 0x2U) { card->flags |= SD_CMD23_FLAG; } return 0; } /* Sets block length of SD card */ static int sdmmc_set_blocklen(struct sd_card *card, uint32_t block_len) { struct sdhc_command cmd = {0}; cmd.opcode = SD_SET_BLOCK_SIZE; cmd.arg = block_len; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); return sdhc_request(card->sdhc, &cmd, NULL); } /* * Sets bus width of host and card, following section 3.4 of * SD host controller specification */ static int sdmmc_set_bus_width(struct sd_card *card, enum sdhc_bus_width width) { struct sdhc_command cmd = {0}; int ret; /* * The specification strictly requires card interrupts to be masked, but * Linux does not do so, so we won't either. */ /* Send ACMD6 to change bus width */ ret = sdmmc_app_command(card, card->relative_addr); if (ret) { LOG_DBG("SD app command failed for ACMD6"); return ret; } cmd.opcode = SD_APP_SET_BUS_WIDTH; cmd.response_type = SD_RSP_TYPE_R1; cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; switch (width) { case SDHC_BUS_WIDTH1BIT: cmd.arg = 0U; break; case SDHC_BUS_WIDTH4BIT: cmd.arg = 2U; break; default: return -ENOTSUP; } /* Send app command */ ret = sdhc_request(card->sdhc, &cmd, NULL); if (ret) { LOG_DBG("Error on ACMD6: %d", ret); return ret; } ret = sd_check_response(&cmd); if (ret) { LOG_DBG("ACMD6 reports error, response 0x%x", cmd.response[0U]); return ret; } /* Card now has changed bus width. Change host bus width */ card->bus_io.bus_width = width; ret = sdhc_set_io(card->sdhc, &card->bus_io); if (ret) { LOG_DBG("Could not change host bus width"); } return ret; } /* * Sends SD switch function CMD6. * See table 4-32 in SD physical specification for argument details. * When setting a function, we should set the 4 bit block of the command * argument corresponding to that function to "value", and all other 4 bit * blocks should be left as 0xF (no effect on current function) */ static int sdmmc_switch(struct sd_card *card, enum sd_switch_arg mode, enum sd_group_num group, uint8_t value, uint8_t *response) { struct sdhc_command cmd = {0}; struct sdhc_data data = {0}; cmd.opcode = SD_SWITCH; cmd.arg = ((mode & 0x1) << 31) | 0x00FFFFFF; cmd.arg &= ~(0xFU << (group * 4)); cmd.arg |= (value & 0xF) << (group * 4); cmd.response_type = (SD_RSP_TYPE_R1 | SD_SPI_RSP_TYPE_R1); cmd.timeout_ms = CONFIG_SD_CMD_TIMEOUT; data.block_size = 64U; data.blocks = 1; data.data = response; data.timeout_ms = CONFIG_SD_DATA_TIMEOUT; return sdhc_request(card->sdhc, &cmd, &data); } static int sdmmc_read_switch(struct sd_card *card) { uint8_t *status; int ret; if (card->sd_version < SD_SPEC_VER1_1) { /* Switch not supported */ LOG_INF("SD spec 1.01 does not support CMD6"); return 0; } /* Use card internal buffer to read 64 byte switch data */ status = card->card_buffer; /* * Setting switch to zero will read card's support values, * otherwise known as SD "check function" */ ret = sdmmc_switch(card, SD_SWITCH_CHECK, 0, 0, status); if (ret) { LOG_DBG("CMD6 failed %d", ret); return ret; } /* * See table 4-11 and 4.3.10.4 of physical layer specification for * bit definitions. Note that response is big endian, so index 13 will * read bits 400-408. * Bit n being set in support bit field indicates support for function * number n on the card. (So 0x3 indicates support for functions 0 and 1) */ if (status[13] & HIGH_SPEED_BUS_SPEED) { card->switch_caps.hs_max_dtr = HS_MAX_DTR; } if (card->sd_version >= SD_SPEC_VER3_0) { card->switch_caps.bus_speed = status[13]; card->switch_caps.sd_drv_type = status[9]; card->switch_caps.sd_current_limit = status[7]; } return 0; } static inline void sdmmc_select_bus_speed(struct sd_card *card) { /* * Note that function support is defined using bitfields, but function * selection is