/* * Copyright (c) 2023 Google LLC. * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include LOG_MODULE_REGISTER(sensor_compat, CONFIG_SENSOR_LOG_LEVEL); static void sensor_submit_fallback(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe); static void sensor_iodev_submit(struct rtio_iodev_sqe *iodev_sqe) { const struct sensor_read_config *cfg = iodev_sqe->sqe.iodev->data; const struct device *dev = cfg->sensor; const struct sensor_driver_api *api = dev->api; if (api->submit != NULL) { api->submit(dev, iodev_sqe); } else { sensor_submit_fallback(dev, iodev_sqe); } } const struct rtio_iodev_api __sensor_iodev_api = { .submit = sensor_iodev_submit, }; /** * @brief Compute the number of samples needed for the given channels * * @param[in] channels Array of channels requested * @param[in] num_channels Number of channels on the @p channels array * @return The number of samples required to read the given channels */ static inline int compute_num_samples(const enum sensor_channel *channels, size_t num_channels) { int num_samples = 0; for (size_t i = 0; i < num_channels; ++i) { num_samples += SENSOR_CHANNEL_3_AXIS(channels[i]) ? 3 : 1; } return num_samples; } /** * @brief Compute the minimum number of bytes needed * * @param[in] num_output_samples The number of samples to represent * @return The number of bytes needed for this sample frame */ static inline uint32_t compute_min_buf_len(int num_output_samples) { return sizeof(struct sensor_data_generic_header) + (num_output_samples * sizeof(q31_t)) + (num_output_samples * sizeof(enum sensor_channel)); } /** * @brief Checks if the header already contains a given channel * * @param[in] header The header to scan * @param[in] channel The channel to search for * @param[in] num_channels The number of valid channels in the header so far * @return Index of the @p channel if found or negative if not found */ static inline int check_header_contains_channel(const struct sensor_data_generic_header *header, enum sensor_channel channel, int num_channels) { __ASSERT_NO_MSG(!SENSOR_CHANNEL_3_AXIS(channel)); for (int i = 0; i < num_channels; ++i) { if (header->channels[i] == channel) { return i; } } return -1; } /** * @brief Fallback function for retrofiting old drivers to rtio * * @param[in] dev The sensor device to read * @param[in] iodev_sqe The read submission queue event */ static void sensor_submit_fallback(const struct device *dev, struct rtio_iodev_sqe *iodev_sqe) { const struct sensor_read_config *cfg = iodev_sqe->sqe.iodev->data; const enum sensor_channel *const channels = cfg->channels; const int num_output_samples = compute_num_samples(channels, cfg->count); uint32_t min_buf_len = compute_min_buf_len(num_output_samples); uint64_t timestamp_ns = k_ticks_to_ns_floor64(k_uptime_ticks()); int rc = sensor_sample_fetch(dev); uint8_t *buf; uint32_t buf_len; /* Check that the fetch succeeded */ if (rc != 0) { LOG_WRN("Failed to fetch samples"); rtio_iodev_sqe_err(iodev_sqe, rc); return; } /* Get the buffer for the frame, it may be allocated dynamically by the rtio context */ rc = rtio_sqe_rx_buf(iodev_sqe, min_buf_len, min_buf_len, &buf, &buf_len); if (rc != 0) { LOG_WRN("Failed to get a read buffer of size %u bytes", min_buf_len); rtio_iodev_sqe_err(iodev_sqe, rc); return; } /* Set the timestamp and num_channels */ struct sensor_data_generic_header *header = (struct sensor_data_generic_header *)buf; header->timestamp_ns = timestamp_ns; header->num_channels = num_output_samples; header->shift = 0; q31_t *q = (q31_t *)(buf + sizeof(struct sensor_data_generic_header) + num_output_samples * sizeof(enum sensor_channel)); /* Populate values, update shift, and set channels */ for (size_t i = 0, sample_idx = 0; i < cfg->count; ++i) { struct sensor_value value[3]; const int num_samples = SENSOR_CHANNEL_3_AXIS(channels[i]) ? 3 : 1; /* Get the current channel requested by the user */ rc = sensor_channel_get(dev, channels[i], value); if (num_samples == 3) { header->channels[sample_idx++] = rc == 0 ? channels[i] - 3 : SENSOR_CHAN_MAX; header->channels[sample_idx++] = rc == 0 ? channels[i] - 2 : SENSOR_CHAN_MAX; header->channels[sample_idx++] = rc == 0 ? channels[i] - 1 : SENSOR_CHAN_MAX; } else { header->channels[sample_idx++] = rc == 0 ? channels[i] : SENSOR_CHAN_MAX; } if (rc != 0) { LOG_DBG("Failed to get channel %d, skipping", channels[i]); continue; } /* Get the largest absolute value reading to set the scale for the channel */ uint32_t header_scale = 0; for (int sample = 0; sample < num_samples; ++sample) { /* * The scale is the ceil(abs(sample)). * Since we are using fractional values, it's easier to assume that .val2 * is non 0 and convert this to abs(sample.val1) + 1 (removing a branch). * Since it's possible that val1 (int32_t) is saturated (INT32_MAX) we need * to upcast it to 64 bit int first, then take the abs() of that 64 bit * int before we '+ 1'. Once that's done, we can safely cast back down * to uint32_t because the min value is 0 and max is INT32_MAX + 1 which * is less than UINT32_MAX. */ uint32_t scale = (uint32_t)llabs((int64_t)value[sample].val1) + 1; header_scale = MAX(header_scale, scale); } int8_t new_shift = ilog2(header_scale - 1) + 1; /* Reset sample_idx */ sample_idx -= num_samples; if (header->shift < new_shift) { /* * Shift was updated, need to convert all the existing q values. This could * be optimized by calling zdsp_scale_q31() but that would force a * dependency between sensors and the zDSP subsystem. */ for (int q_idx = 0; q_idx < sample_idx; ++q_idx) { q[q_idx] = q[q_idx] >> (new_shift - header->shift); } header->shift = new_shift; } /* * Spread the q31 values. This is needed because some channels are 3D. If * the user specified one of those then num_samples will be 3; and we need to * produce 3 separate readings. */ for (int sample = 0; sample < num_samples; ++sample) { /* Check if the channel is already in the buffer */ int prev_computed_value_idx = check_header_contains_channel( header, header->channels[sample_idx + sample], sample_idx + sample); if (prev_computed_value_idx >= 0 && prev_computed_value_idx != sample_idx + sample) { LOG_DBG("value[%d] previously computed at q[%d]@%p", sample, prev_computed_value_idx, (void *)&q[prev_computed_value_idx]); q[sample_idx + sample] = q[prev_computed_value_idx]; continue; } /* Convert the value to micro-units */ int64_t value_u = sensor_value_to_micro(&value[sample]); /* Convert to q31 using the shift */ q[sample_idx + sample] = ((value_u * ((INT64_C(1) << 31) - 1)) / 1000000) >> header->shift; LOG_DBG("value[%d]=%s%d.%06d, q[%d]@%p=%d", sample, value_u < 0 ? "-" : "", abs((int)value[sample].val1), abs((int)value[sample].val2), (int)(sample_idx + sample), (void *)&q[sample_idx + sample], q[sample_idx + sample]); } sample_idx += num_samples; } LOG_DBG("Total channels in header: %zu", header->num_channels); rtio_iodev_sqe_ok(iodev_sqe, 0); } void sensor_processing_with_callback(struct rtio *ctx, sensor_processing_callback_t cb) { void *userdata = NULL; uint8_t *buf = NULL; uint32_t buf_len = 0; int rc; /* Wait for a CQE */ struct rtio_cqe *cqe = rtio_cqe_consume_block(ctx); /* Cache the data from the CQE */ rc = cqe->result; userdata = cqe->userdata; rtio_cqe_get_mempool_buffer(ctx, cqe, &buf, &buf_len); /* Release the CQE */ rtio_cqe_release(ctx, cqe); /* Call the callback */ cb(rc, buf, buf_len, userdata); /* Release the memory */ rtio_release_buffer(ctx, buf, buf_len); } /** * @brief Default decoder get frame count * * Default reader can only ever service a single frame at a time. * * @param[in] buffer The data buffer to parse * @param[out] frame_count The number of frames in the buffer (always 1) * @return 0 in all cases */ static int get_frame_count(const uint8_t *buffer, uint16_t *frame_count) { ARG_UNUSED(buffer); *frame_count = 1; return 0; } /** * @brief Default decoder get the timestamp of the first frame * * @param[in] buffer The data buffer to parse * @param[out] timestamp_ns The timestamp of the first frame * @return 0 in all cases */ static int get_timestamp(const uint8_t *buffer, uint64_t *timestamp_ns) { *timestamp_ns = ((struct sensor_data_generic_header *)buffer)->timestamp_ns; return 0; } /** * @brief Default decoder get the bitshift of the given channel (if possible) * * @param[in] buffer The data buffer to parse * @param[in] channel_type The channel to query * @param[out] shift The bitshift for the q31 value * @return 0 on success * @return -EINVAL if the @p channel_type couldn't be found */ static int get_shift(const uint8_t *buffer, enum sensor_channel channel_type, int8_t *shift) { struct sensor_data_generic_header *header = (struct sensor_data_generic_header *)buffer; ARG_UNUSED(channel_type); *shift = header->shift; return 0; } /** * @brief Default decoder decode N samples * * Decode up to N samples starting at the provided @p fit and @p cit. The appropriate channel types * and q31 values will be placed in @p values and @p channels respectively. * * @param[in] buffer The data buffer to decode * @param[in,out] fit The starting frame iterator * @param[in,out] cit The starting channel iterator * @param[out] channels The decoded channel types * @param[out] values The decoded q31 values * @param[in] max_count The maximum number of values to decode * @return > 0 The number of decoded values * @return 0 Nothing else to decode on this @p buffer * @return < 0 Error */ static int decode(const uint8_t *buffer, sensor_frame_iterator_t *fit, sensor_channel_iterator_t *cit, enum sensor_channel *channels, q31_t *values, uint8_t max_count) { const struct sensor_data_generic_header *header = (const struct sensor_data_generic_header *)buffer; const q31_t *q = (const q31_t *)(buffer + sizeof(struct sensor_data_generic_header) + header->num_channels * sizeof(enum sensor_channel)); int count = 0; if (*fit != 0 || *cit >= header->num_channels) { return -EINVAL; } /* Skip invalid channels */ while (*cit < header->num_channels && header->channels[*cit] == SENSOR_CHAN_MAX) { *cit += 1; } for (; *cit < header->num_channels && count < max_count; ++count) { channels[count] = header->channels[*cit]; values[count] = q[*cit]; LOG_DBG("Decoding q[%u]@%p=%d", *cit, (void *)&q[*cit], q[*cit]); *cit += 1; } if (*cit >= header->num_channels) { *fit = 1; *cit = 0; } return count; } const struct sensor_decoder_api __sensor_default_decoder = { .get_frame_count = get_frame_count, .get_timestamp = get_timestamp, .get_shift = get_shift, .decode = decode, };