/* * Copyright (c) 2021 NXP Semiconductor INC. * All rights reserved. * * SPDX-License-Identifier: Apache-2.0 */ /** @file * @brief I2S bus (SAI) driver for NXP i.MX RT series. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "i2s_mcux_sai.h" #define LOG_DOMAIN dev_i2s_mcux #define LOG_LEVEL CONFIG_I2S_LOG_LEVEL #include #include LOG_MODULE_REGISTER(LOG_DOMAIN); #define DT_DRV_COMPAT nxp_mcux_i2s #define NUM_DMA_BLOCKS_RX_PREP 3 #define MAX_TX_DMA_BLOCKS CONFIG_DMA_TCD_QUEUE_SIZE #if (NUM_DMA_BLOCKS_RX_PREP >= CONFIG_DMA_TCD_QUEUE_SIZE) #error NUM_DMA_BLOCKS_RX_PREP must be < CONFIG_DMA_TCD_QUEUE_SIZE #endif #if defined(CONFIG_DMA_MCUX_EDMA) && (NUM_DMA_BLOCKS_RX_PREP < 3) #error eDMA avoids TCD coherency issue if NUM_DMA_BLOCKS_RX_PREP >= 3 #endif /* * SAI driver uses source_gather_en/dest_scatter_en feature of DMA, and relies * on DMA driver managing circular list of DMA blocks. Like eDMA driver links * Transfer Control Descriptors (TCDs) in list, and manages the tcdpool. * Calling dma_reload() adds new DMA block to DMA channel already configured, * into the DMA driver's circular list of blocks. * This indicates the Tx/Rx stream. * * in_queue and out_queue are used as follows * transmit stream: * application provided buffer is queued to in_queue until loaded to DMA. * when DMA channel is idle, buffer is retrieved from in_queue and loaded * to DMA and queued to out_queue. when DMA completes, buffer is retrieved * from out_queue and freed. * * receive stream: * driver allocates buffer from slab and loads DMA buffer is queued to * in_queue when DMA completes, buffer is retrieved from in_queue * and queued to out_queue when application reads, buffer is read * (may optionally block) from out_queue and presented to application. */ struct stream { int32_t state; uint32_t dma_channel; uint32_t start_channel; void (*irq_call_back)(void); struct i2s_config cfg; struct dma_config dma_cfg; struct dma_block_config dma_block; uint8_t free_tx_dma_blocks; bool last_block; struct k_msgq in_queue; struct k_msgq out_queue; }; struct i2s_mcux_config { I2S_Type *base; uint32_t clk_src; uint32_t clk_pre_div; uint32_t clk_src_div; uint32_t pll_src; uint32_t pll_lp; uint32_t pll_pd; uint32_t pll_num; uint32_t pll_den; uint32_t mclk_pin_mask; uint32_t mclk_pin_offset; uint32_t tx_channel; clock_control_subsys_t clk_sub_sys; const struct device *ccm_dev; const struct pinctrl_dev_config *pinctrl; void (*irq_connect)(const struct device *dev); bool rx_sync_mode; bool tx_sync_mode; }; /* Device run time data */ struct i2s_dev_data { const struct device *dev_dma; struct stream tx; void *tx_in_msgs[CONFIG_I2S_TX_BLOCK_COUNT]; void *tx_out_msgs[CONFIG_I2S_TX_BLOCK_COUNT]; struct stream rx; void *rx_in_msgs[CONFIG_I2S_RX_BLOCK_COUNT]; void *rx_out_msgs[CONFIG_I2S_RX_BLOCK_COUNT]; }; static void i2s_dma_tx_callback(const struct device *, void *, uint32_t, int); static void i2s_tx_stream_disable(const struct device *, bool drop); static void i2s_rx_stream_disable(const struct device *, bool in_drop, bool out_drop); static inline void i2s_purge_stream_buffers(struct stream *strm, struct k_mem_slab *mem_slab, bool in_drop, bool out_drop) { void *buffer; if (in_drop) { while (k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT) == 0) { k_mem_slab_free(mem_slab, buffer); } } if (out_drop) { while (k_msgq_get(&strm->out_queue, &buffer, K_NO_WAIT) == 0) { k_mem_slab_free(mem_slab, buffer); } } } static void i2s_tx_stream_disable(const struct device *dev, bool drop) { struct i2s_dev_data *dev_data = dev->data; struct stream *strm = &dev_data->tx; const struct device *dev_dma = dev_data->dev_dma; const struct i2s_mcux_config *dev_cfg = dev->config; LOG_DBG("Stopping DMA channel %u for TX stream", strm->dma_channel); /* Disable FIFO DMA request */ SAI_TxEnableDMA(dev_cfg->base, kSAI_FIFORequestDMAEnable, false); dma_stop(dev_dma, strm->dma_channel); /* wait for TX FIFO to drain before disabling */ while ((dev_cfg->base->TCSR & I2S_TCSR_FWF_MASK) == 0) ; /* Disable the channel FIFO */ dev_cfg->base->TCR3 &= ~I2S_TCR3_TCE_MASK; /* Disable Tx */ SAI_TxEnable(dev_cfg->base, false); /* If Tx is disabled, reset the FIFO pointer, clear error flags */ if ((dev_cfg->base->TCSR & I2S_TCSR_TE_MASK) == 0UL) { dev_cfg->base->TCSR |= (I2S_TCSR_FR_MASK | I2S_TCSR_SR_MASK); dev_cfg->base->TCSR &= ~I2S_TCSR_SR_MASK; } /* purge buffers queued in the stream */ if (drop) { i2s_purge_stream_buffers(strm, dev_data->tx.cfg.mem_slab, true, true); } } static void i2s_rx_stream_disable(const struct device *dev, bool in_drop, bool out_drop) { struct i2s_dev_data *dev_data = dev->data; struct stream *strm = &dev_data->rx; const struct device *dev_dma = dev_data->dev_dma; const struct i2s_mcux_config *dev_cfg = dev->config; LOG_DBG("Stopping RX stream & DMA channel %u", strm->dma_channel); dma_stop(dev_dma, strm->dma_channel); /* Disable the channel FIFO */ dev_cfg->base->RCR3 &= ~I2S_RCR3_RCE_MASK; /* Disable DMA enable bit */ SAI_RxEnableDMA(dev_cfg->base, kSAI_FIFORequestDMAEnable, false); /* Disable Rx */ SAI_RxEnable(dev_cfg->base, false); /* wait for Receiver to disable */ while (dev_cfg->base->RCSR & I2S_RCSR_RE_MASK) ; /* reset the FIFO pointer and clear error flags */ dev_cfg->base->RCSR |= (I2S_RCSR_FR_MASK | I2S_RCSR_SR_MASK); dev_cfg->base->RCSR &= ~I2S_RCSR_SR_MASK; /* purge buffers queued in the stream */ if (in_drop || out_drop) { i2s_purge_stream_buffers(strm, dev_data->rx.cfg.mem_slab, in_drop, out_drop); } } static int i2s_tx_reload_multiple_dma_blocks(const struct device *dev, uint8_t *blocks_queued) { struct i2s_dev_data *dev_data = dev->data; const struct i2s_mcux_config *dev_cfg = dev->config; I2S_Type *base = (I2S_Type *)dev_cfg->base; struct stream *strm = &dev_data->tx; void *buffer = NULL; int ret = 0; unsigned int key; *blocks_queued = 0; key = irq_lock(); /* queue additional blocks to DMA if in_queue and DMA has free blocks */ while (strm->free_tx_dma_blocks) { /* get the next buffer from queue */ ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT); if (ret) { /* in_queue is empty, no more blocks to send to DMA */ ret = 0; break; } /* reload the DMA */ ret = dma_reload(dev_data->dev_dma, strm->dma_channel, (uint32_t)buffer, (uint32_t)&base->TDR[strm->start_channel], strm->cfg.block_size); if (ret != 0) { LOG_ERR("dma_reload() failed with error 0x%x", ret); break; } (strm->free_tx_dma_blocks)--; ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("buffer %p -> out %p err %d", buffer, &strm->out_queue, ret); break; } (*blocks_queued)++; } irq_unlock(key); return ret; } /* This function is executed in the interrupt context */ static void i2s_dma_tx_callback(const struct device *dma_dev, void *arg, uint32_t channel, int status) { const struct device *dev = (struct device *)arg; struct i2s_dev_data *dev_data = dev->data; struct stream *strm = &dev_data->tx; void *buffer = NULL; int ret; uint8_t blocks_queued; LOG_DBG("tx cb"); ret = k_msgq_get(&strm->out_queue, &buffer, K_NO_WAIT); if (ret == 0) { /* transmission complete. free the buffer */ k_mem_slab_free(strm->cfg.mem_slab, buffer); (strm->free_tx_dma_blocks)++; } else { LOG_ERR("no buf in out_queue for channel %u", channel); } if (strm->free_tx_dma_blocks > MAX_TX_DMA_BLOCKS) { strm->state = I2S_STATE_ERROR; LOG_ERR("free_tx_dma_blocks exceeded maximum, now %d", strm->free_tx_dma_blocks); goto disabled_exit_no_drop; } /* Received a STOP trigger, terminate TX immediately */ if (strm->last_block) { strm->state = I2S_STATE_READY; LOG_DBG("TX STOPPED last_block set"); goto disabled_exit_no_drop; } if (ret) { /* k_msgq_get() returned error, and was not last_block */ strm->state = I2S_STATE_ERROR; goto disabled_exit_no_drop; } switch (strm->state) { case I2S_STATE_RUNNING: case I2S_STATE_STOPPING: ret = i2s_tx_reload_multiple_dma_blocks(dev, &blocks_queued); if (ret) { strm->state = I2S_STATE_ERROR; goto disabled_exit_no_drop; } dma_start(dev_data->dev_dma, strm->dma_channel); if (blocks_queued || (strm->free_tx_dma_blocks < MAX_TX_DMA_BLOCKS)) { goto enabled_exit; } else { /* all DMA blocks are free but no blocks were queued */ if (strm->state == I2S_STATE_STOPPING) { /* TX queue has drained */ strm->state = I2S_STATE_READY; LOG_DBG("TX stream has stopped"); } else { strm->state = I2S_STATE_ERROR; LOG_ERR("TX Failed to reload DMA"); } goto disabled_exit_no_drop; } case I2S_STATE_ERROR: default: goto disabled_exit_drop; } disabled_exit_no_drop: i2s_tx_stream_disable(dev, false); return; disabled_exit_drop: i2s_tx_stream_disable(dev, true); return; enabled_exit: return; } static void