/** @file * @brief Network packet buffer descriptor API * * Network data is passed between different parts of the stack via * net_buf struct. */ /* * Copyright (c) 2016 Intel Corporation * * SPDX-License-Identifier: Apache-2.0 */ /* Data buffer API - used for all data to/from net */ #ifndef ZEPHYR_INCLUDE_NET_NET_PKT_H_ #define ZEPHYR_INCLUDE_NET_NET_PKT_H_ #include #include #include #include #include #include #include #include #include #include #ifdef __cplusplus extern "C" { #endif /** * @brief Network packet management library * @defgroup net_pkt Network Packet Library * @ingroup networking * @{ */ struct net_context; struct canbus_net_isotp_tx_ctx; struct canbus_net_isotp_rx_ctx; /* buffer cursor used in net_pkt */ struct net_pkt_cursor { /** Current net_buf pointer by the cursor */ struct net_buf *buf; /** Current position in the data buffer of the net_buf */ uint8_t *pos; }; /** * @brief Network packet. * * Note that if you add new fields into net_pkt, remember to update * net_pkt_clone() function. */ struct net_pkt { /** * The fifo is used by RX/TX threads and by socket layer. The net_pkt * is queued via fifo to the processing thread. */ intptr_t fifo; /** Slab pointer from where it belongs to */ struct k_mem_slab *slab; /** buffer holding the packet */ union { struct net_buf *frags; struct net_buf *buffer; }; /** Internal buffer iterator used for reading/writing */ struct net_pkt_cursor cursor; /** Network connection context */ struct net_context *context; /** Network interface */ struct net_if *iface; /** @cond ignore */ #if defined(CONFIG_NET_ROUTING) struct net_if *orig_iface; /* Original network interface */ #endif #if defined(CONFIG_NET_PKT_TIMESTAMP) /** Timestamp if available. */ struct net_ptp_time timestamp; #endif #if defined(CONFIG_NET_PKT_RXTIME_STATS) || defined(CONFIG_NET_PKT_TXTIME_STATS) struct { /** Create time in cycles */ uint32_t create_time; #if defined(CONFIG_NET_PKT_TXTIME_STATS_DETAIL) || \ defined(CONFIG_NET_PKT_RXTIME_STATS_DETAIL) /** Collect extra statistics for net_pkt processing * from various points in the IP stack. See networking * documentation where these points are located and how * to interpret the results. */ struct { uint32_t stat[NET_PKT_DETAIL_STATS_COUNT]; int count; } detail; #endif /* CONFIG_NET_PKT_TXTIME_STATS_DETAIL || CONFIG_NET_PKT_RXTIME_STATS_DETAIL */ }; #endif /* CONFIG_NET_PKT_RXTIME_STATS || CONFIG_NET_PKT_TXTIME_STATS */ #if defined(CONFIG_NET_PKT_TXTIME) /** Network packet TX time in the future (in nanoseconds) */ uint64_t txtime; #endif /* CONFIG_NET_PKT_TXTIME */ /** Reference counter */ atomic_t atomic_ref; /* Filled by layer 2 when network packet is received. */ struct net_linkaddr lladdr_src; struct net_linkaddr lladdr_dst; #if defined(CONFIG_NET_TCP2) /** Allow placing the packet into sys_slist_t */ sys_snode_t next; #endif uint8_t ip_hdr_len; /* pre-filled in order to avoid func call */ uint8_t overwrite : 1; /* Is packet content being overwritten? */ uint8_t sent_or_eof: 1; /* For outgoing packet: is this sent or not * For incoming packet of a socket: last * packet before EOF * Used only if defined(CONFIG_NET_TCP) */ union { uint8_t pkt_queued: 1; /* For outgoing packet: is this packet * queued to be sent but has not reached * the driver yet. * Used only if defined(CONFIG_NET_TCP) */ uint8_t gptp_pkt: 1; /* For outgoing packet: is this packet * a GPTP packet. * Used only if defined (CONFIG_NET_GPTP) */ }; uint8_t forwarding : 1; /* Are we forwarding this pkt * Used only if defined(CONFIG_NET_ROUTE) */ uint8_t family : 3; /* IPv4 vs IPv6 */ union { uint8_t ipv4_auto_arp_msg : 1; /* Is this pkt IPv4 autoconf ARP * message. Used only if * defined(CONFIG_NET_IPV4_AUTO). * Note: family needs to be * AF_INET. */ uint8_t lldp_pkt : 1; /* Is this pkt an LLDP message. * Used only if * defined(CONFIG_NET_LLDP). * Note: family needs to be * AF_UNSPEC. */ uint8_t ppp_msg : 1; /* This is a PPP message */ }; #if defined(CONFIG_NET_TCP) uint8_t tcp_first_msg : 1; /* Is this the first time this pkt is * sent, or is this a resend of a TCP * segment. */ #endif uint8_t captured : 1; /* Set to 1 if this packet is already being * captured */ uint8_t l2_bridged : 1; /* set to 1 if this packet comes from a bridge * and already contains its L2 header to be * preserved. Useful only if * defined(CONFIG_NET_ETHERNET_BRIDGE). */ union { /* IPv6 hop limit or IPv4 ttl for this network packet. * The value is shared between IPv6 and IPv4. */ uint8_t ipv6_hop_limit; uint8_t ipv4_ttl; }; union { #if defined(CONFIG_NET_IPV4) uint8_t ipv4_opts_len; /* Length if IPv4 Header Options */ #endif #if defined(CONFIG_NET_IPV6) uint16_t ipv6_ext_len; /* length of extension headers */ #endif }; /** Network packet priority, can be left out in which case packet * is not prioritised. */ uint8_t priority; #if defined(CONFIG_NET_VLAN) /* VLAN TCI (Tag Control Information). This contains the Priority * Code Point (PCP), Drop Eligible Indicator (DEI) and VLAN * Identifier (VID, called more commonly VLAN tag). This value is * kept in host byte order. */ uint16_t vlan_tci; #endif /* CONFIG_NET_VLAN */ #if defined(CONFIG_NET_IPV6) /* Where is the start of the last header before payload data * in IPv6 packet. This is offset value from start of the IPv6 * packet. Note that this value should be updated by who ever * adds IPv6 extension headers to the network packet. */ uint16_t ipv6_prev_hdr_start; #if defined(CONFIG_NET_IPV6_FRAGMENT) uint16_t ipv6_fragment_flags; /* Fragment offset and M (More Fragment) flag */ uint32_t ipv6_fragment_id; /* Fragment id */ uint16_t ipv6_frag_hdr_start; /* Where starts the fragment header */ #endif /* CONFIG_NET_IPV6_FRAGMENT */ uint8_t ipv6_ext_opt_len; /* IPv6 ND option length */ uint8_t ipv6_next_hdr; /* What is the very first next header */ #endif /* CONFIG_NET_IPV6 */ #if defined(CONFIG_IEEE802154) uint8_t ieee802154_rssi; /* Received Signal Strength Indication */ uint8_t ieee802154_lqi; /* Link Quality Indicator */ uint8_t ieee802154_arb : 1; /* ACK Request Bit is set in the frame */ uint8_t ieee802154_ack_fpb : 1; /* Frame Pending Bit was set in the ACK */ uint8_t ieee802154_frame_secured : 1; /* Frame is authenticated and * encrypted according to its * Auxiliary Security Header */ uint8_t ieee802154_mac_hdr_rdy : 1; /* Indicates if frame's MAC header * is ready to be transmitted or if * it requires further modifications, * e.g. Frame Counter injection. */ #if defined(CONFIG_IEEE802154_2015) uint8_t ieee802154_fv2015 : 1; /* Frame version is IEEE 802.15.4-2015 */ uint8_t ieee802154_ack_seb : 1; /* Security Enabled Bit was set in the ACK */ uint32_t ieee802154_ack_fc; /* Frame counter set in the ACK */ uint8_t ieee802154_ack_keyid; /* Key index set in the ACK */ #endif #endif #if defined(CONFIG_NET_L2_CANBUS) union { struct canbus_isotp_tx_ctx *canbus_tx_ctx; struct canbus_isotp_rx_ctx *canbus_rx_ctx; }; #endif /* @endcond */ }; /** @cond ignore */ /* The interface real ll address */ static inline struct net_linkaddr *net_pkt_lladdr_if(struct net_pkt *pkt) { return net_if_get_link_addr(pkt->iface); } static inline struct net_context *net_pkt_context(struct net_pkt *pkt) { return pkt->context; } static inline void net_pkt_set_context(struct net_pkt *pkt, struct net_context *ctx) { pkt->context = ctx; } static inline struct net_if *net_pkt_iface(struct net_pkt *pkt) { return pkt->iface; } static inline void net_pkt_set_iface(struct net_pkt *pkt, struct net_if *iface) { pkt->iface = iface; /* If the network interface is set in pkt, then also set the type of * the network address that is stored in pkt. This is done here so * that the address type is properly set and is not forgotten. */ if (iface) { pkt->lladdr_src.type = net_if_get_link_addr(iface)->type; pkt->lladdr_dst.type = net_if_get_link_addr(iface)->type; } } static inline struct net_if *net_pkt_orig_iface(struct net_pkt *pkt) { #if defined(CONFIG_NET_ROUTING) return pkt->orig_iface; #else return pkt->iface; #endif } static inline void net_pkt_set_orig_iface(struct net_pkt *pkt, struct net_if *iface) { #if defined(CONFIG_NET_ROUTING) pkt->orig_iface = iface; #endif } static inline uint8_t net_pkt_family(struct net_pkt *pkt) { return pkt->family; } static inline void net_pkt_set_family(struct net_pkt *pkt, uint8_t family) { pkt->family = family; } static inline bool net_pkt_is_gptp(struct net_pkt *pkt) { return !!(pkt->gptp_pkt); } static inline void net_pkt_set_gptp(struct net_pkt *pkt, bool is_gptp) { pkt->gptp_pkt = is_gptp; } static inline bool net_pkt_is_captured(struct net_pkt *pkt) { return !!(pkt->captured); } static inline void net_pkt_set_captured(struct net_pkt *pkt, bool is_captured) { pkt->captured = is_captured; } static inline bool net_pkt_is_l2_bridged(struct net_pkt *pkt) { return IS_ENABLED(CONFIG_NET_ETHERNET_BRIDGE) ? !!(pkt->l2_bridged) : 0; } static inline void net_pkt_set_l2_bridged(struct net_pkt *pkt, bool is_l2_bridged) { if (IS_ENABLED(CONFIG_NET_ETHERNET_BRIDGE)) { pkt->l2_bridged = is_l2_bridged; } } static inline uint8_t net_pkt_ip_hdr_len(struct net_pkt *pkt) { return pkt->ip_hdr_len; } static inline void net_pkt_set_ip_hdr_len(struct net_pkt *pkt, uint8_t len) { pkt->ip_hdr_len = len; } static inline uint8_t net_pkt_sent(struct net_pkt *pkt) { return pkt->sent_or_eof; } static inline void net_pkt_set_sent(struct net_pkt *pkt, bool sent) { pkt->sent_or_eof = sent; } static inline uint8_t net_pkt_queued(struct net_pkt *pkt) { return pkt->pkt_queued; } static inline void net_pkt_set_queued(struct net_pkt *pkt, bool send) { pkt->pkt_queued = send; } static inline uint8_t net_pkt_tcp_1st_msg(struct net_pkt *pkt) { #if defined(CONFIG_NET_TCP) return pkt->tcp_first_msg; #else return true; #endif } static inline void net_pkt_set_tcp_1st_msg(struct net_pkt *pkt, bool is_1st) { #if defined(CONFIG_NET_TCP) pkt->tcp_first_msg = is_1st; #else ARG_UNUSED(pkt); ARG_UNUSED(is_1st); #endif } #if defined(CONFIG_NET_SOCKETS) static inline uint8_t net_pkt_eof(struct net_pkt *pkt) { return pkt->sent_or_eof; } static inline void net_pkt_set_eof(struct net_pkt *pkt, bool eof) { pkt->sent_or_eof = eof; } #endif #if defined(CONFIG_NET_ROUTE) static inline bool net_pkt_forwarding(struct net_pkt *pkt) { return pkt->forwarding; } static inline void net_pkt_set_forwarding(struct net_pkt *pkt, bool forward) { pkt->forwarding = forward; } #else static inline bool net_pkt_forwarding(struct net_pkt *pkt) { return false; } #endif #if defined(CONFIG_NET_IPV4) static inline uint8_t net_pkt_ipv4_ttl(struct net_pkt *pkt) { return pkt->ipv4_ttl; } static inline void net_pkt_set_ipv4_ttl(struct net_pkt *pkt, uint8_t ttl) { pkt->ipv4_ttl = ttl; } static inline uint8_t net_pkt_ipv4_opts_len(struct net_pkt *pkt) { return pkt->ipv4_opts_len; } static inline void net_pkt_set_ipv4_opts_len(struct net_pkt *pkt, uint8_t opts_len) { pkt->ipv4_opts_len = opts_len; } #else static inline uint8_t net_pkt_ipv4_ttl(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv4_ttl(struct net_pkt *pkt, uint8_t ttl) { ARG_UNUSED(pkt); ARG_UNUSED(ttl); } static inline uint8_t net_pkt_ipv4_opts_len(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv4_opts_len(struct net_pkt *pkt, uint8_t opts_len) { ARG_UNUSED(pkt); ARG_UNUSED(opts_len); } #endif #if defined(CONFIG_NET_IPV6) static inline uint8_t net_pkt_ipv6_ext_opt_len(struct net_pkt *pkt) { return pkt->ipv6_ext_opt_len; } static inline void net_pkt_set_ipv6_ext_opt_len(struct net_pkt *pkt, uint8_t len) { pkt->ipv6_ext_opt_len = len; } static inline uint8_t net_pkt_ipv6_next_hdr(struct net_pkt *pkt) { return pkt->ipv6_next_hdr; } static inline void net_pkt_set_ipv6_next_hdr(struct net_pkt *pkt, uint8_t next_hdr) { pkt->ipv6_next_hdr = next_hdr; } static inline uint16_t net_pkt_ipv6_ext_len(struct net_pkt *pkt) { return pkt->ipv6_ext_len; } static inline void net_pkt_set_ipv6_ext_len(struct net_pkt *pkt, uint16_t len) { pkt->ipv6_ext_len = len; } static inline uint16_t net_pkt_ipv6_hdr_prev(struct net_pkt *pkt) { return pkt->ipv6_prev_hdr_start; } static inline void net_pkt_set_ipv6_hdr_prev(struct net_pkt *pkt, uint16_t offset) { pkt->ipv6_prev_hdr_start = offset; } static inline uint8_t net_pkt_ipv6_hop_limit(struct net_pkt *pkt) { return pkt->ipv6_hop_limit; } static inline void net_pkt_set_ipv6_hop_limit(struct net_pkt *pkt, uint8_t hop_limit) { pkt->ipv6_hop_limit = hop_limit; } #else /* CONFIG_NET_IPV6 */ static inline uint8_t net_pkt_ipv6_ext_opt_len(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv6_ext_opt_len(struct net_pkt *pkt, uint8_t len) { ARG_UNUSED(pkt); ARG_UNUSED(len); } static inline uint8_t net_pkt_ipv6_next_hdr(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv6_next_hdr(struct net_pkt *pkt, uint8_t next_hdr) { ARG_UNUSED(pkt); ARG_UNUSED(next_hdr); } static inline uint16_t net_pkt_ipv6_ext_len(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv6_ext_len(struct net_pkt *pkt, uint16_t len) { ARG_UNUSED(pkt); ARG_UNUSED(len); } static inline uint16_t net_pkt_ipv6_hdr_prev(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv6_hdr_prev(struct net_pkt *pkt, uint16_t offset) { ARG_UNUSED(pkt); ARG_UNUSED(offset); } static inline uint8_t net_pkt_ipv6_hop_limit(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv6_hop_limit(struct net_pkt *pkt, uint8_t hop_limit) { ARG_UNUSED(pkt); ARG_UNUSED(hop_limit); } #endif /* CONFIG_NET_IPV6 */ static