defined using values 0x0-0xF. */ if (card->host_props.host_caps.sdr104_support && (card->switch_caps.bus_speed & UHS_SDR104_BUS_SPEED) && (card->host_props.f_max >= SD_CLOCK_208MHZ)) { card->card_speed = SD_TIMING_SDR104; } else if (card->host_props.host_caps.ddr50_support && (card->switch_caps.bus_speed & UHS_DDR50_BUS_SPEED) && (card->host_props.f_max >= SD_CLOCK_50MHZ)) { card->card_speed = SD_TIMING_DDR50; } else if (card->host_props.host_caps.sdr50_support && (card->switch_caps.bus_speed & UHS_SDR50_BUS_SPEED) && (card->host_props.f_max >= SD_CLOCK_100MHZ)) { card->card_speed = SD_TIMING_SDR50; } else if (card->host_props.host_caps.high_spd_support && (card->switch_caps.bus_speed & UHS_SDR12_BUS_SPEED) && (card->host_props.f_max >= SD_CLOCK_25MHZ)) { card->card_speed = SD_TIMING_SDR12; } } /* Selects driver type for SD card */ static int sdmmc_select_driver_type(struct sd_card *card) { int ret = 0; uint8_t *status = card->card_buffer; /* * We will only attempt to use driver type C over the default of type B, * since it should result in lower current consumption if supported. */ if (card->host_props.host_caps.drv_type_c_support && (card->switch_caps.sd_drv_type & SD_DRIVER_TYPE_C)) { card->bus_io.driver_type = SD_DRIVER_TYPE_C; /* Change drive strength */ ret = sdmmc_switch(card, SD_SWITCH_SET, SD_GRP_DRIVER_STRENGTH_MODE, (find_msb_set(SD_DRIVER_TYPE_C) - 1), status); } return ret; } /* Sets current limit for SD card */ static int sdmmc_set_current_limit(struct sd_card *card) { int ret; int max_current = -1; uint8_t *status = card->card_buffer; if ((card->card_speed != SD_TIMING_SDR50) && (card->card_speed != SD_TIMING_SDR104) && (card->card_speed != SD_TIMING_DDR50)) { return 0; /* Cannot set current limit */ } else if (card->host_props.max_current_180 >= 800 && (card->switch_caps.sd_current_limit & SD_MAX_CURRENT_800MA)) { max_current = SD_SET_CURRENT_800MA; } else if (card->host_props.max_current_180 >= 600 && (card->switch_caps.sd_current_limit & SD_MAX_CURRENT_600MA)) { max_current = SD_SET_CURRENT_600MA; } else if (card->host_props.max_current_180 >= 400 && (card->switch_caps.sd_current_limit & SD_MAX_CURRENT_400MA)) { max_current = SD_SET_CURRENT_400MA; } else if (card->host_props.max_current_180 >= 200 && (card->switch_caps.sd_current_limit & SD_MAX_CURRENT_200MA)) { max_current = SD_SET_CURRENT_200MA; } if (max_current != -1) { LOG_DBG("Changing SD current limit: %d", max_current); /* Switch SD current */ ret = sdmmc_switch(card, SD_SWITCH_SET, SD_GRP_CURRENT_LIMIT_MODE, max_current, status); if (ret) { LOG_DBG("Failed to set SD current limit"); return ret; } if (((status[15] >> 4) & 0x0F) != max_current) { /* Status response indicates card did not select request limit */ LOG_WRN("Card did not accept current limit"); } } return 0; } /* Applies selected card bus speed to card and host */ static int sdmmc_set_bus_speed(struct sd_card *card) { int ret; int timing = 0; uint8_t *status = card->card_buffer; switch (card->card_speed) { /* Set bus clock speed */ case SD_TIMING_SDR104: card->switch_caps.uhs_max_dtr = SD_CLOCK_208MHZ; timing = SDHC_TIMING_SDR104; break; case SD_TIMING_DDR50: card->switch_caps.uhs_max_dtr = SD_CLOCK_50MHZ; timing = SDHC_TIMING_DDR50; break; case SD_TIMING_SDR50: card->switch_caps.uhs_max_dtr = SD_CLOCK_100MHZ; timing = SDHC_TIMING_SDR50; break; case SD_TIMING_SDR25: card->switch_caps.uhs_max_dtr = SD_CLOCK_50MHZ; timing = SDHC_TIMING_SDR25; break; case SD_TIMING_SDR12: card->switch_caps.uhs_max_dtr = SD_CLOCK_25MHZ; timing = SDHC_TIMING_SDR12; break; default: /* No need to change bus speed */ return 0; } /* Switch bus speed */ ret = sdmmc_switch(card, SD_SWITCH_SET, SD_GRP_TIMING_MODE, card->card_speed, status); if (ret) { LOG_DBG("Failed to switch SD card speed"); return ret; } if ((status[16] & 0xF) != card->card_speed) { LOG_WRN("Card did not accept new speed"); } else { /* Change host bus speed */ card->bus_io.timing = timing; card->bus_io.clock = card->switch_caps.uhs_max_dtr; LOG_DBG("Setting bus clock to: %d", card->bus_io.clock); ret = sdhc_set_io(card->sdhc, &card->bus_io); if (ret) { LOG_ERR("Failed to change host bus speed"); return ret; } } return 0; } /* * Init UHS capable SD card. Follows figure 3-16 in physical layer specification. */ static int sdmmc_init_uhs(struct sd_card *card) { int ret; /* Raise bus width to 4 bits */ ret = sdmmc_set_bus_width(card, SDHC_BUS_WIDTH4BIT); if (ret) { LOG_ERR("Failed to change card bus width to 4 bits"); return ret; } /* Select bus speed for card depending on host and card capability*/ sdmmc_select_bus_speed(card); /* Now, set the driver strength for the card */ ret = sdmmc_select_driver_type(card); if (ret) { LOG_DBG("Failed to select new driver type"); return ret; } ret = sdmmc_set_current_limit(card); if (ret) { LOG_DBG("Failed to set card current limit"); return ret; } /* Apply the bus speed selected earlier */ ret = sdmmc_set_bus_speed(card); if (ret) { LOG_DBG("Failed to set card bus speed"); return ret; } if (card->card_speed == SD_TIMING_SDR50 || card->card_speed == SD_TIMING_SDR104 || card->card_speed == SD_TIMING_DDR50) { /* SDR104, SDR50, and DDR50 mode need tuning */ ret = sdhc_execute_tuning(card->sdhc); if (ret) { LOG_ERR("SD tuning failed: %d", ret); } } return ret; } /* Performs initialization for SD high speed cards */ static int sdmmc_init_hs(struct sd_card *card) { int ret; if ((!card->host_props.host_caps.high_spd_support) || (card->sd_version < SD_SPEC_VER1_1) || (card->switch_caps.hs_max_dtr == 0)) { /* No high speed support. Leave card untouched */ return 0; } card->card_speed = SD_TIMING_SDR25; ret = sdmmc_set_bus_speed(card); if (ret) { LOG_ERR("Failed to switch card to HS mode"); return ret; } if (card->flags & SD_4BITS_WIDTH) { /* Raise bus width to 4 bits */ ret = sdmmc_set_bus_width(card, SDHC_BUS_WIDTH4BIT); if (ret) { LOG_ERR("Failed to change card bus width to 4 bits"); return ret; } } return 0; } /* * Initializes SDMMC card. Note that the common SD function has already * sent CMD0 and CMD8 to the card at function entry. */ int sdmmc_card_init(struct sd_card *card) { int ret; uint32_t ocr_arg = 0U; /* First send a probing OCR */ if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) { /* Probe SPI card with CMD58*/ ret = sdmmc_spi_send_ocr(card, ocr_arg); } else if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { /* Probe Native card with ACMD41 */ ret = sdmmc_send_ocr(card, ocr_arg); } else { return -ENOTSUP; } if (ret) { return ret; } /* Card responded to ACMD41, type is SDMMC */ card->type = CARD_SDMMC; if (card->flags & SD_SDHC_FLAG) { if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { /* High capacity card. See if host supports 1.8V */ if (card->host_props.host_caps.vol_180_support) { ocr_arg |= SD_OCR_SWITCH_18_REQ_FLAG; } } /* Set host high capacity support flag */ ocr_arg |= SD_OCR_HOST_CAP_FLAG; } if (IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { /* Set voltage window */ if (card->host_props.host_caps.vol_300_support) { ocr_arg |= SD_OCR_VDD29_30FLAG; } ocr_arg |= (SD_OCR_VDD32_33FLAG | SD_OCR_VDD33_34FLAG); } /* Momentary delay before initialization OCR. Some cards will * never leave busy state if init OCR is sent too soon after * probing OCR */ k_busy_wait(100); /* Send SD OCR to card to initialize it */ ret = sdmmc_send_ocr(card, ocr_arg); if (ret) { LOG_ERR("Failed to query card OCR"); return ret; } if (card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_SPI_MODE)) { /* Send