i2s_dma_rx_callback(const struct device *dma_dev, void *arg, uint32_t channel, int status) { struct device *dev = (struct device *)arg; const struct i2s_mcux_config *dev_cfg = dev->config; I2S_Type *base = (I2S_Type *)dev_cfg->base; struct i2s_dev_data *dev_data = dev->data; struct stream *strm = &dev_data->rx; void *buffer; int ret; LOG_DBG("RX cb"); switch (strm->state) { case I2S_STATE_STOPPING: case I2S_STATE_RUNNING: /* retrieve buffer from input queue */ ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT); __ASSERT_NO_MSG(ret == 0); /* put buffer to output queue */ ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("buffer %p -> out_queue %p err %d", buffer, &strm->out_queue, ret); i2s_rx_stream_disable(dev, false, false); strm->state = I2S_STATE_ERROR; return; } if (strm->state == I2S_STATE_RUNNING) { /* allocate new buffer for next audio frame */ ret = k_mem_slab_alloc(strm->cfg.mem_slab, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("buffer alloc from slab %p err %d", strm->cfg.mem_slab, ret); i2s_rx_stream_disable(dev, false, false); strm->state = I2S_STATE_ERROR; } else { uint32_t data_path = strm->start_channel; ret = dma_reload(dev_data->dev_dma, strm->dma_channel, (uint32_t)&base->RDR[data_path], (uint32_t)buffer, strm->cfg.block_size); if (ret != 0) { LOG_ERR("dma_reload() failed with error 0x%x", ret); i2s_rx_stream_disable(dev, false, false); strm->state = I2S_STATE_ERROR; return; } /* put buffer in input queue */ ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("%p -> in_queue %p err %d", buffer, &strm->in_queue, ret); } dma_start(dev_data->dev_dma, strm->dma_channel); } } else { i2s_rx_stream_disable(dev, true, false); /* Received a STOP/DRAIN trigger */ strm->state = I2S_STATE_READY; } break; case I2S_STATE_ERROR: i2s_rx_stream_disable(dev, true, true); break; } } static void enable_mclk_direction(const struct device *dev, bool dir) { const struct i2s_mcux_config *dev_cfg = dev->config; uint32_t offset = dev_cfg->mclk_pin_offset; uint32_t mask = dev_cfg->mclk_pin_mask; uint32_t *gpr = (uint32_t *) (DT_REG_ADDR(DT_NODELABEL(iomuxcgpr)) + offset); if (dir) { *gpr |= mask; } else { *gpr &= ~mask; } } static void get_mclk_rate(const struct device *dev, uint32_t *mclk) { const struct i2s_mcux_config *dev_cfg = dev->config; const struct device *ccm_dev = dev_cfg->ccm_dev; clock_control_subsys_t clk_sub_sys = dev_cfg->clk_sub_sys; uint32_t rate = 0; if (device_is_ready(ccm_dev)) { clock_control_get_rate(ccm_dev, clk_sub_sys, &rate); } else { LOG_ERR("CCM driver is not installed"); *mclk = rate; return; } *mclk = rate; } static int i2s_mcux_config(const struct device *dev, enum i2s_dir dir, const struct i2s_config *i2s_cfg) { const struct i2s_mcux_config *dev_cfg = dev->config; I2S_Type *base = (I2S_Type *)dev_cfg->base; struct i2s_dev_data *dev_data = dev->data; sai_transceiver_t config; uint32_t mclk; /*num_words is frame size*/ uint8_t num_words = i2s_cfg->channels; uint8_t word_size_bits = i2s_cfg->word_size; if ((dev_data->tx.state != I2S_STATE_NOT_READY) && (dev_data->tx.state != I2S_STATE_READY) && (dev_data->rx.state != I2S_STATE_NOT_READY) && (dev_data->rx.state != I2S_STATE_READY)) { LOG_ERR("invalid state tx(%u) rx(%u)", dev_data->tx.state, dev_data->rx.state); if (dir == I2S_DIR_TX) { dev_data->tx.state = I2S_STATE_NOT_READY; } else { dev_data->rx.state = I2S_STATE_NOT_READY; } return -EINVAL; } if (i2s_cfg->frame_clk_freq == 0U) { LOG_ERR("Invalid frame_clk_freq %u", i2s_cfg->frame_clk_freq); if (dir == I2S_DIR_TX) { dev_data->tx.state = I2S_STATE_NOT_READY; } else { dev_data->rx.state = I2S_STATE_NOT_READY; } return 0; } if (word_size_bits < SAI_WORD_SIZE_BITS_MIN || word_size_bits > SAI_WORD_SIZE_BITS_MAX) { LOG_ERR("Unsupported I2S word size %u", word_size_bits); if (dir == I2S_DIR_TX) { dev_data->tx.state = I2S_STATE_NOT_READY; } else { dev_data->rx.state = I2S_STATE_NOT_READY; } return -EINVAL; } if (num_words < SAI_WORD_PER_FRAME_MIN || num_words > SAI_WORD_PER_FRAME_MAX) { LOG_ERR("Unsupported words length %u", num_words); if (dir == I2S_DIR_TX) { dev_data->tx.state = I2S_STATE_NOT_READY; } else { dev_data->rx.state = I2S_STATE_NOT_READY; } return -EINVAL; } if ((i2s_cfg->options & I2S_OPT_PINGPONG) == I2S_OPT_PINGPONG) { LOG_ERR("Ping-pong mode not supported"); if (dir == I2S_DIR_TX) { dev_data->tx.state = I2S_STATE_NOT_READY; } else { dev_data->rx.state = I2S_STATE_NOT_READY; } return -ENOTSUP; } memset(&config, 0, sizeof(config)); const bool is_mclk_slave = i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE; enable_mclk_direction(dev, !is_mclk_slave); get_mclk_rate(dev, &mclk); LOG_DBG("mclk is %d", mclk); /* bit clock source is MCLK */ config.bitClock.bclkSource = kSAI_BclkSourceMclkDiv; /* * additional settings for bclk * read the SDK header file for more details */ config.bitClock.bclkInputDelay = false; /* frame sync default configurations */ #if defined(FSL_FEATURE_SAI_HAS_ON_DEMAND_MODE) && \ FSL_FEATURE_SAI_HAS_ON_DEMAND_MODE config.frameSync.frameSyncGenerateOnDemand = false; #endif /* serial data default configurations */ #if defined(FSL_FEATURE_SAI_HAS_CHANNEL_MODE) && \ FSL_FEATURE_SAI_HAS_CHANNEL_MODE config.serialData.dataMode = kSAI_DataPinStateOutputZero; #endif config.frameSync.frameSyncPolarity = kSAI_PolarityActiveLow; config.bitClock.bclkSrcSwap = false; /* format */ switch (i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) { case I2S_FMT_DATA_FORMAT_I2S: SAI_GetClassicI2SConfig(&config, word_size_bits, kSAI_Stereo, dev_cfg->tx_channel); break; case I2S_FMT_DATA_FORMAT_LEFT_JUSTIFIED: SAI_GetLeftJustifiedConfig(&config, word_size_bits, kSAI_Stereo, dev_cfg->tx_channel); break; case I2S_FMT_DATA_FORMAT_PCM_SHORT: SAI_GetDSPConfig(&config, kSAI_FrameSyncLenOneBitClk, word_size_bits, kSAI_Stereo, dev_cfg->tx_channel); /* We need to set the data word count manually, since the HAL * function does not */ config.serialData.dataWordNum = num_words; config.frameSync.frameSyncEarly = true; config.bitClock.bclkPolarity = kSAI_SampleOnFallingEdge; break; case I2S_FMT_DATA_FORMAT_PCM_LONG: SAI_GetTDMConfig(&config, kSAI_FrameSyncLenPerWordWidth, word_size_bits, num_words, dev_cfg->tx_channel); config.bitClock.bclkPolarity = kSAI_SampleOnFallingEdge; break; default: LOG_ERR("Unsupported I2S data format"); if (dir == I2S_DIR_TX) { dev_data->tx.state = I2S_STATE_NOT_READY; } else { dev_data->rx.state = I2S_STATE_NOT_READY; } return -EINVAL; } /* sync mode configurations */ if (dir == I2S_DIR_TX) { /* TX */ if (dev_cfg->tx_sync_mode) { config.syncMode = kSAI_ModeSync; } else { config.syncMode = kSAI_ModeAsync; } } else { /* RX */ if (dev_cfg->rx_sync_mode) { config.syncMode = kSAI_ModeSync; } else { config.syncMode = kSAI_ModeAsync; } } if (i2s_cfg->options & I2S_OPT_FRAME_CLK_SLAVE) { if (i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) { config.masterSlave = kSAI_Slave; } else { config.masterSlave = kSAI_Bclk_Master_FrameSync_Slave; } } else { if (i2s_cfg->options & I2S_OPT_BIT_CLK_SLAVE) { config.masterSlave = kSAI_Bclk_Slave_FrameSync_Master; } else { config.masterSlave = kSAI_Master; } } /* clock signal polarity */ switch (i2s_cfg->format & I2S_FMT_CLK_FORMAT_MASK) { case I2S_FMT_CLK_NF_NB: /* No action required, leave the configuration untouched */ break; case I2S_FMT_CLK_NF_IB: /* Swap bclk polarity */ config.bitClock.bclkPolarity = (config.bitClock.bclkPolarity == kSAI_SampleOnFallingEdge) ? kSAI_SampleOnRisingEdge : kSAI_SampleOnFallingEdge; break; case I2S_FMT_CLK_IF_NB: /* Swap frame sync polarity */ config.frameSync.frameSyncPolarity = (config.frameSync.frameSyncPolarity == kSAI_PolarityActiveHigh) ? kSAI_PolarityActiveLow : kSAI_PolarityActiveHigh; break; case I2S_FMT_CLK_IF_IB: /* Swap frame sync and bclk polarity */ config.frameSync.frameSyncPolarity = (config.frameSync.frameSyncPolarity == kSAI_PolarityActiveHigh) ? kSAI_PolarityActiveLow : kSAI_PolarityActiveHigh; config.bitClock.bclkPolarity = (config.bitClock.bclkPolarity == kSAI_SampleOnFallingEdge) ? kSAI_SampleOnRisingEdge : kSAI_SampleOnFallingEdge; break; } /* PCM short format always requires that WS be one BCLK cycle */ if ((i2s_cfg->format & I2S_FMT_DATA_FORMAT_MASK) != I2S_FMT_DATA_FORMAT_PCM_SHORT) { config.frameSync.frameSyncWidth = (uint8_t)word_size_bits; } if (dir == I2S_DIR_TX) { memcpy(&dev_data->tx.cfg, i2s_cfg, sizeof(struct i2s_config)); LOG_DBG("tx slab free_list = 0x%x", (uint32_t)i2s_cfg->mem_slab->free_list); LOG_DBG("tx slab num_blocks = %d", (uint32_t)i2s_cfg->mem_slab->info.num_blocks); LOG_DBG("tx slab block_size = %d", (uint32_t)i2s_cfg->mem_slab->info.block_size); LOG_DBG("tx