inline uint16_t net_pkt_ip_opts_len(struct net_pkt *pkt) { #if defined(CONFIG_NET_IPV6) return pkt->ipv6_ext_len; #elif defined(CONFIG_NET_IPV4) return pkt->ipv4_opts_len; #else ARG_UNUSED(pkt); return 0; #endif } #if defined(CONFIG_NET_IPV6_FRAGMENT) static inline uint16_t net_pkt_ipv6_fragment_start(struct net_pkt *pkt) { return pkt->ipv6_frag_hdr_start; } static inline void net_pkt_set_ipv6_fragment_start(struct net_pkt *pkt, uint16_t start) { pkt->ipv6_frag_hdr_start = start; } static inline uint16_t net_pkt_ipv6_fragment_offset(struct net_pkt *pkt) { return pkt->ipv6_fragment_flags & NET_IPV6_FRAGH_OFFSET_MASK; } static inline bool net_pkt_ipv6_fragment_more(struct net_pkt *pkt) { return (pkt->ipv6_fragment_flags & 0x01) != 0; } static inline void net_pkt_set_ipv6_fragment_flags(struct net_pkt *pkt, uint16_t flags) { pkt->ipv6_fragment_flags = flags; } static inline uint32_t net_pkt_ipv6_fragment_id(struct net_pkt *pkt) { return pkt->ipv6_fragment_id; } static inline void net_pkt_set_ipv6_fragment_id(struct net_pkt *pkt, uint32_t id) { pkt->ipv6_fragment_id = id; } #else /* CONFIG_NET_IPV6_FRAGMENT */ static inline uint16_t net_pkt_ipv6_fragment_start(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv6_fragment_start(struct net_pkt *pkt, uint16_t start) { ARG_UNUSED(pkt); ARG_UNUSED(start); } static inline uint16_t net_pkt_ipv6_fragment_offset(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline bool net_pkt_ipv6_fragment_more(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv6_fragment_flags(struct net_pkt *pkt, uint16_t flags) { ARG_UNUSED(pkt); ARG_UNUSED(flags); } static inline uint32_t net_pkt_ipv6_fragment_id(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_ipv6_fragment_id(struct net_pkt *pkt, uint32_t id) { ARG_UNUSED(pkt); ARG_UNUSED(id); } #endif /* CONFIG_NET_IPV6_FRAGMENT */ static inline uint8_t net_pkt_priority(struct net_pkt *pkt) { return pkt->priority; } static inline void net_pkt_set_priority(struct net_pkt *pkt, uint8_t priority) { pkt->priority = priority; } #if defined(CONFIG_NET_VLAN) static inline uint16_t net_pkt_vlan_tag(struct net_pkt *pkt) { return net_eth_vlan_get_vid(pkt->vlan_tci); } static inline void net_pkt_set_vlan_tag(struct net_pkt *pkt, uint16_t tag) { pkt->vlan_tci = net_eth_vlan_set_vid(pkt->vlan_tci, tag); } static inline uint8_t net_pkt_vlan_priority(struct net_pkt *pkt) { return net_eth_vlan_get_pcp(pkt->vlan_tci); } static inline void net_pkt_set_vlan_priority(struct net_pkt *pkt, uint8_t priority) { pkt->vlan_tci = net_eth_vlan_set_pcp(pkt->vlan_tci, priority); } static inline bool net_pkt_vlan_dei(struct net_pkt *pkt) { return net_eth_vlan_get_dei(pkt->vlan_tci); } static inline void net_pkt_set_vlan_dei(struct net_pkt *pkt, bool dei) { pkt->vlan_tci = net_eth_vlan_set_dei(pkt->vlan_tci, dei); } static inline void net_pkt_set_vlan_tci(struct net_pkt *pkt, uint16_t tci) { pkt->vlan_tci = tci; } static inline uint16_t net_pkt_vlan_tci(struct net_pkt *pkt) { return pkt->vlan_tci; } #else static inline uint16_t net_pkt_vlan_tag(struct net_pkt *pkt) { return NET_VLAN_TAG_UNSPEC; } static inline void net_pkt_set_vlan_tag(struct net_pkt *pkt, uint16_t tag) { ARG_UNUSED(pkt); ARG_UNUSED(tag); } static inline uint8_t net_pkt_vlan_priority(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline bool net_pkt_vlan_dei(struct net_pkt *pkt) { return false; } static inline void net_pkt_set_vlan_dei(struct net_pkt *pkt, bool dei) { ARG_UNUSED(pkt); ARG_UNUSED(dei); } static inline uint16_t net_pkt_vlan_tci(struct net_pkt *pkt) { return NET_VLAN_TAG_UNSPEC; /* assumes priority is 0 */ } static inline void net_pkt_set_vlan_tci(struct net_pkt *pkt, uint16_t tci) { ARG_UNUSED(pkt); ARG_UNUSED(tci); } #endif #if defined(CONFIG_NET_PKT_TIMESTAMP) static inline struct net_ptp_time *net_pkt_timestamp(struct net_pkt *pkt) { return &pkt->timestamp; } static inline void net_pkt_set_timestamp(struct net_pkt *pkt, struct net_ptp_time *timestamp) { pkt->timestamp.second = timestamp->second; pkt->timestamp.nanosecond = timestamp->nanosecond; } #else static inline struct net_ptp_time *net_pkt_timestamp(struct net_pkt *pkt) { ARG_UNUSED(pkt); return NULL; } static inline void net_pkt_set_timestamp(struct net_pkt *pkt, struct net_ptp_time *timestamp) { ARG_UNUSED(pkt); ARG_UNUSED(timestamp); } #endif /* CONFIG_NET_PKT_TIMESTAMP */ #if defined(CONFIG_NET_PKT_RXTIME_STATS) || defined(CONFIG_NET_PKT_TXTIME_STATS) static inline uint32_t net_pkt_create_time(struct net_pkt *pkt) { return pkt->create_time; } static inline void net_pkt_set_create_time(struct net_pkt *pkt, uint32_t create_time) { pkt->create_time = create_time; } #else static inline uint32_t net_pkt_create_time(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0U; } static inline void net_pkt_set_create_time(struct net_pkt *pkt, uint32_t create_time) { ARG_UNUSED(pkt); ARG_UNUSED(create_time); } #endif /* CONFIG_NET_PKT_RXTIME_STATS || CONFIG_NET_PKT_TXTIME_STATS */ #if defined(CONFIG_NET_PKT_TXTIME) static inline uint64_t net_pkt_txtime(struct net_pkt *pkt) { return pkt->txtime; } static inline void net_pkt_set_txtime(struct net_pkt *pkt, uint64_t txtime) { pkt->txtime = txtime; } #else static inline uint64_t net_pkt_txtime(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_set_txtime(struct net_pkt *pkt, uint64_t txtime) { ARG_UNUSED(pkt); ARG_UNUSED(txtime); } #endif /* CONFIG_NET_PKT_TXTIME */ #if defined(CONFIG_NET_PKT_TXTIME_STATS_DETAIL) || \ defined(CONFIG_NET_PKT_RXTIME_STATS_DETAIL) static inline uint32_t *net_pkt_stats_tick(struct net_pkt *pkt) { return pkt->detail.stat; } static inline int net_pkt_stats_tick_count(struct net_pkt *pkt) { return pkt->detail.count; } static inline void net_pkt_stats_tick_reset(struct net_pkt *pkt) { memset(&pkt->detail, 0, sizeof(pkt->detail)); } static ALWAYS_INLINE void net_pkt_set_stats_tick(struct net_pkt *pkt, uint32_t tick) { if (pkt->detail.count >= NET_PKT_DETAIL_STATS_COUNT) { NET_ERR("Detail stats count overflow (%d >= %d)", pkt->detail.count, NET_PKT_DETAIL_STATS_COUNT); return; } pkt->detail.stat[pkt->detail.count++] = tick; } #define net_pkt_set_tx_stats_tick(pkt, tick) net_pkt_set_stats_tick(pkt, tick) #define net_pkt_set_rx_stats_tick(pkt, tick) net_pkt_set_stats_tick(pkt, tick) #else static inline uint32_t *net_pkt_stats_tick(struct net_pkt *pkt) { ARG_UNUSED(pkt); return NULL; } static inline int net_pkt_stats_tick_count(struct net_pkt *pkt) { ARG_UNUSED(pkt); return 0; } static inline void net_pkt_stats_tick_reset(struct net_pkt *pkt) { ARG_UNUSED(pkt); } static inline void net_pkt_set_stats_tick(struct net_pkt *pkt, uint32_t tick) { ARG_UNUSED(pkt); ARG_UNUSED(tick); } #define