/* * Copyright (c) 2020 IoT.bzh * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include #define DT_DRV_COMPAT renesas_rcar_cmt #define TIMER_IRQ DT_INST_IRQN(0) #define TIMER_BASE_ADDR DT_INST_REG_ADDR(0) #define TIMER_CLOCK_FREQUENCY DT_INST_PROP(0, clock_frequency) #define CLOCK_SUBSYS DT_INST_CLOCKS_CELL(0, module) #define CYCLES_PER_SEC TIMER_CLOCK_FREQUENCY #define CYCLES_PER_TICK (CYCLES_PER_SEC / CONFIG_SYS_CLOCK_TICKS_PER_SEC) static struct rcar_cpg_clk mod_clk = { .module = DT_INST_CLOCKS_CELL(0, module), .domain = DT_INST_CLOCKS_CELL(0, domain), }; BUILD_ASSERT(CYCLES_PER_TICK > 1, "CYCLES_PER_TICK must be greater than 1"); #define CMCOR0_OFFSET 0x018 /* constant register 0 */ #define CMCNT0_OFFSET 0x014 /* counter 0 */ #define CMCSR0_OFFSET 0x010 /* control/status register 0 */ #define CMCOR1_OFFSET 0x118 /* constant register 1 */ #define CMCNT1_OFFSET 0x114 /* counter 1 */ #define CMCSR1_OFFSET 0x110 /* control/status register 1 */ #define CMCLKE 0xB00 /* CLK enable register */ #define CLKEN0 BIT(5) /* Enable Clock for channel 0 */ #define CLKEN1 BIT(6) /* Enable Clock for channel 1 */ #define CMSTR0_OFFSET 0x000 /* Timer start register 0 */ #define CMSTR1_OFFSET 0x100 /* Timer start register 1 */ #define START_BIT BIT(0) #define CSR_CLK_DIV_1 0x00000007 #define CSR_ENABLE_COUNTER_IN_DEBUG BIT(3) #define CSR_ENABLE_INTERRUPT BIT(5) #define CSR_FREE_RUN BIT(8) #define CSR_WRITE_FLAG BIT(13) #define CSR_OVERFLOW_FLAG BIT(14) #define CSR_MATCH_FLAG BIT(15) static void cmt_isr(void *arg) { ARG_UNUSED(arg); uint32_t reg_val; /* clear the interrupt */ reg_val = sys_read32(TIMER_BASE_ADDR + CMCSR0_OFFSET); reg_val &= ~CSR_MATCH_FLAG; sys_write32(reg_val, TIMER_BASE_ADDR + CMCSR0_OFFSET); /* Announce to the kernel */ sys_clock_announce(1); } /* * Initialize both channels at same frequency, * Set the first one to generates interrupt at CYCLES_PER_TICK. * The second one is used for cycles count, the match value is set * at max uint32_t. */ int sys_clock_driver_init(const struct device *device) { const struct device *clk; uint32_t reg_val; int i, ret; ARG_UNUSED(device); clk = DEVICE_DT_GET(DT_INST_CLOCKS_CTLR(0)); if (clk == NULL) { return -ENODEV; } ret = clock_control_on(clk, (clock_control_subsys_t *)&mod_clk); if (ret < 0) { return ret; } /* Supply clock for both channels */ sys_write32(CLKEN0 | CLKEN1, TIMER_BASE_ADDR + CMCLKE); /* Stop both channels */ reg_val = sys_read32(TIMER_BASE_ADDR + CMSTR0_OFFSET); reg_val &= ~START_BIT; sys_write32(reg_val, TIMER_BASE_ADDR + CMSTR0_OFFSET); reg_val = sys_read32(TIMER_BASE_ADDR + CMSTR1_OFFSET); reg_val &= ~START_BIT; sys_write32(reg_val, TIMER_BASE_ADDR + CMSTR1_OFFSET); /* Set the timers as 32-bit, with RCLK/1 clock */ sys_write32(CSR_FREE_RUN | CSR_CLK_DIV_1 | CSR_ENABLE_INTERRUPT, TIMER_BASE_ADDR + CMCSR0_OFFSET); /* Do not enable interrupts for the second channel */ sys_write32(CSR_FREE_RUN | CSR_CLK_DIV_1, TIMER_BASE_ADDR + CMCSR1_OFFSET); /* Set the first channel match to CYCLES Per tick*/ sys_write32(CYCLES_PER_TICK, TIMER_BASE_ADDR + CMCOR0_OFFSET); /* Set the second channel match to max uint32 */ sys_write32(0xffffffff, TIMER_BASE_ADDR + CMCOR1_OFFSET); /* Reset the counter for first channel, check WRFLG first */ while (sys_read32(TIMER_BASE_ADDR + CMCSR0_OFFSET) & CSR_WRITE_FLAG) ; sys_write32(0, TIMER_BASE_ADDR + CMCNT0_OFFSET); for (i = 0; i < 1000; i++) { if (!sys_read32(TIMER_BASE_ADDR + CMCNT0_OFFSET)) { break; } } __ASSERT(sys_read32(TIMER_BASE_ADDR + CMCNT0_OFFSET) == 0, "Fail to clear CMCNT0 register"); /* Connect timer interrupt for channel 0*/ IRQ_CONNECT(TIMER_IRQ, 0, cmt_isr, 0, 0); irq_enable(TIMER_IRQ); /* Start the timers */ sys_write32(START_BIT, TIMER_BASE_ADDR + CMSTR0_OFFSET); sys_write32(START_BIT, TIMER_BASE_ADDR + CMSTR1_OFFSET); return 0; } uint32_t sys_clock_elapsed(void) { /* Always return 0 for tickful operation */ return 0; } uint32_t sys_clock_cycle_get_32(void) { return sys_read32(TIMER_BASE_ADDR + CMCNT1_OFFSET); }