slab buffer = 0x%x", (uint32_t)i2s_cfg->mem_slab->buffer); /* set bit clock divider */ SAI_TxSetConfig(base, &config); dev_data->tx.start_channel = config.startChannel; /* Disable the channel FIFO */ base->TCR3 &= ~I2S_TCR3_TCE_MASK; SAI_TxSetBitClockRate(base, mclk, i2s_cfg->frame_clk_freq, word_size_bits, i2s_cfg->channels); LOG_DBG("tx start_channel = %d", dev_data->tx.start_channel); /*set up dma settings*/ dev_data->tx.dma_cfg.source_data_size = word_size_bits / 8; dev_data->tx.dma_cfg.dest_data_size = word_size_bits / 8; dev_data->tx.dma_cfg.source_burst_length = i2s_cfg->word_size / 8; dev_data->tx.dma_cfg.dest_burst_length = i2s_cfg->word_size / 8; dev_data->tx.dma_cfg.user_data = (void *)dev; dev_data->tx.state = I2S_STATE_READY; } else { /* For RX, DMA reads from FIFO whenever data present */ config.fifo.fifoWatermark = 0; memcpy(&dev_data->rx.cfg, i2s_cfg, sizeof(struct i2s_config)); LOG_DBG("rx slab free_list = 0x%x", (uint32_t)i2s_cfg->mem_slab->free_list); LOG_DBG("rx slab num_blocks = %d", (uint32_t)i2s_cfg->mem_slab->info.num_blocks); LOG_DBG("rx slab block_size = %d", (uint32_t)i2s_cfg->mem_slab->info.block_size); LOG_DBG("rx slab buffer = 0x%x", (uint32_t)i2s_cfg->mem_slab->buffer); /* set bit clock divider */ SAI_RxSetConfig(base, &config); dev_data->rx.start_channel = config.startChannel; SAI_RxSetBitClockRate(base, mclk, i2s_cfg->frame_clk_freq, word_size_bits, i2s_cfg->channels); LOG_DBG("rx start_channel = %d", dev_data->rx.start_channel); /*set up dma settings*/ dev_data->rx.dma_cfg.source_data_size = word_size_bits / 8; dev_data->rx.dma_cfg.dest_data_size = word_size_bits / 8; dev_data->rx.dma_cfg.source_burst_length = i2s_cfg->word_size / 8; dev_data->rx.dma_cfg.dest_burst_length = i2s_cfg->word_size / 8; dev_data->rx.dma_cfg.user_data = (void *)dev; dev_data->rx.state = I2S_STATE_READY; } return 0; } const struct i2s_config *i2s_mcux_config_get(const struct device *dev, enum i2s_dir dir) { struct i2s_dev_data *dev_data = dev->data; if (dir == I2S_DIR_RX) { return &dev_data->rx.cfg; } return &dev_data->tx.cfg; } static int i2s_tx_stream_start(const struct device *dev) { int ret = 0; void *buffer; struct i2s_dev_data *dev_data = dev->data; struct stream *strm = &dev_data->tx; const struct device *dev_dma = dev_data->dev_dma; const struct i2s_mcux_config *dev_cfg = dev->config; I2S_Type *base = (I2S_Type *)dev_cfg->base; /* retrieve buffer from input queue */ ret = k_msgq_get(&strm->in_queue, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("No buffer in input queue to start"); return -EIO; } LOG_DBG("tx stream start"); /* Driver keeps track of how many DMA blocks can be loaded to the DMA */ strm->free_tx_dma_blocks = MAX_TX_DMA_BLOCKS; /* Configure the DMA with the first TX block */ struct dma_block_config *blk_cfg = &strm->dma_block; memset(blk_cfg, 0, sizeof(struct dma_block_config)); uint32_t data_path = strm->start_channel; blk_cfg->dest_address = (uint32_t)&base->TDR[data_path]; blk_cfg->source_address = (uint32_t)buffer; blk_cfg->block_size = strm->cfg.block_size; blk_cfg->dest_scatter_en = 1; strm->dma_cfg.block_count = 1; strm->dma_cfg.head_block = &strm->dma_block; strm->dma_cfg.user_data = (void *)dev; (strm->free_tx_dma_blocks)--; dma_config(dev_dma, strm->dma_channel, &strm->dma_cfg); /* put buffer in output queue */ ret = k_msgq_put(&strm->out_queue, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("failed to put buffer in output queue"); return ret; } uint8_t blocks_queued; ret = i2s_tx_reload_multiple_dma_blocks(dev, &blocks_queued); if (ret) { LOG_ERR("i2s_tx_reload_multiple_dma_blocks() failed (%d)", ret); return ret; } ret = dma_start(dev_dma, strm->dma_channel); if (ret < 0) { LOG_ERR("dma_start failed (%d)", ret); return ret; } /* Enable DMA enable bit */ SAI_TxEnableDMA(base, kSAI_FIFORequestDMAEnable, true); /* Enable the channel FIFO */ base->TCR3 |= I2S_TCR3_TCE(1UL << strm->start_channel); /* Enable SAI Tx clock */ SAI_TxEnable(base, true); return 0; } static int i2s_rx_stream_start(const struct device *dev) { int ret = 0; void *buffer; struct i2s_dev_data *dev_data = dev->data; struct stream *strm = &dev_data->rx; const struct device *dev_dma = dev_data->dev_dma; const struct i2s_mcux_config *dev_cfg = dev->config; I2S_Type *base = (I2S_Type *)dev_cfg->base; uint8_t num_of_bufs; num_of_bufs = k_mem_slab_num_free_get(strm->cfg.mem_slab); /* * Need at least NUM_DMA_BLOCKS_RX_PREP buffers on the RX memory slab * for reliable DMA reception. */ if (num_of_bufs < NUM_DMA_BLOCKS_RX_PREP) { return -EINVAL; } /* allocate 1st receive buffer from SLAB */ ret = k_mem_slab_alloc(strm->cfg.mem_slab, &buffer, K_NO_WAIT); if (ret != 0) { LOG_DBG("buffer alloc from mem_slab failed (%d)", ret); return ret; } /* Configure DMA block */ struct dma_block_config *blk_cfg = &strm->dma_block; memset(blk_cfg, 0, sizeof(struct dma_block_config)); uint32_t data_path = strm->start_channel; blk_cfg->dest_address = (uint32_t)buffer; blk_cfg->source_address = (uint32_t)&base->RDR[data_path]; blk_cfg->block_size = strm->cfg.block_size; blk_cfg->source_gather_en = 1; strm->dma_cfg.block_count = 1; strm->dma_cfg.head_block = &strm->dma_block; strm->dma_cfg.user_data = (void *)dev; dma_config(dev_dma, strm->dma_channel, &strm->dma_cfg); /* put buffer in input queue */ ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("failed to put buffer in input queue, ret1 %d", ret); return ret; } /* prep DMA for each of remaining (NUM_DMA_BLOCKS_RX_PREP-1) buffers */ for (int i = 0; i < NUM_DMA_BLOCKS_RX_PREP - 1; i++) { /* allocate receive buffer from SLAB */ ret = k_mem_slab_alloc(strm->cfg.mem_slab, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("buffer alloc from mem_slab failed (%d)", ret); return ret; } ret = dma_reload(dev_dma, strm->dma_channel, (uint32_t)&base->RDR[data_path], (uint32_t)buffer, blk_cfg->block_size); if (ret != 0) { LOG_ERR("dma_reload() failed with error 0x%x", ret); return ret; } /* put buffer in input queue */ ret = k_msgq_put(&strm->in_queue, &buffer, K_NO_WAIT); if (ret != 0) { LOG_ERR("failed to put buffer in input queue, ret2 %d", ret); return ret; } } LOG_DBG("Starting DMA Ch%u", strm->dma_channel); ret = dma_start(dev_dma, strm->dma_channel); if (ret < 0) { LOG_ERR("Failed to start DMA Ch%d (%d)", strm->dma_channel, ret); return ret; } /* Enable DMA enable bit */ SAI_RxEnableDMA(base, kSAI_FIFORequestDMAEnable, true); /* Enable the channel FIFO */ base->RCR3 |= I2S_RCR3_RCE(1UL << strm->start_channel); /* Enable SAI Rx clock */ SAI_RxEnable(base, true); return 0; } static int i2s_mcux_trigger(const struct device *dev, enum i2s_dir dir, enum i2s_trigger_cmd cmd) { struct i2s_dev_data *dev_data = dev->data; struct stream *strm; unsigned int key; int ret = 0; if (dir == I2S_DIR_BOTH) { return -ENOSYS; } strm = (dir == I2S_DIR_TX) ? &dev_data->tx : &dev_data->rx; key = irq_lock(); switch (cmd) { case I2S_TRIGGER_START: if (strm->state != I2S_STATE_READY) { LOG_ERR("START trigger: invalid state %u", strm->state); ret = -EIO; break; } if (dir == I2S_DIR_TX) { ret = i2s_tx_stream_start(dev); } else { ret = i2s_rx_stream_start(dev); } if (ret < 0) { LOG_DBG("START trigger failed %d", ret); ret = -EIO; break; } strm->state = I2S_STATE_RUNNING; strm->last_block = false; break; case I2S_TRIGGER_DROP: if (strm->state == I2S_STATE_NOT_READY) { LOG_ERR("DROP trigger: invalid state %d", strm->state); ret = -EIO; break; } strm->state = I2S_STATE_READY; if (dir == I2S_DIR_TX) { i2s_tx_stream_disable(dev, true); } else { i2s_rx_stream_disable(dev, true, true); } break; case I2S_TRIGGER_STOP: if (strm->state != I2S_STATE_RUNNING) { LOG_ERR("STOP trigger: invalid state %d", strm->state); ret = -EIO; break; } strm->state = I2S_STATE_STOPPING; strm->last_block = true; break; case I2S_TRIGGER_DRAIN: if (strm->state != I2S_STATE_RUNNING) { LOG_ERR("DRAIN/STOP trigger: invalid state %d", strm->state); ret = -EIO; break; } strm->state = I2S_STATE_STOPPING; break; case I2S_TRIGGER_PREPARE: if (strm->state != I2S_STATE_ERROR) { LOG_ERR("PREPARE trigger: invalid state %d", strm->state); ret = -EIO; break; } strm->state = I2S_STATE_READY; if (dir == I2S_DIR_TX) { i2s_tx_stream_disable(dev, true); } else { i2s_rx_stream_disable(dev, true, true); } break; default: LOG_ERR("Unsupported trigger command"); ret = -EINVAL; } irq_unlock(key); return ret; } static int i2s_mcux_read(const struct device *dev, void **mem_block, size_t *size) { struct i2s_dev_data *dev_data = dev->data; struct stream *strm = &dev_data->rx; void *buffer; int status, ret = 