/* * Copyright (c) 2022 Schlumberger * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT infineon_xmc4xxx_spi #define LOG_LEVEL CONFIG_SPI_LOG_LEVEL #include LOG_MODULE_REGISTER(spi_xmc4xxx); #include "spi_context.h" #include #include #include #include #include #define USIC_IRQ_MIN 84 #define USIC_IRQ_MAX 101 #define IRQS_PER_USIC 6 #define SPI_XMC4XXX_DMA_ERROR_FLAG BIT(0) #define SPI_XMC4XXX_DMA_RX_DONE_FLAG BIT(1) #define SPI_XMC4XXX_DMA_TX_DONE_FLAG BIT(2) #ifdef CONFIG_SPI_XMC4XXX_DMA static const uint8_t __aligned(4) tx_dummy_data; #endif struct spi_xmc4xxx_config { XMC_USIC_CH_t *spi; const struct pinctrl_dev_config *pcfg; uint8_t miso_src; #if defined(CONFIG_SPI_XMC4XXX_INTERRUPT) void (*irq_config_func)(const struct device *dev); #endif #if defined(CONFIG_SPI_XMC4XXX_DMA) uint8_t irq_num_tx; uint8_t irq_num_rx; #endif }; #ifdef CONFIG_SPI_XMC4XXX_DMA struct spi_xmc4xxx_dma_stream { const struct device *dev_dma; uint32_t dma_channel; struct dma_config dma_cfg; struct dma_block_config blk_cfg; }; #endif struct spi_xmc4xxx_data { struct spi_context ctx; #if defined(CONFIG_SPI_XMC4XXX_DMA) struct spi_xmc4xxx_dma_stream dma_rx; struct spi_xmc4xxx_dma_stream dma_tx; struct k_sem status_sem; uint8_t dma_status_flags; uint8_t dma_completion_flags; uint8_t service_request_tx; uint8_t service_request_rx; #endif }; #if defined(CONFIG_SPI_XMC4XXX_DMA) static void spi_xmc4xxx_dma_callback(const struct device *dev_dma, void *arg, uint32_t dma_channel, int status) { struct spi_xmc4xxx_data *data = arg; if (status != 0) { LOG_ERR("DMA callback error on channel %d.", dma_channel); data->dma_status_flags |= SPI_XMC4XXX_DMA_ERROR_FLAG; } else { if (dev_dma == data->dma_tx.dev_dma && dma_channel == data->dma_tx.dma_channel) { data->dma_status_flags |= SPI_XMC4XXX_DMA_TX_DONE_FLAG; } else if (dev_dma == data->dma_rx.dev_dma && dma_channel == data->dma_rx.dma_channel) { data->dma_status_flags |= SPI_XMC4XXX_DMA_RX_DONE_FLAG; } else { LOG_ERR("DMA callback channel %d is not valid.", dma_channel); data->dma_status_flags |= SPI_XMC4XXX_DMA_ERROR_FLAG; } } k_sem_give(&data->status_sem); } #endif static void spi_xmc4xxx_flush_rx(XMC_USIC_CH_t *spi) { uint32_t recv_status; recv_status = XMC_USIC_CH_GetReceiveBufferStatus(spi); if (recv_status & USIC_CH_RBUFSR_RDV0_Msk) { XMC_SPI_CH_GetReceivedData(spi); } if (recv_status & USIC_CH_RBUFSR_RDV1_Msk) { XMC_SPI_CH_GetReceivedData(spi); } } static void spi_xmc4xxx_shift_frames(const struct device *dev) { struct spi_xmc4xxx_data *data = dev->data; const struct spi_xmc4xxx_config *config = dev->config; struct spi_context *ctx = &data->ctx; uint8_t tx_data = 0; uint8_t rx_data; uint32_t status; if (spi_context_tx_buf_on(ctx)) { tx_data = ctx->tx_buf[0]; } XMC_SPI_CH_ClearStatusFlag(config->spi, XMC_SPI_CH_STATUS_FLAG_TRANSMIT_SHIFT_INDICATION | XMC_SPI_CH_STATUS_FLAG_RECEIVE_INDICATION | XMC_SPI_CH_STATUS_FLAG_ALTERNATIVE_RECEIVE_INDICATION); XMC_SPI_CH_Transmit(config->spi, tx_data, XMC_SPI_CH_MODE_STANDARD); spi_context_update_tx(ctx, 1, 