net_pkt_set_tx_stats_tick(pkt, tick) #define net_pkt_set_rx_stats_tick(pkt, tick) #endif /* CONFIG_NET_PKT_TXTIME_STATS_DETAIL || CONFIG_NET_PKT_RXTIME_STATS_DETAIL */ static inline size_t net_pkt_get_len(struct net_pkt *pkt) { return net_buf_frags_len(pkt->frags); } static inline uint8_t *net_pkt_data(struct net_pkt *pkt) { return pkt->frags->data; } static inline uint8_t *net_pkt_ip_data(struct net_pkt *pkt) { return pkt->frags->data; } static inline bool net_pkt_is_empty(struct net_pkt *pkt) { return !pkt->buffer || !net_pkt_data(pkt) || pkt->buffer->len == 0; } static inline struct net_linkaddr *net_pkt_lladdr_src(struct net_pkt *pkt) { return &pkt->lladdr_src; } static inline struct net_linkaddr *net_pkt_lladdr_dst(struct net_pkt *pkt) { return &pkt->lladdr_dst; } static inline void net_pkt_lladdr_swap(struct net_pkt *pkt) { uint8_t *addr = net_pkt_lladdr_src(pkt)->addr; net_pkt_lladdr_src(pkt)->addr = net_pkt_lladdr_dst(pkt)->addr; net_pkt_lladdr_dst(pkt)->addr = addr; } static inline void net_pkt_lladdr_clear(struct net_pkt *pkt) { net_pkt_lladdr_src(pkt)->addr = NULL; net_pkt_lladdr_src(pkt)->len = 0U; } #if defined(CONFIG_IEEE802154) || defined(CONFIG_IEEE802154_RAW_MODE) static inline uint8_t net_pkt_ieee802154_rssi(struct net_pkt *pkt) { return pkt->ieee802154_rssi; } static inline void net_pkt_set_ieee802154_rssi(struct net_pkt *pkt, uint8_t rssi) { pkt->ieee802154_rssi = rssi; } static inline uint8_t net_pkt_ieee802154_lqi(struct net_pkt *pkt) { return pkt->ieee802154_lqi; } static inline void net_pkt_set_ieee802154_lqi(struct net_pkt *pkt, uint8_t lqi) { pkt->ieee802154_lqi = lqi; } static inline bool net_pkt_ieee802154_arb(struct net_pkt *pkt) { return pkt->ieee802154_arb; } static inline void net_pkt_set_ieee802154_arb(struct net_pkt *pkt, bool arb) { pkt->ieee802154_arb = arb; } static inline bool net_pkt_ieee802154_ack_fpb(struct net_pkt *pkt) { return pkt->ieee802154_ack_fpb; } static inline void net_pkt_set_ieee802154_ack_fpb(struct net_pkt *pkt, bool fpb) { pkt->ieee802154_ack_fpb = fpb; } static inline bool net_pkt_ieee802154_frame_secured(struct net_pkt *pkt) { return pkt->ieee802154_frame_secured; } static inline void net_pkt_set_ieee802154_frame_secured(struct net_pkt *pkt, bool secured) { pkt->ieee802154_frame_secured = secured; } static inline bool net_pkt_ieee802154_mac_hdr_rdy(struct net_pkt *pkt) { return pkt->ieee802154_mac_hdr_rdy; } static inline void net_pkt_set_ieee802154_mac_hdr_rdy(struct net_pkt *pkt, bool rdy) { pkt->ieee802154_mac_hdr_rdy = rdy; } #if defined(CONFIG_IEEE802154_2015) static inline bool net_pkt_ieee802154_fv2015(struct net_pkt *pkt) { return pkt->ieee802154_fv2015; } static inline void net_pkt_set_ieee802154_fv2015(struct net_pkt *pkt, bool fv2015) { pkt->ieee802154_fv2015 = fv2015; } static inline bool net_pkt_ieee802154_ack_seb(struct net_pkt *pkt) { return pkt->ieee802154_ack_seb; } static inline void net_pkt_set_ieee802154_ack_seb(struct net_pkt *pkt, bool seb) { pkt->ieee802154_ack_seb = seb; } static inline uint32_t net_pkt_ieee802154_ack_fc(struct net_pkt *pkt) { return pkt->ieee802154_ack_fc; } static inline void net_pkt_set_ieee802154_ack_fc(struct net_pkt *pkt, uint32_t fc) { pkt->ieee802154_ack_fc = fc; } static inline uint8_t net_pkt_ieee802154_ack_keyid(struct net_pkt *pkt) { return pkt->ieee802154_ack_keyid; } static inline void net_pkt_set_ieee802154_ack_keyid(struct net_pkt *pkt, uint8_t keyid) { pkt->ieee802154_ack_keyid = keyid; } #endif /* CONFIG_IEEE802154_2015 */ #endif /* CONFIG_IEEE802154 || CONFIG_IEEE802154_RAW_MODE */ #if defined(CONFIG_NET_IPV4_AUTO) static inline bool net_pkt_ipv4_auto(struct net_pkt *pkt) { return pkt->ipv4_auto_arp_msg; } static inline void net_pkt_set_ipv4_auto(struct net_pkt *pkt, bool is_auto_arp_msg) { pkt->ipv4_auto_arp_msg = is_auto_arp_msg; } #else /* CONFIG_NET_IPV4_AUTO */ static inline bool net_pkt_ipv4_auto(struct net_pkt *pkt) { ARG_UNUSED(pkt); return false; } static inline void net_pkt_set_ipv4_auto(struct net_pkt *pkt, bool is_auto_arp_msg) { ARG_UNUSED(pkt); ARG_UNUSED(is_auto_arp_msg); } #endif /* CONFIG_NET_IPV4_AUTO */ #if defined(CONFIG_NET_LLDP) static inline bool net_pkt_is_lldp(struct net_pkt *pkt) { return pkt->lldp_pkt; } static inline void net_pkt_set_lldp(struct net_pkt *pkt, bool is_lldp) { pkt->lldp_pkt = is_lldp; } #else static inline bool net_pkt_is_lldp(struct net_pkt *pkt) { ARG_UNUSED(pkt); return false; } static inline void net_pkt_set_lldp(struct net_pkt *pkt, bool is_lldp) { ARG_UNUSED(pkt); ARG_UNUSED(is_lldp); } #endif /* CONFIG_NET_LLDP */ #if defined(CONFIG_NET_PPP) static inline bool net_pkt_is_ppp(struct net_pkt *pkt) { return pkt->ppp_msg; } static inline void net_pkt_set_ppp(struct net_pkt *pkt, bool is_ppp_msg) { pkt->ppp_msg = is_ppp_msg; } #else /* CONFIG_NET_PPP */ static inline bool net_pkt_is_ppp(struct net_pkt *pkt) { ARG_UNUSED(pkt); return false; } static inline void net_pkt_set_ppp(struct net_pkt *pkt, bool is_ppp_msg) { ARG_UNUSED(pkt); ARG_UNUSED(is_ppp_msg); } #endif /* CONFIG_NET_PPP */ #define NET_IPV6_HDR(pkt) ((struct net_ipv6_hdr *)net_pkt_ip_data(pkt)) #define NET_IPV4_HDR(pkt) ((struct net_ipv4_hdr *)net_pkt_ip_data(pkt)) static inline void net_pkt_set_src_ipv6_addr(struct net_pkt *pkt) { net_if_ipv6_select_src_addr(net_context_get_iface( net_pkt_context(pkt)), &NET_IPV6_HDR(pkt)->src); } static inline void net_pkt_set_overwrite(struct net_pkt *pkt, bool overwrite) { pkt->overwrite = overwrite; } static inline bool net_pkt_is_being_overwritten(struct net_pkt *pkt) { return pkt->overwrite; } /* @endcond */ /** * @brief Create a net_pkt slab * * A net_pkt slab is used to store meta-information about * network packets. It must be coupled with a data fragment pool * (:c:macro:`NET_PKT_DATA_POOL_DEFINE`) used to store the actual * packet data. The macro can be used by an application to define * additional custom per-context TX packet slabs (see * :c:func:`net_context_setup_pools`). * * @param name Name of the slab. * @param count Number of net_pkt in this slab. */ #define NET_PKT_SLAB_DEFINE(name, count) \ K_MEM_SLAB_DEFINE(name, sizeof(struct net_pkt), count, 4) /* Backward compatibility macro */ #define NET_PKT_TX_SLAB_DEFINE(name, count) NET_PKT_SLAB_DEFINE(name, count) /** * @brief Create a data fragment net_buf pool * * A net_buf pool is used to store actual data for * network packets. It must be coupled with a net_pkt slab * (:c:macro:`NET_PKT_SLAB_DEFINE`) used to store the packet * meta-information. The macro can be used by an application to * define additional custom per-context TX packet pools (see * :c:func:`net_context_setup_pools`). * * @param name Name of the pool. * @param count Number of