0; LOG_DBG("i2s_mcux_read"); if (strm->state == I2S_STATE_NOT_READY) { LOG_ERR("invalid state %d", strm->state); return -EIO; } status = k_msgq_get(&strm->out_queue, &buffer, SYS_TIMEOUT_MS(strm->cfg.timeout)); if (status != 0) { if (strm->state == I2S_STATE_ERROR) { ret = -EIO; } else { LOG_DBG("need retry"); ret = -EAGAIN; } return ret; } *mem_block = buffer; *size = strm->cfg.block_size; return 0; } static int i2s_mcux_write(const struct device *dev, void *mem_block, size_t size) { struct i2s_dev_data *dev_data = dev->data; struct stream *strm = &dev_data->tx; int ret; LOG_DBG("i2s_mcux_write"); if (strm->state != I2S_STATE_RUNNING && strm->state != I2S_STATE_READY) { LOG_ERR("invalid state (%d)", strm->state); return -EIO; } ret = k_msgq_put(&strm->in_queue, &mem_block, SYS_TIMEOUT_MS(strm->cfg.timeout)); if (ret) { LOG_DBG("k_msgq_put returned code %d", ret); return ret; } return ret; } static void sai_driver_irq(const struct device *dev) { const struct i2s_mcux_config *dev_cfg = dev->config; I2S_Type *base = (I2S_Type *)dev_cfg->base; if ((base->TCSR & I2S_TCSR_FEF_MASK) == I2S_TCSR_FEF_MASK) { /* Clear FIFO error flag to continue transfer */ SAI_TxClearStatusFlags(base, I2S_TCSR_FEF_MASK); /* Reset FIFO for safety */ SAI_TxSoftwareReset(base, kSAI_ResetTypeFIFO); LOG_DBG("sai tx error occurred"); } if ((base->RCSR & I2S_RCSR_FEF_MASK) == I2S_RCSR_FEF_MASK) { /* Clear FIFO error flag to continue transfer */ SAI_RxClearStatusFlags(base, I2S_RCSR_FEF_MASK); /* Reset FIFO for safety */ SAI_RxSoftwareReset(base, kSAI_ResetTypeFIFO); LOG_DBG("sai rx error occurred"); } } /* clear IRQ sources atm */ static void i2s_mcux_isr(void *arg) { struct device *dev = (struct device *)arg; const struct i2s_mcux_config *dev_cfg = dev->config; I2S_Type *base = (I2S_Type *)dev_cfg->base; if ((base->RCSR & I2S_TCSR_FEF_MASK) == I2S_TCSR_FEF_MASK) { sai_driver_irq(dev); } if ((base->TCSR & I2S_RCSR_FEF_MASK) == I2S_RCSR_FEF_MASK) { sai_driver_irq(dev); } /* * Add for ARM errata 838869, affects Cortex-M4, * Cortex-M4F Store immediate overlapping exception return operation * might vector to incorrect interrupt */ #if defined __CORTEX_M && (__CORTEX_M == 4U) barrier_dsync_fence_full(); #endif } static void audio_clock_settings(const struct device *dev) { clock_audio_pll_config_t audioPllConfig; const struct i2s_mcux_config *dev_cfg = dev->config; uint32_t clock_name = (uint32_t) dev_cfg->clk_sub_sys; /*Clock setting for SAI*/ imxrt_audio_codec_pll_init(clock_name, dev_cfg->clk_src, dev_cfg->clk_pre_div, dev_cfg->clk_src_div); #ifdef CONFIG_SOC_SERIES_IMX_RT11XX audioPllConfig.loopDivider = dev_cfg->pll_lp; audioPllConfig.postDivider = dev_cfg->pll_pd; audioPllConfig.numerator = dev_cfg->pll_num; audioPllConfig.denominator = dev_cfg->pll_den; audioPllConfig.ssEnable = false; #elif defined CONFIG_SOC_SERIES_IMX_RT10XX audioPllConfig.src = dev_cfg->pll_src; audioPllConfig.loopDivider = dev_cfg->pll_lp; audioPllConfig.postDivider = dev_cfg->pll_pd; audioPllConfig.numerator = dev_cfg->pll_num; audioPllConfig.denominator = dev_cfg->pll_den; #else #error Initialize SOC Series-specific clock_audio_pll_config_t #endif /* CONFIG_SOC_SERIES */ CLOCK_InitAudioPll(&audioPllConfig); } static int i2s_mcux_initialize(const struct device *dev) { const struct i2s_mcux_config *dev_cfg = dev->config; I2S_Type *base = (I2S_Type *)dev_cfg->base; struct i2s_dev_data *dev_data = dev->data; uint32_t mclk; int err; if (!dev_data->dev_dma) { LOG_ERR("DMA device not found"); return -ENODEV; } /* Initialize the buffer queues */ k_msgq_init(&dev_data->tx.in_queue, (char *)dev_data->tx_in_msgs, sizeof(void *), CONFIG_I2S_TX_BLOCK_COUNT); k_msgq_init(&dev_data->rx.in_queue, (char *)dev_data->rx_in_msgs, sizeof(void *), CONFIG_I2S_RX_BLOCK_COUNT); k_msgq_init(&dev_data->tx.out_queue, (char *)dev_data->tx_out_msgs, sizeof(void *), CONFIG_I2S_TX_BLOCK_COUNT); k_msgq_init(&dev_data->rx.out_queue, (char *)dev_data->rx_out_msgs, sizeof(void *), CONFIG_I2S_RX_BLOCK_COUNT); /* register ISR */ dev_cfg->irq_connect(dev); /* pinctrl */ err = pinctrl_apply_state(dev_cfg->pinctrl, PINCTRL_STATE_DEFAULT); if (err) { LOG_ERR("mclk pinctrl setup failed (%d)", err); return err; } /*clock configuration*/ audio_clock_settings(dev); SAI_Init(base); dev_data->tx.state = I2S_STATE_NOT_READY; dev_data->rx.state = I2S_STATE_NOT_READY; #if (defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)) || \ (defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \ (FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER)) sai_master_clock_t mclkConfig = { #if defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR) .mclkOutputEnable = true, #if !