1); #if defined(CONFIG_SPI_XMC4XXX_INTERRUPT) return; #endif /* Wait to finish transmitting */ while (1) { status = XMC_SPI_CH_GetStatusFlag(config->spi); if (status & XMC_SPI_CH_STATUS_FLAG_TRANSMIT_SHIFT_INDICATION) { break; } } /* Wait to finish receiving */ while (1) { status = XMC_SPI_CH_GetStatusFlag(config->spi); if (status & (XMC_SPI_CH_STATUS_FLAG_RECEIVE_INDICATION | XMC_SPI_CH_STATUS_FLAG_ALTERNATIVE_RECEIVE_INDICATION)) { break; } } rx_data = XMC_SPI_CH_GetReceivedData(config->spi); if (spi_context_rx_buf_on(ctx)) { *ctx->rx_buf = rx_data; } spi_context_update_rx(ctx, 1, 1); } #if defined(CONFIG_SPI_XMC4XXX_INTERRUPT) static void spi_xmc4xxx_isr(const struct device *dev) { struct spi_xmc4xxx_data *data = dev->data; const struct spi_xmc4xxx_config *config = dev->config; struct spi_context *ctx = &data->ctx; uint8_t rx_data; rx_data = XMC_SPI_CH_GetReceivedData(config->spi); if (spi_context_rx_buf_on(ctx)) { *ctx->rx_buf = rx_data; } spi_context_update_rx(ctx, 1, 1); if (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) { spi_xmc4xxx_shift_frames(dev); return; } if (!(ctx->config->operation & SPI_HOLD_ON_CS)) { spi_context_cs_control(ctx, false); } spi_context_complete(ctx, dev, 0); } #endif #define LOOPBACK_SRC 6 static int spi_xmc4xxx_configure(const struct device *dev, const struct spi_config *spi_cfg) { int ret; struct spi_xmc4xxx_data *data = dev->data; const struct spi_xmc4xxx_config *config = dev->config; struct spi_context *ctx = &data->ctx; uint16_t settings = spi_cfg->operation; bool CPOL = SPI_MODE_GET(settings) & SPI_MODE_CPOL; bool CPHA = SPI_MODE_GET(settings) & SPI_MODE_CPHA; XMC_SPI_CH_CONFIG_t usic_cfg = {.baudrate = spi_cfg->frequency}; XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_t clock_settings; if (spi_context_configured(ctx, spi_cfg)) { return 0; } ctx->config = spi_cfg; if (spi_cfg->operation & SPI_HALF_DUPLEX) { LOG_ERR("Half-duplex not supported"); return -ENOTSUP; } if (spi_cfg->operation & SPI_OP_MODE_SLAVE) { LOG_ERR("Slave mode not supported"); return -ENOTSUP; } if (SPI_WORD_SIZE_GET(spi_cfg->operation) != 8) { LOG_ERR("Only 8 bit word size is supported"); return -ENOTSUP; } ret = XMC_SPI_CH_Stop(config->spi); if (ret != XMC_SPI_CH_STATUS_OK) { return -EBUSY; } XMC_SPI_CH_Init(config->spi, &usic_cfg); XMC_SPI_CH_Start(config->spi); if (SPI_MODE_GET(settings) & SPI_MODE_LOOP) { XMC_SPI_CH_SetInputSource(config->spi, XMC_SPI_CH_INPUT_DIN0, LOOPBACK_SRC); } else { XMC_SPI_CH_SetInputSource(config->spi, XMC_SPI_CH_INPUT_DIN0, config->miso_src); } if (!CPOL && !CPHA) { clock_settings = XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_0_DELAY_ENABLED; } else if (!CPOL && CPHA) { clock_settings = XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_0_DELAY_DISABLED; } else if (CPOL && !CPHA) { clock_settings = XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_1_DELAY_ENABLED; } else if (CPOL && CPHA) { clock_settings = XMC_SPI_CH_BRG_SHIFT_CLOCK_PASSIVE_LEVEL_1_DELAY_DISABLED; } XMC_SPI_CH_ConfigureShiftClockOutput(config->spi, clock_settings, XMC_SPI_CH_BRG_SHIFT_CLOCK_OUTPUT_SCLK); if (settings & SPI_TRANSFER_LSB) { XMC_SPI_CH_SetBitOrderLsbFirst(config->spi); } else { XMC_SPI_CH_SetBitOrderMsbFirst(config->spi); } XMC_SPI_CH_SetWordLength(config->spi, 8); return 0; } static int spi_xmc4xxx_transceive(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { struct spi_xmc4xxx_data *data = dev->data; const struct spi_xmc4xxx_config *config = dev->config; struct spi_context *ctx = &data->ctx; int ret; if (!tx_bufs && !rx_bufs) { return 0; } #ifndef CONFIG_SPI_XMC4XXX_INTERRUPT if (asynchronous) { return -ENOTSUP; } #endif spi_context_lock(ctx, asynchronous, cb, userdata, spi_cfg); ret = spi_xmc4xxx_configure(dev, spi_cfg); if (ret) { LOG_DBG("SPI config on device %s failed", dev->name); spi_context_release(ctx, ret); return ret; } spi_xmc4xxx_flush_rx(config->spi); spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(ctx, true); #if defined(CONFIG_SPI_XMC4XXX_INTERRUPT) XMC_SPI_CH_EnableEvent(config->spi, XMC_SPI_CH_EVENT_STANDARD_RECEIVE | XMC_SPI_CH_EVENT_ALTERNATIVE_RECEIVE); spi_xmc4xxx_shift_frames(dev); ret = spi_context_wait_for_completion(ctx); /* cs released in isr */ #else while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) { spi_xmc4xxx_shift_frames(dev); } if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) { spi_context_cs_control(ctx, false); } #endif spi_context_release(ctx, ret); return ret; } #if defined(CONFIG_SPI_ASYNC) static int spi_xmc4xxx_transceive_async(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, spi_callback_t cb, void *userdata) { return spi_xmc4xxx_transceive(dev, spi_cfg, tx_bufs, rx_bufs, true, cb, userdata); } #endif #if defined(CONFIG_SPI_XMC4XXX_DMA) static int spi_xmc4xxx_dma_rx_tx_done(struct spi_xmc4xxx_data *data) { for (;;) { int ret; ret = k_sem_take(&data->status_sem, K_MSEC(CONFIG_SPI_XMC4XXX_DMA_TIMEOUT_MSEC)); if (ret != 0) { LOG_ERR("Sem take error %d", ret); return ret; } if (data->dma_status_flags & SPI_XMC4XXX_DMA_ERROR_FLAG) { return -EIO; } if (data->dma_status_flags == data->dma_completion_flags) { return 0; } } } static int spi_xmc4xxx_transceive_dma(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs, bool asynchronous, spi_callback_t cb, void *userdata) { struct spi_xmc4xxx_data *data = dev->data; const struct spi_xmc4xxx_config *config = dev->config; struct spi_context *ctx = &data->ctx; struct spi_xmc4xxx_dma_stream *dma_tx = &data->dma_tx; struct spi_xmc4xxx_dma_stream *dma_rx = &data->dma_rx; int ret; if (!tx_bufs && !rx_bufs) { return 0; } if (asynchronous) { return -ENOTSUP; } spi_context_lock(ctx, asynchronous, cb, userdata, spi_cfg); k_sem_reset(&data->status_sem); ret = spi_xmc4xxx_configure(dev, spi_cfg); if (ret) { LOG_ERR("SPI config on device %s failed", dev->name); spi_context_release(ctx, ret); return ret; } /* stop async isr from triggering */ irq_disable(config->irq_num_rx); spi_context_buffers_setup(ctx, tx_bufs, rx_bufs, 1); spi_context_cs_control(ctx, true); while (spi_context_tx_on(ctx) || spi_context_rx_on(ctx)) { int dma_len; uint8_t dma_completion_flags = SPI_XMC4XXX_DMA_TX_DONE_FLAG; /* make sure the tx is not transmitting */ while (XMC_USIC_CH_GetTransmitBufferStatus(config->spi) == XMC_USIC_CH_TBUF_STATUS_BUSY) { }; if (data->ctx.rx_len == 0) { dma_len = data->ctx.tx_len; } else if (data->ctx.tx_len == 0) { dma_len = data->ctx.rx_len; } else { dma_len = MIN(data->ctx.tx_len, data->ctx.rx_len); } if (ctx->rx_buf) { spi_xmc4xxx_flush_rx(config->spi); dma_rx->blk_cfg.dest_address = (uint32_t)ctx->rx_buf; dma_rx->blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_INCREMENT; dma_rx->blk_cfg.block_size = dma_len; dma_rx->blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; ret = dma_config(dma_rx->dev_dma, dma_rx->dma_channel, &dma_rx->dma_cfg); if (ret < 0) { break; } XMC_SPI_CH_EnableEvent(config->spi, XMC_SPI_CH_EVENT_STANDARD_RECEIVE | XMC_SPI_CH_EVENT_ALTERNATIVE_RECEIVE); dma_completion_flags |= SPI_XMC4XXX_DMA_RX_DONE_FLAG; ret = dma_start(dma_rx->dev_dma, dma_rx->dma_channel); if (ret < 0) { break; } } else { XMC_SPI_CH_DisableEvent(config->spi, XMC_SPI_CH_EVENT_STANDARD_RECEIVE | XMC_SPI_CH_EVENT_ALTERNATIVE_RECEIVE); } if (ctx->tx_buf) { dma_tx->blk_cfg.source_address = (uint32_t)ctx->tx_buf; dma_tx->blk_cfg.source_addr_adj = DMA_ADDR_ADJ_INCREMENT; } else { dma_tx->blk_cfg.source_address = (uint32_t)&tx_dummy_data; dma_tx->blk_cfg.source_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; } dma_tx->blk_cfg.block_size = dma_len; ret = dma_config(dma_tx->dev_dma, dma_tx->dma_channel, &dma_tx->dma_cfg); if (ret < 0) { break; } data->dma_status_flags = 0; data->dma_completion_flags = dma_completion_flags; XMC_SPI_CH_EnableEvent(config->spi, XMC_SPI_CH_EVENT_RECEIVE_START); XMC_USIC_CH_TriggerServiceRequest(config->spi, data->service_request_tx); ret = dma_start(dma_tx->dev_dma, dma_tx->dma_channel); if (ret < 0) { break; } ret = spi_xmc4xxx_dma_rx_tx_done(data); if (ret) { break; } spi_context_update_tx(ctx, 1, dma_len); spi_context_update_rx(ctx, 1, dma_len); } if (ret < 0) { dma_stop(dma_tx->dev_dma, dma_tx->dma_channel); dma_stop(dma_rx->dev_dma, dma_rx->dma_channel); } if (!(spi_cfg->operation & SPI_HOLD_ON_CS)) { spi_context_cs_control(ctx, false); } irq_enable(config->irq_num_rx); spi_context_release(ctx, ret); return ret; } #endif static int spi_xmc4xxx_transceive_sync(const struct device *dev, const struct spi_config *spi_cfg, const struct spi_buf_set *tx_bufs, const struct spi_buf_set *rx_bufs) { #if defined(CONFIG_SPI_XMC4XXX_DMA) struct spi_xmc4xxx_data *data = dev->data; if (data->dma_tx.dev_dma != NULL && data->dma_rx.dev_dma != NULL) { return spi_xmc4xxx_transceive_dma(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } #endif return spi_xmc4xxx_transceive(dev, spi_cfg, tx_bufs, rx_bufs, false, NULL, NULL); } static int spi_xmc4xxx_release(const struct device *dev, const struct spi_config *config) { struct spi_xmc4xxx_data *data = dev->data; if (!spi_context_configured(&data->ctx, config)) { return -EINVAL; } spi_context_unlock_unconditionally(&data->ctx); return 0; } #if defined(CONFIG_SPI_XMC4XXX_DMA) static void spi_xmc4xxx_configure_rx_service_requests(const struct device *dev) { const struct spi_xmc4xxx_config *config = dev->config; struct spi_xmc4xxx_data *data = dev->data; __ASSERT(config->irq_num_rx >= USIC_IRQ_MIN && config->irq_num_rx <= USIC_IRQ_MAX, "Invalid irq number\n"); data->service_request_rx = (config->irq_num_rx - USIC_IRQ_MIN) % IRQS_PER_USIC; XMC_SPI_CH_SelectInterruptNodePointer(config->spi, XMC_SPI_CH_INTERRUPT_NODE_POINTER_RECEIVE, data->service_request_rx); XMC_SPI_CH_SelectInterruptNodePointer(config->spi, XMC_SPI_CH_INTERRUPT_NODE_POINTER_ALTERNATE_RECEIVE, data->service_request_rx); } static void spi_xmc4xxx_configure_tx_service_requests(const struct device *dev) { const struct spi_xmc4xxx_config *config = dev->config; struct spi_xmc4xxx_data *data = dev->data; __ASSERT(config->irq_num_tx >= USIC_IRQ_MIN && config->irq_num_tx <= USIC_IRQ_MAX, "Invalid irq number\n"); data->service_request_tx = (config->irq_num_tx - USIC_IRQ_MIN) % IRQS_PER_USIC; XMC_USIC_CH_SetInterruptNodePointer(config->spi, XMC_USIC_CH_INTERRUPT_NODE_POINTER_TRANSMIT_BUFFER, data->service_request_tx); } #endif static int spi_xmc4xxx_init(const struct device *dev) { struct spi_xmc4xxx_data *data = dev->data; const struct spi_xmc4xxx_config *config = dev->config; int ret; XMC_USIC_CH_Enable(config->spi); spi_context_unlock_unconditionally(&data->ctx); #if defined(CONFIG_SPI_XMC4XXX_INTERRUPT) config->irq_config_func(dev); #endif #if defined(CONFIG_SPI_XMC4XXX_DMA) spi_xmc4xxx_configure_tx_service_requests(dev); spi_xmc4xxx_configure_rx_service_requests(dev); if (data->dma_rx.dev_dma != NULL) { if (!device_is_ready(data->dma_rx.dev_dma)) { return -ENODEV; } data->dma_rx.blk_cfg.source_address = (uint32_t)&config->spi->RBUF; data->dma_rx.dma_cfg.head_block = &data->dma_rx.blk_cfg; data->dma_rx.dma_cfg.user_data = (void *)data; } if (data->dma_tx.dev_dma != NULL) { if (!device_is_ready(data->dma_tx.dev_dma)) { return -ENODEV; } data->dma_tx.blk_cfg.dest_address = (uint32_t)&config->spi->TBUF[XMC_SPI_CH_MODE_STANDARD]; data->dma_tx.blk_cfg.dest_addr_adj = DMA_ADDR_ADJ_NO_CHANGE; data->dma_tx.dma_cfg.head_block = &data->dma_tx.blk_cfg; data->dma_tx.dma_cfg.user_data = (void *)data; } k_sem_init(&data->status_sem, 0, 2); #endif ret = pinctrl_apply_state(config->pcfg, PINCTRL_STATE_DEFAULT); if (ret < 0) { return ret; } XMC_SPI_CH_SetInputSource(config->spi, XMC_SPI_CH_INPUT_DIN0, config->miso_src); spi_context_cs_configure_all(&data->ctx); return 0; } static const struct spi_driver_api spi_xmc4xxx_driver_api = { .transceive = spi_xmc4xxx_transceive_sync, #if defined(CONFIG_SPI_ASYNC) .transceive_async = spi_xmc4xxx_transceive_async, #endif .release = spi_xmc4xxx_release, }; #if defined(CONFIG_SPI_XMC4XXX_DMA) #define SPI_DMA_CHANNEL_INIT(index, dir, ch_dir, src_burst, dst_burst) \ .dev_dma = DEVICE_DT_GET(DT_INST_DMAS_CTLR_BY_NAME(index, dir)), \ .dma_channel = DT_INST_DMAS_CELL_BY_NAME(index, dir, channel), \ .dma_cfg = { \ .dma_slot = DT_INST_DMAS_CELL_BY_NAME(index, dir, config), \ .channel_direction = ch_dir, \ .channel_priority = DT_INST_DMAS_CELL_BY_NAME(index, dir, priority), \ .source_data_size = 1, \ .dest_data_size = 1, \ .source_burst_length = src_burst, \ .dest_burst_length = dst_burst, \ .block_count = 1, \ .dma_callback = spi_xmc4xxx_dma_callback, \ .complete_callback_en = true, \ }, #define SPI_DMA_CHANNEL(index, dir, ch_dir, src_burst, dst_burst) \ .dma_##dir = {COND_CODE_1( \ DT_INST_DMAS_HAS_NAME(index, dir), \ (SPI_DMA_CHANNEL_INIT(index, dir, ch_dir, src_burst, dst_burst)), (NULL))}, #else #define SPI_DMA_CHANNEL(index, dir, ch_dir, src_burst, dst_burst) #endif #if defined(CONFIG_SPI_XMC4XXX_INTERRUPT) #define XMC4XXX_IRQ_HANDLER_INIT(index) \ static void spi_xmc4xxx_irq_setup_##index(const struct device *dev) \ { \ const struct spi_xmc4xxx_config *config = dev->config; \ uint8_t service_request; \ uint8_t irq_num; \ \ irq_num = DT_INST_IRQ_BY_NAME(index, rx, irq); \ service_request = (irq_num - USIC_IRQ_MIN) % IRQS_PER_USIC; \ \ XMC_SPI_CH_SelectInterruptNodePointer( \ config->spi, XMC_SPI_CH_INTERRUPT_NODE_POINTER_RECEIVE, service_request); \ XMC_SPI_CH_SelectInterruptNodePointer( \ config->spi, XMC_SPI_CH_INTERRUPT_NODE_POINTER_ALTERNATE_RECEIVE, \ service_request); \ \ XMC_SPI_CH_EnableEvent(config->spi, XMC_SPI_CH_EVENT_STANDARD_RECEIVE | \ XMC_SPI_CH_EVENT_ALTERNATIVE_RECEIVE); \ \ IRQ_CONNECT(DT_INST_IRQ_BY_NAME(index, rx, irq), \ DT_INST_IRQ_BY_NAME(index, rx, priority), spi_xmc4xxx_isr, \ DEVICE_DT_INST_GET(index), 0); \ \ irq_enable(irq_num); \ } #define XMC4XXX_IRQ_HANDLER_STRUCT_INIT(index) .irq_config_func = spi_xmc4xxx_irq_setup_##index, #else #define XMC4XXX_IRQ_HANDLER_INIT(index) #define XMC4XXX_IRQ_HANDLER_STRUCT_INIT(index) #endif #if defined(CONFIG_SPI_XMC4XXX_DMA) #define XMC4XXX_IRQ_DMA_STRUCT_INIT(index) \ .irq_num_rx = DT_INST_IRQ_BY_NAME(index, rx, irq), \ .irq_num_tx = DT_INST_IRQ_BY_NAME(index, tx, irq), #else #define XMC4XXX_IRQ_DMA_STRUCT_INIT(index) #endif #define XMC4XXX_INIT(index) \ PINCTRL_DT_INST_DEFINE(index); \ XMC4XXX_IRQ_HANDLER_INIT(index) \ static struct spi_xmc4xxx_data xmc4xxx_data_##index = { \ SPI_CONTEXT_CS_GPIOS_INITIALIZE(DT_DRV_INST(index), ctx) \ SPI_CONTEXT_INIT_LOCK(xmc4xxx_data_##index, ctx), \ SPI_CONTEXT_INIT_SYNC(xmc4xxx_data_##index, ctx), \ SPI_DMA_CHANNEL(index, tx, MEMORY_TO_PERIPHERAL, 8, 1) \ SPI_DMA_CHANNEL(index, rx, PERIPHERAL_TO_MEMORY, 1, 8)}; \ \ static const struct spi_xmc4xxx_config xmc4xxx_config_##index = { \ .spi = (XMC_USIC_CH_t *)DT_INST_REG_ADDR(index), \ .pcfg = PINCTRL_DT_INST_DEV_CONFIG_GET(index), \ .miso_src = DT_INST_ENUM_IDX(index, miso_src), \ XMC4XXX_IRQ_HANDLER_STRUCT_INIT(index) \ XMC4XXX_IRQ_DMA_STRUCT_INIT(index)}; \ \ DEVICE_DT_INST_DEFINE(index, &spi_xmc4xxx_init, NULL, &xmc4xxx_data_##index, \ &xmc4xxx_config_##index, POST_KERNEL, \ CONFIG_SPI_INIT_PRIORITY, &spi_xmc4xxx_driver_api); DT_INST_FOREACH_STATUS_OKAY(XMC4XXX_INIT)