net_buf in this pool. */ #define NET_PKT_DATA_POOL_DEFINE(name, count) \ NET_BUF_POOL_DEFINE(name, count, CONFIG_NET_BUF_DATA_SIZE, \ CONFIG_NET_BUF_USER_DATA_SIZE, NULL) /** @cond INTERNAL_HIDDEN */ #if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC) || \ (CONFIG_NET_PKT_LOG_LEVEL >= LOG_LEVEL_DBG) #define NET_PKT_DEBUG_ENABLED #endif #if defined(NET_PKT_DEBUG_ENABLED) /* Debug versions of the net_pkt functions that are used when tracking * buffer usage. */ struct net_buf *net_pkt_get_reserve_data_debug(struct net_buf_pool *pool, k_timeout_t timeout, const char *caller, int line); #define net_pkt_get_reserve_data(pool, timeout) \ net_pkt_get_reserve_data_debug(pool, timeout, __func__, __LINE__) struct net_buf *net_pkt_get_reserve_rx_data_debug(k_timeout_t timeout, const char *caller, int line); #define net_pkt_get_reserve_rx_data(timeout) \ net_pkt_get_reserve_rx_data_debug(timeout, __func__, __LINE__) struct net_buf *net_pkt_get_reserve_tx_data_debug(k_timeout_t timeout, const char *caller, int line); #define net_pkt_get_reserve_tx_data(timeout) \ net_pkt_get_reserve_tx_data_debug(timeout, __func__, __LINE__) struct net_buf *net_pkt_get_frag_debug(struct net_pkt *pkt, k_timeout_t timeout, const char *caller, int line); #define net_pkt_get_frag(pkt, timeout) \ net_pkt_get_frag_debug(pkt, timeout, __func__, __LINE__) void net_pkt_unref_debug(struct net_pkt *pkt, const char *caller, int line); #define net_pkt_unref(pkt) net_pkt_unref_debug(pkt, __func__, __LINE__) struct net_pkt *net_pkt_ref_debug(struct net_pkt *pkt, const char *caller, int line); #define net_pkt_ref(pkt) net_pkt_ref_debug(pkt, __func__, __LINE__) struct net_buf *net_pkt_frag_ref_debug(struct net_buf *frag, const char *caller, int line); #define net_pkt_frag_ref(frag) net_pkt_frag_ref_debug(frag, __func__, __LINE__) void net_pkt_frag_unref_debug(struct net_buf *frag, const char *caller, int line); #define net_pkt_frag_unref(frag) \ net_pkt_frag_unref_debug(frag, __func__, __LINE__) struct net_buf *net_pkt_frag_del_debug(struct net_pkt *pkt, struct net_buf *parent, struct net_buf *frag, const char *caller, int line); #define net_pkt_frag_del(pkt, parent, frag) \ net_pkt_frag_del_debug(pkt, parent, frag, __func__, __LINE__) void net_pkt_frag_add_debug(struct net_pkt *pkt, struct net_buf *frag, const char *caller, int line); #define net_pkt_frag_add(pkt, frag) \ net_pkt_frag_add_debug(pkt, frag, __func__, __LINE__) void net_pkt_frag_insert_debug(struct net_pkt *pkt, struct net_buf *frag, const char *caller, int line); #define net_pkt_frag_insert(pkt, frag) \ net_pkt_frag_insert_debug(pkt, frag, __func__, __LINE__) #endif /* CONFIG_NET_DEBUG_NET_PKT_ALLOC || * CONFIG_NET_PKT_LOG_LEVEL >= LOG_LEVEL_DBG */ /** @endcond */ /** * @brief Print fragment list and the fragment sizes * * @details Only available if debugging is activated. * * @param pkt Network pkt. */ #if defined(NET_PKT_DEBUG_ENABLED) void net_pkt_print_frags(struct net_pkt *pkt); #else #define net_pkt_print_frags(pkt) #endif /** * @brief Get RX DATA buffer from pool. * Normally you should use net_pkt_get_frag() instead. * * @details Normally this version is not useful for applications * but is mainly used by network fragmentation code. * * @param timeout Affects the action taken should the net buf pool be empty. * If K_NO_WAIT, then return immediately. If K_FOREVER, then * wait as long as necessary. Otherwise, wait up to the specified time. * * @return Network buffer if successful, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_buf *net_pkt_get_reserve_rx_data(k_timeout_t timeout); #endif /** * @brief Get TX DATA buffer from pool. * Normally you should use net_pkt_get_frag() instead. * * @details Normally this version is not useful for applications * but is mainly used by network fragmentation code. * * @param timeout Affects the action taken should the net buf pool be empty. * If K_NO_WAIT, then return immediately. If K_FOREVER, then * wait as long as necessary. Otherwise, wait up to the specified time. * * @return Network buffer if successful, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_buf *net_pkt_get_reserve_tx_data(k_timeout_t timeout); #endif /** * @brief Get a data fragment that might be from user specific * buffer pool or from global DATA pool. * * @param pkt Network packet. * @param timeout Affects the action taken should the net buf pool be empty. * If K_NO_WAIT, then return immediately. If K_FOREVER, then * wait as long as necessary. Otherwise, wait up to the specified time. * * @return Network buffer if successful, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_buf *net_pkt_get_frag(struct net_pkt *pkt, k_timeout_t timeout); #endif /** * @brief Place packet back into the available packets slab * * @details Releases the packet to other use. This needs to be * called by application after it has finished with the packet. * * @param pkt Network packet to release. * */ #if !defined(NET_PKT_DEBUG_ENABLED) void net_pkt_unref(struct net_pkt *pkt); #endif /** * @brief Increase the packet ref count * * @details Mark the packet to be used still. * * @param pkt Network packet to ref. * * @return Network packet if successful, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_pkt *net_pkt_ref(struct net_pkt *pkt); #endif /** * @brief Increase the packet fragment ref count * * @details Mark the fragment to be used still. * * @param frag Network fragment to ref. * * @return a pointer on the referenced Network fragment. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_buf *net_pkt_frag_ref(struct net_buf *frag); #endif /** * @brief Decrease the packet fragment ref count * * @param frag Network fragment to unref. */ #if !defined(NET_PKT_DEBUG_ENABLED) void net_pkt_frag_unref(struct net_buf *frag); #endif /** * @brief Delete existing fragment from a packet * * @param pkt Network packet from which frag belongs to. * @param parent parent fragment of frag, or NULL if none. * @param frag Fragment to delete. * * @return Pointer to the following fragment, or NULL if it had no * further fragments. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_buf *net_pkt_frag_del(struct net_pkt *pkt, struct net_buf *parent, struct net_buf *frag); #endif /** * @brief Add a fragment to a packet at the end of its fragment list * * @param pkt pkt Network packet where to add the fragment * @param frag Fragment to add */ #if !defined(NET_PKT_DEBUG_ENABLED) void net_pkt_frag_add(struct net_pkt *pkt, struct net_buf *frag); #endif /** * @brief Insert a fragment to a packet at the beginning of its fragment list * * @param pkt pkt Network packet where to insert the fragment * @param frag Fragment to insert */ #if !defined(NET_PKT_DEBUG_ENABLED) void net_pkt_frag_insert(struct net_pkt *pkt, struct net_buf *frag); #endif /** * @brief Compact the fragment list of a packet. * * @details After this there is no more any free space in individual fragments. * @param pkt Network packet. * * @return True if compact success, False otherwise. */ bool net_pkt_compact(struct net_pkt *pkt); /** * @brief Get information about predefined RX, TX and DATA pools. * * @param rx Pointer to RX pool is returned. * @param tx Pointer to TX pool is returned. * @param rx_data Pointer to RX DATA pool is returned. * @param tx_data Pointer to TX DATA pool is returned. */ void net_pkt_get_info(struct k_mem_slab **rx, struct k_mem_slab **tx, struct net_buf_pool **rx_data, struct net_buf_pool **tx_data); /** @cond INTERNAL_HIDDEN */ #if defined(CONFIG_NET_DEBUG_NET_PKT_ALLOC) /** * @brief Debug helper to print out the buffer allocations */ void net_pkt_print(void); typedef void (*net_pkt_allocs_cb_t)(struct net_pkt *pkt, struct net_buf *buf, const char *func_alloc, int line_alloc, const char *func_free, int line_free, bool in_use, void *user_data); void net_pkt_allocs_foreach(net_pkt_allocs_cb_t cb, void *user_data); const char *net_pkt_slab2str(struct k_mem_slab *slab); const char *net_pkt_pool2str(struct net_buf_pool *pool); #else #define net_pkt_print(...) #endif /* CONFIG_NET_DEBUG_NET_PKT_ALLOC */ /* New allocator, and API are defined below. * This will be simpler when time will come to get rid of former API above. */ #if defined(NET_PKT_DEBUG_ENABLED) struct net_pkt *net_pkt_alloc_debug(k_timeout_t timeout, const char *caller, int line); #define net_pkt_alloc(_timeout) \ net_pkt_alloc_debug(_timeout, __func__, __LINE__) struct net_pkt *net_pkt_alloc_from_slab_debug(struct k_mem_slab *slab, k_timeout_t timeout, const char *caller, int line); #define net_pkt_alloc_from_slab(_slab, _timeout) \ net_pkt_alloc_from_slab_debug(_slab, _timeout, __func__, __LINE__) struct net_pkt *net_pkt_rx_alloc_debug(k_timeout_t timeout, const char *caller, int line); #define net_pkt_rx_alloc(_timeout) \ net_pkt_rx_alloc_debug(_timeout, __func__, __LINE__) struct net_pkt *net_pkt_alloc_on_iface_debug(struct net_if *iface, k_timeout_t timeout, const char *caller, int line); #define net_pkt_alloc_on_iface(_iface, _timeout) \ net_pkt_alloc_on_iface_debug(_iface, _timeout, __func__, __LINE__) struct net_pkt *net_pkt_rx_alloc_on_iface_debug(struct net_if *iface, k_timeout_t timeout, const char *caller, int line); #define net_pkt_rx_alloc_on_iface(_iface, _timeout) \ net_pkt_rx_alloc_on_iface_debug(_iface, _timeout, \ __func__, __LINE__) int net_pkt_alloc_buffer_debug(struct net_pkt *pkt, size_t size, enum net_ip_protocol proto, k_timeout_t timeout, const char *caller, int line); #define net_pkt_alloc_buffer(_pkt, _size, _proto, _timeout) \ net_pkt_alloc_buffer_debug(_pkt, _size, _proto, _timeout, \ __func__, __LINE__) struct net_pkt *net_pkt_alloc_with_buffer_debug(struct net_if *iface, size_t size, sa_family_t family, enum net_ip_protocol proto, k_timeout_t timeout, const char *caller, int line); #define net_pkt_alloc_with_buffer(_iface, _size, _family, \ _proto, _timeout) \ net_pkt_alloc_with_buffer_debug(_iface, _size, _family, \ _proto, _timeout, \ __func__, __LINE__) struct net_pkt *net_pkt_rx_alloc_with_buffer_debug(struct net_if *iface, size_t size, sa_family_t family, enum net_ip_protocol proto, k_timeout_t timeout, const char *caller, int line); #define net_pkt_rx_alloc_with_buffer(_iface, _size, _family, \ _proto, _timeout) \ net_pkt_rx_alloc_with_buffer_debug(_iface, _size, _family, \ _proto, _timeout, \ __func__, __LINE__) #endif /* NET_PKT_DEBUG_ENABLED */ /** @endcond */ /** * @brief Allocate an initialized net_pkt * * @details for the time being, 2 pools are used. One for TX and one for RX. * This allocator has to be used for TX. * * @param timeout Maximum time to wait for an allocation. * * @return a pointer to a newly allocated net_pkt on success, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_pkt *net_pkt_alloc(k_timeout_t timeout); #endif /** * @brief Allocate an initialized net_pkt from a specific slab * * @details unlike net_pkt_alloc() which uses core slabs, this one will use * an external slab (see NET_PKT_SLAB_DEFINE()). * Do _not_ use it unless you know what you are doing. Basically, only * net_context should be using this, in order to allocate packet and * then buffer on its local slab/pool (if any). * * @param slab The slab to use for allocating the packet * @param timeout Maximum time to wait for an allocation. * * @return a pointer to a newly allocated net_pkt on success, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_pkt *net_pkt_alloc_from_slab(struct k_mem_slab *slab, k_timeout_t timeout); #endif /** * @brief Allocate an initialized net_pkt for RX * * @details for the time being, 2 pools are used. One for TX and one for RX. * This allocator has to be used for RX. * * @param timeout Maximum time to wait for an allocation. * * @return a pointer to a newly allocated net_pkt on success, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_pkt *net_pkt_rx_alloc(k_timeout_t timeout); #endif /** * @brief Allocate a network packet for a specific network interface. * * @param iface The network interface the packet is supposed to go through. * @param timeout Maximum time to wait for an allocation. * * @return a pointer to a newly allocated net_pkt on success, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_pkt *net_pkt_alloc_on_iface(struct net_if *iface, k_timeout_t timeout); /* Same as above but specifically for RX packet */ struct net_pkt *net_pkt_rx_alloc_on_iface(struct net_if *iface, k_timeout_t timeout); #endif /** * @brief Allocate buffer for a net_pkt * * @details: such allocator will take into account space necessary for headers, * MTU, and existing buffer (if any). Beware that, due to all these * criteria, the allocated size might be smaller/bigger than * requested one. * * @param pkt The network packet requiring buffer to be allocated. * @param size The size of buffer being requested. * @param proto The IP protocol type (can be 0 for none). * @param timeout Maximum time to wait for an allocation. * * @return 0 on success, negative errno code otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) int net_pkt_alloc_buffer(struct net_pkt *pkt, size_t size, enum net_ip_protocol proto, k_timeout_t timeout); #endif /** * @brief Allocate a network packet and buffer at once * * @param iface The network interface the packet is supposed to go through. * @param size The size of buffer. * @param family The family to which the packet belongs. * @param proto The IP protocol type (can be 0 for