(defined(FSL_FEATURE_SAI_HAS_NO_MCR_MICS) && \ (FSL_FEATURE_SAI_HAS_NO_MCR_MICS)) .mclkSource = kSAI_MclkSourceSysclk, #endif #endif }; #endif get_mclk_rate(dev, &mclk); /* master clock configurations */ #if (defined(FSL_FEATURE_SAI_HAS_MCR) && (FSL_FEATURE_SAI_HAS_MCR)) || \ (defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \ (FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER)) #if defined(FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) && \ (FSL_FEATURE_SAI_HAS_MCLKDIV_REGISTER) mclkConfig.mclkHz = mclk; mclkConfig.mclkSourceClkHz = mclk; #endif SAI_SetMasterClockConfig(base, &mclkConfig); #endif LOG_INF("Device %s initialized", dev->name); return 0; } static const struct i2s_driver_api i2s_mcux_driver_api = { .configure = i2s_mcux_config, .read = i2s_mcux_read, .write = i2s_mcux_write, .config_get = i2s_mcux_config_get, .trigger = i2s_mcux_trigger, }; #define I2S_MCUX_INIT(i2s_id) \ static void i2s_irq_connect_##i2s_id(const struct device *dev); \ \ PINCTRL_DT_INST_DEFINE(i2s_id); \ \ static const struct i2s_mcux_config i2s_##i2s_id##_config = { \ .base = (I2S_Type *)DT_INST_REG_ADDR(i2s_id), \ .clk_src = \ DT_CLOCKS_CELL_BY_IDX(DT_DRV_INST(i2s_id), \ 0, bits), \ .clk_pre_div = DT_INST_PROP(i2s_id, pre_div), \ .clk_src_div = DT_INST_PROP(i2s_id, podf), \ .pll_src = \ DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \ pll_clocks, src, value), \ .pll_lp = \ DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \ pll_clocks, lp, value), \ .pll_pd = \ DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \ pll_clocks, pd, value), \ .pll_num = \ DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \ pll_clocks, num, value), \ .pll_den = \ DT_PHA_BY_NAME(DT_DRV_INST(i2s_id), \ pll_clocks, den, value), \ .mclk_pin_mask = \ DT_PHA_BY_IDX(DT_DRV_INST(i2s_id), \ pinmuxes, 0, function), \ .mclk_pin_offset = \ DT_PHA_BY_IDX(DT_DRV_INST(i2s_id), \ pinmuxes, 0, pin), \ .clk_sub_sys = (clock_control_subsys_t) \ DT_INST_CLOCKS_CELL_BY_IDX(i2s_id, 0, name), \ .ccm_dev = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(i2s_id)), \ .irq_connect = i2s_irq_connect_##i2s_id, \ .pinctrl = PINCTRL_DT_INST_DEV_CONFIG_GET(i2s_id), \ .tx_sync_mode = \ DT_INST_PROP(i2s_id, nxp_tx_sync_mode), \ .rx_sync_mode = \ DT_INST_PROP(i2s_id, nxp_rx_sync_mode), \ .tx_channel = DT_INST_PROP(i2s_id, nxp_tx_channel), \ }; \ \ static struct i2s_dev_data i2s_##i2s_id##_data = { \ .dev_dma = DEVICE_DT_GET( \ DT_INST_DMAS_CTLR_BY_NAME(i2s_id, rx)), \ .tx = { \ .dma_channel = \ DT_INST_PROP(i2s_id, nxp_tx_dma_channel), \ .dma_cfg = { \ .source_burst_length = \ CONFIG_I2S_EDMA_BURST_SIZE, \ .dest_burst_length = \ CONFIG_I2S_EDMA_BURST_SIZE, \ .dma_callback = i2s_dma_tx_callback, \ .complete_callback_en = 1, \ .error_callback_en = 1, \ .block_count = 1, \ .head_block = \ &i2s_##i2s_id##_data.tx.dma_block, \ .channel_direction = MEMORY_TO_PERIPHERAL, \ .dma_slot = \ DT_INST_DMAS_CELL_BY_NAME(i2s_id, \ tx, source), \ }, \ }, \ .rx = { \ .dma_channel = \ DT_INST_PROP(i2s_id, nxp_rx_dma_channel), \ .dma_cfg = { \ .source_burst_length = \ CONFIG_I2S_EDMA_BURST_SIZE, \ .dest_burst_length = \ CONFIG_I2S_EDMA_BURST_SIZE, \ .dma_callback = i2s_dma_rx_callback, \ .complete_callback_en = 1, \ .error_callback_en = 1, \ .block_count = 1, \ .head_block = \ &i2s_##i2s_id##_data.rx.dma_block, \ .channel_direction = PERIPHERAL_TO_MEMORY, \ .dma_slot = \ DT_INST_DMAS_CELL_BY_NAME(i2s_id, \ rx, source), \ }, \ }, \ }; \ \ DEVICE_DT_INST_DEFINE(i2s_id, &i2s_mcux_initialize, NULL, \ &i2s_##i2s_id##_data, &i2s_##i2s_id##_config, \ POST_KERNEL, \ CONFIG_I2S_INIT_PRIORITY, &i2s_mcux_driver_api); \ \ static void i2s_irq_connect_##i2s_id(const struct device *dev) \ { \ IRQ_CONNECT(DT_INST_IRQ_BY_IDX(i2s_id, 0, irq), \ DT_INST_IRQ_BY_IDX(i2s_id, 0, priority), \ i2s_mcux_isr, \ DEVICE_DT_INST_GET(i2s_id), 0); \ irq_enable(DT_INST_IRQN(i2s_id)); \ } DT_INST_FOREACH_STATUS_OKAY(I2S_MCUX_INIT)