second CMD58 to get CCS bit */ ret = sdmmc_spi_send_ocr(card, ocr_arg); if (ret) { return ret; } } /* Check SD high capacity and 1.8V support flags */ if (card->ocr & SD_OCR_CARD_CAP_FLAG) { card->flags |= SD_HIGH_CAPACITY_FLAG; } if (card->ocr & SD_OCR_SWITCH_18_ACCEPT_FLAG) { LOG_DBG("Card supports 1.8V signaling"); card->flags |= SD_1800MV_FLAG; } /* Check OCR voltage window */ if (card->ocr & SD_OCR_VDD29_30FLAG) { card->flags |= SD_3000MV_FLAG; } /* * If card is high capacity (SDXC or SDHC), and supports 1.8V signaling, * switch to new signal voltage using "signal voltage switch procedure" * described in SD specification */ if ((card->flags & SD_1800MV_FLAG) && (card->host_props.host_caps.vol_180_support) && (!card->host_props.is_spi) && IS_ENABLED(CONFIG_SD_UHS_PROTOCOL)) { ret = sdmmc_switch_voltage(card); if (ret) { /* Disable host support for 1.8 V */ card->host_props.host_caps.vol_180_support = false; /* * The host or SD card may have already switched to * 1.8V. Return SD_RESTART to indicate * negotiation should be restarted. */ card->status = CARD_ERROR; return SD_RESTART; } } /* Read the card's CID (card identification register) */ ret = card_read_cid(card); if (ret) { return ret; } if (!card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { /* * Request new relative card address. This moves the card from * identification mode to data transfer mode */ ret = sdmmc_request_rca(card); if (ret) { return ret; } } /* Card has entered data transfer mode. Get card specific data register */ ret = sdmmc_read_csd(card); if (ret) { return ret; } if (!card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { /* Move the card to transfer state (with CMD7) to run remaining commands */ ret = sdmmc_select_card(card); if (ret) { return ret; } } /* * With card in data transfer state, we can set SD clock to maximum * frequency for non high speed mode (25Mhz) */ if (card->host_props.f_max < SD_CLOCK_25MHZ) { LOG_INF("Maximum SD clock is under 25MHz, using clock of %dHz", card->host_props.f_max); card->bus_io.clock = card->host_props.f_max; } else { card->bus_io.clock = SD_CLOCK_25MHZ; } ret = sdhc_set_io(card->sdhc, &card->bus_io); if (ret) { LOG_ERR("Failed to raise bus frequency to 25MHz"); return ret; } /* Read SD SCR (SD configuration register), * to get supported bus width */ ret = sdmmc_read_scr(card); if (ret) { return ret; } /* Read switch capabilities to determine what speeds card supports */ if (!card->host_props.is_spi && IS_ENABLED(CONFIG_SDHC_SUPPORTS_NATIVE_MODE)) { ret = sdmmc_read_switch(card); if (ret) { LOG_ERR("Failed to read card functions"); return ret; } } if ((card->flags & SD_1800MV_FLAG) && sdmmc_host_uhs(&card->host_props) && !(card->host_props.is_spi) && IS_ENABLED(CONFIG_SD_UHS_PROTOCOL)) { ret = sdmmc_init_uhs(card); if (ret) { LOG_ERR("UHS card init failed"); } } else { if ((card->flags & SD_HIGH_CAPACITY_FLAG) == 0) { /* Standard capacity SDSC card. set block length to 512 */ ret = sdmmc_set_blocklen(card, SDMMC_DEFAULT_BLOCK_SIZE); if (ret) { LOG_ERR("Could not set SD blocklen to 512"); return ret; } card->block_size = 512; } /* Card is not UHS. Try to use high speed mode */ ret = sdmmc_init_hs(card); if (ret) { LOG_ERR("HS card init failed"); } } return ret; } int sdmmc_ioctl(struct sd_card *card, uint8_t cmd, void *buf) { return card_ioctl(card, cmd, buf); } int sdmmc_read_blocks(struct sd_card *card, uint8_t *rbuf, uint32_t start_block, uint32_t num_blocks) { return card_read_blocks(card, rbuf, start_block, num_blocks); } int sdmmc_write_blocks(struct sd_card *card, const uint8_t *wbuf, uint32_t start_block, uint32_t num_blocks) { return card_write_blocks(card, wbuf, start_block, num_blocks); }