none). * @param timeout Maximum time to wait for an allocation. * * @return a pointer to a newly allocated net_pkt on success, NULL otherwise. */ #if !defined(NET_PKT_DEBUG_ENABLED) struct net_pkt *net_pkt_alloc_with_buffer(struct net_if *iface, size_t size, sa_family_t family, enum net_ip_protocol proto, k_timeout_t timeout); /* Same as above but specifically for RX packet */ struct net_pkt *net_pkt_rx_alloc_with_buffer(struct net_if *iface, size_t size, sa_family_t family, enum net_ip_protocol proto, k_timeout_t timeout); #endif /** * @brief Append a buffer in packet * * @param pkt Network packet where to append the buffer * @param buffer Buffer to append */ void net_pkt_append_buffer(struct net_pkt *pkt, struct net_buf *buffer); /** * @brief Get available buffer space from a pkt * * @note Reserved bytes (headroom) in any of the fragments are not considered to * be available. * * @param pkt The net_pkt which buffer availability should be evaluated * * @return the amount of buffer available */ size_t net_pkt_available_buffer(struct net_pkt *pkt); /** * @brief Get available buffer space for payload from a pkt * * @note Reserved bytes (headroom) in any of the fragments are not considered to * be available. * * @details Unlike net_pkt_available_buffer(), this will take into account * the headers space. * * @param pkt The net_pkt which payload buffer availability should * be evaluated * @param proto The IP protocol type (can be 0 for none). * * @return the amount of buffer available for payload */ size_t net_pkt_available_payload_buffer(struct net_pkt *pkt, enum net_ip_protocol proto); /** * @brief Trim net_pkt buffer * * @details This will basically check for unused buffers and deallocates * them relevantly * * @param pkt The net_pkt which buffer will be trimmed */ void net_pkt_trim_buffer(struct net_pkt *pkt); /** * @brief Remove @a length bytes from tail of packet * * @details This function does not take packet cursor into account. It is a * helper to remove unneeded bytes from tail of packet (like appended * CRC). It takes care of buffer deallocation if removed bytes span * whole buffer(s). * * @param pkt Network packet * @param length Number of bytes to be removed * * @retval 0 On success. * @retval -EINVAL If packet length is shorter than @a length. */ int net_pkt_remove_tail(struct net_pkt *pkt, size_t length); /** * @brief Initialize net_pkt cursor * * @details This will initialize the net_pkt cursor from its buffer. * * @param pkt The net_pkt whose cursor is going to be initialized */ void net_pkt_cursor_init(struct net_pkt *pkt); /** * @brief Backup net_pkt cursor * * @param pkt The net_pkt whose cursor is going to be backed up * @param backup The cursor where to backup net_pkt cursor */ static inline void net_pkt_cursor_backup(struct net_pkt *pkt, struct net_pkt_cursor *backup) { backup->buf = pkt->cursor.buf; backup->pos = pkt->cursor.pos; } /** * @brief Restore net_pkt cursor from a backup * * @param pkt The net_pkt whose cursor is going to be restored * @param backup The cursor from where to restore net_pkt cursor */ static inline void net_pkt_cursor_restore(struct net_pkt *pkt, struct net_pkt_cursor *backup) { pkt->cursor.buf = backup->buf; pkt->cursor.pos = backup->pos; } /** * @brief Returns current position of the cursor * * @param pkt The net_pkt whose cursor position is going to be returned * * @return cursor's position */ static inline void *net_pkt_cursor_get_pos(struct net_pkt *pkt) { return pkt->cursor.pos; } /** * @brief Skip some data from a net_pkt * * @details net_pkt's cursor should be properly initialized * Cursor position will be updated after the operation. * Depending on the value of pkt->overwrite bit, this function * will affect the buffer length or not. If it's true, it will * advance the cursor to the requested length. If it's false, * it will do the same but if the cursor was already also at the * end of existing data, it will increment the buffer length. * So in this case, its behavior is just like net_pkt_write or * net_pkt_memset, difference being that it will not affect the * buffer content itself (which may be just garbage then). * * @param pkt The net_pkt whose cursor will be updated to skip given * amount of data from the buffer. * @param length Amount of data to skip in the buffer * * @return 0 in success, negative errno code otherwise. */ int net_pkt_skip(struct net_pkt *pkt, size_t length); /** * @brief Memset some data in a net_pkt * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * Cursor position will be updated after the operation. * * @param pkt The net_pkt whose buffer to fill starting at the current * cursor position. * @param byte The byte to write in memory * @param length Amount of data to memset with given byte * * @return 0 in success, negative errno code otherwise. */ int net_pkt_memset(struct net_pkt *pkt, int byte, size_t length); /** * @brief Copy data from a packet into another one. * * @details Both net_pkt cursors should be properly initialized and, * if needed, positioned using net_pkt_skip. * The cursors will be updated after the operation. * * @param pkt_dst Destination network packet. * @param pkt_src Source network packet. * @param length Length of data to be copied. * * @return 0 on success, negative errno code otherwise. */ int net_pkt_copy(struct net_pkt *pkt_dst, struct net_pkt *pkt_src, size_t length); /** * @brief Clone pkt and its buffer. * * @param pkt Original pkt to be cloned * @param timeout Timeout to wait for free buffer * * @return NULL if error, cloned packet otherwise. */ struct net_pkt *net_pkt_clone(struct net_pkt *pkt, k_timeout_t timeout); /** * @brief Clone pkt and increase the refcount of its buffer. * * @param pkt Original pkt to be shallow cloned * @param timeout Timeout to wait for free packet * * @return NULL if error, cloned packet otherwise. */ struct net_pkt *net_pkt_shallow_clone(struct net_pkt *pkt, k_timeout_t timeout); /** * @brief Read some data from a net_pkt * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * Cursor position will be updated after the operation. * * @param pkt The network packet from where to read some data * @param data The destination buffer where to copy the data * @param length The amount of data to copy * * @return 0 on success, negative errno code otherwise. */ int net_pkt_read(struct net_pkt *pkt, void *data, size_t length); /* Read uint8_t data data a net_pkt */ static inline int net_pkt_read_u8(struct net_pkt *pkt, uint8_t *data) { return net_pkt_read(pkt, data, 1); } /** * @brief Read uint16_t big endian data from a net_pkt * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * Cursor position will be updated after the operation. * * @param pkt The network packet from where to read * @param data The destination uint16_t where to copy the data * * @return 0 on success, negative errno code otherwise. */ int net_pkt_read_be16(struct net_pkt *pkt, uint16_t *data); /** * @brief Read uint16_t little endian data from a net_pkt * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * Cursor position will be updated after the operation. * * @param pkt The network packet from where to read * @param data The destination uint16_t where to copy the data * * @return 0 on success, negative errno code otherwise. */ int net_pkt_read_le16(struct net_pkt *pkt, uint16_t *data); /** * @brief Read uint32_t big endian data from a net_pkt * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * Cursor position will be updated after the operation. * * @param pkt The network packet from where to read * @param data The destination uint32_t where to copy the data * * @return 0 on success, negative errno code otherwise. */ int net_pkt_read_be32(struct net_pkt *pkt, uint32_t *data); /** * @brief Write data into a net_pkt * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * Cursor position will be updated after the operation. * * @param pkt The network packet where to write * @param data Data to be written * @param length Length of the data to be written * * @return 0 on success, negative errno code otherwise. */ int net_pkt_write(struct net_pkt *pkt, const void *data, size_t length); /* Write uint8_t data into a net_pkt. */ static inline int net_pkt_write_u8(struct net_pkt *pkt, uint8_t data) { return net_pkt_write(pkt, &data, sizeof(uint8_t)); } /* Write uint16_t big endian data into a net_pkt. */ static inline int net_pkt_write_be16(struct net_pkt *pkt, uint16_t data) { uint16_t data_be16 = htons(data); return net_pkt_write(pkt, &data_be16, sizeof(uint16_t)); } /* Write uint32_t big endian data into a net_pkt. */ static inline int net_pkt_write_be32(struct net_pkt *pkt, uint32_t data) { uint32_t data_be32 = htonl(data); return net_pkt_write(pkt, &data_be32, sizeof(uint32_t)); } /* Write uint32_t little endian data into a net_pkt. */ static inline int net_pkt_write_le32(struct net_pkt *pkt, uint32_t data) { uint32_t data_le32 = sys_cpu_to_le32(data); return net_pkt_write(pkt, &data_le32, sizeof(uint32_t)); } /* Write uint16_t little endian data into a net_pkt. */ static inline int net_pkt_write_le16(struct net_pkt *pkt, uint16_t data) { uint16_t data_le16 = sys_cpu_to_le16(data); return net_pkt_write(pkt, &data_le16, sizeof(uint16_t)); } /** * @brief Get the amount of data which can be read from current cursor position * * @param pkt Network packet * * @return Amount of data which can be read from current pkt cursor */ size_t net_pkt_remaining_data(struct net_pkt *pkt); /** * @brief Update the overall length of a packet * * @details Unlike net_pkt_pull() below, this does not take packet cursor * into account. It's mainly a helper dedicated for ipv4 and ipv6 * input functions. It shrinks the overall length by given parameter. * * @param pkt Network packet * @param length The new length of the packet * * @return 0 on success, negative errno code otherwise. */ int net_pkt_update_length(struct net_pkt *pkt, size_t length); /** * @brief Remove data from the packet at current location * * @details net_pkt's cursor should be properly initialized and, * eventually, properly positioned using net_pkt_skip/read/write. * Note that net_pkt's cursor is reset by this function. * * @param pkt Network packet * @param length Number of bytes to be removed * * @return 0 on success, negative errno code otherwise. */ int net_pkt_pull(struct net_pkt *pkt, size_t length); /** * @brief Get the actual offset in the packet from its cursor * * @param pkt Network packet. * * @return a valid offset on success, 0 otherwise as there is nothing that * can be done to evaluate the offset. */ uint16_t net_pkt_get_current_offset(struct net_pkt *pkt); /** * @brief Check if a data size could fit contiguously * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * * @param pkt Network packet. * @param size The size to check for contiguity * * @return true if that is the case, false otherwise. */ bool net_pkt_is_contiguous(struct net_pkt *pkt, size_t size); /** * Get the contiguous buffer space * * @param pkt Network packet * * @return The available contiguous buffer space in bytes starting from the * current cursor position. 0 in case of an error. */ size_t net_pkt_get_contiguous_len(struct net_pkt *pkt); struct net_pkt_data_access { #if !defined(CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS) void *data; #endif const size_t size; }; #if defined(CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS) #define NET_PKT_DATA_ACCESS_DEFINE(_name, _type) \ struct net_pkt_data_access _name = { \ .size = sizeof(_type), \ } #define NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(_name, _type) \ NET_PKT_DATA_ACCESS_DEFINE(_name, _type) #else #define NET_PKT_DATA_ACCESS_DEFINE(_name, _type) \ _type _hdr_##_name; \ struct net_pkt_data_access _name = { \ .data = &_hdr_##_name, \ .size = sizeof(_type), \ } #define NET_PKT_DATA_ACCESS_CONTIGUOUS_DEFINE(_name, _type) \ struct net_pkt_data_access _name = { \ .data = NULL, \ .size = sizeof(_type), \ } #endif /* CONFIG_NET_HEADERS_ALWAYS_CONTIGUOUS */ /** * @brief Get data from a network packet in a contiguous way * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * Cursor position will be updated after the operation. * * @param pkt The network packet from where to get the data. * @param access A pointer to a valid net_pkt_data_access describing the * data to get in a contiguous way. * * @return a pointer to the requested contiguous data, NULL otherwise. */ void *net_pkt_get_data(struct net_pkt *pkt, struct net_pkt_data_access *access); /** * @brief Set contiguous data into a network packet * * @details net_pkt's cursor should be properly initialized and, * if needed, positioned using net_pkt_skip. * Cursor position will be updated after the operation. * * @param pkt The network packet to where the data should be set. * @param access A pointer to a valid net_pkt_data_access describing the * data to set. * * @return 0 on success, a negative errno otherwise. */ int net_pkt_set_data(struct net_pkt *pkt, struct net_pkt_data_access *access); /** * Acknowledge previously contiguous data taken from a network packet * Packet needs to be set to overwrite mode. */ static inline int net_pkt_acknowledge_data(struct net_pkt *pkt, struct net_pkt_data_access *access) { return net_pkt_skip(pkt, access->size); } /** * @} */ #ifdef __cplusplus } #endif #endif /* ZEPHYR_INCLUDE_NET_NET_PKT_H_ */