/* * Copyright (c) 2017, I-SENSE group of ICCS * Copyright (c) 2017 Linaro Ltd * * SPDX-License-Identifier: Apache-2.0 * * I2C Driver for: STM32F1, STM32F2, STM32F4 and STM32L1 * */ #include #include #include #include #include #include #include #include #include "i2c_ll_stm32.h" #define LOG_LEVEL CONFIG_I2C_LOG_LEVEL #include LOG_MODULE_REGISTER(i2c_ll_stm32_v1); #include "i2c-priv.h" #define STM32_I2C_TRANSFER_TIMEOUT_MSEC 500 #define STM32_I2C_TIMEOUT_USEC 1000 #define I2C_REQUEST_WRITE 0x00 #define I2C_REQUEST_READ 0x01 #define HEADER 0xF0 static void stm32_i2c_generate_start_condition(I2C_TypeDef *i2c) { uint16_t cr1 = LL_I2C_ReadReg(i2c, CR1); if (cr1 & I2C_CR1_STOP) { LOG_DBG("%s: START while STOP active!", __func__); LL_I2C_WriteReg(i2c, CR1, cr1 & ~I2C_CR1_STOP); } LL_I2C_GenerateStartCondition(i2c); } #ifdef CONFIG_I2C_STM32_INTERRUPT static void stm32_i2c_disable_transfer_interrupts(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); I2C_TypeDef *i2c = cfg->i2c; LL_I2C_DisableIT_TX(i2c); LL_I2C_DisableIT_RX(i2c); LL_I2C_DisableIT_EVT(i2c); LL_I2C_DisableIT_BUF(i2c); LL_I2C_DisableIT_ERR(i2c); } static void stm32_i2c_enable_transfer_interrupts(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); I2C_TypeDef *i2c = cfg->i2c; LL_I2C_EnableIT_ERR(i2c); LL_I2C_EnableIT_EVT(i2c); LL_I2C_EnableIT_BUF(i2c); } #endif /* CONFIG_I2C_STM32_INTERRUPT */ static void stm32_i2c_reset(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); I2C_TypeDef *i2c = cfg->i2c; uint16_t cr1, cr2, oar1, oar2, trise, ccr; #if defined(I2C_FLTR_ANOFF) && defined(I2C_FLTR_DNF) uint16_t fltr; #endif /* disable i2c and disable IRQ's */ LL_I2C_Disable(i2c); #ifdef CONFIG_I2C_STM32_INTERRUPT stm32_i2c_disable_transfer_interrupts(dev); #endif /* save all important registers before reset */ cr1 = LL_I2C_ReadReg(i2c, CR1); cr2 = LL_I2C_ReadReg(i2c, CR2); oar1 = LL_I2C_ReadReg(i2c, OAR1); oar2 = LL_I2C_ReadReg(i2c, OAR2); ccr = LL_I2C_ReadReg(i2c, CCR); trise = LL_I2C_ReadReg(i2c, TRISE); #if defined(I2C_FLTR_ANOFF) && defined(I2C_FLTR_DNF) fltr = LL_I2C_ReadReg(i2c, FLTR); #endif /* reset i2c hardware */ LL_I2C_EnableReset(i2c); LL_I2C_DisableReset(i2c); /* restore all important registers after reset */ LL_I2C_WriteReg(i2c, CR1, cr1); LL_I2C_WriteReg(i2c, CR2, cr2); /* bit 14 of OAR1 must always be 1 */ oar1 |= (1 << 14); LL_I2C_WriteReg(i2c, OAR1, oar1); LL_I2C_WriteReg(i2c, OAR2, oar2); LL_I2C_WriteReg(i2c, CCR, ccr); LL_I2C_WriteReg(i2c, TRISE, trise); #if defined(I2C_FLTR_ANOFF) && defined(I2C_FLTR_DNF) LL_I2C_WriteReg(i2c, FLTR, fltr); #endif } static void stm32_i2c_master_finish(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); I2C_TypeDef *i2c = cfg->i2c; #ifdef CONFIG_I2C_STM32_INTERRUPT stm32_i2c_disable_transfer_interrupts(dev); #endif #if defined(CONFIG_I2C_SLAVE) struct i2c_stm32_data *data = DEV_DATA(dev); data->master_active = false; if (!data->slave_attached) { LL_I2C_Disable(i2c); } else { stm32_i2c_enable_transfer_interrupts(dev); LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK); } #else LL_I2C_Disable(i2c); #endif } static inline void msg_init(const struct device *dev, struct i2c_msg *msg, uint8_t *next_msg_flags, uint16_t slave, uint32_t transfer) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; ARG_UNUSED(next_msg_flags); #ifdef CONFIG_I2C_STM32_INTERRUPT k_sem_reset(&data->device_sync_sem); #endif data->current.len = msg->len; data->current.buf = msg->buf; data->current.flags = msg->flags; data->current.is_restart = 0U; data->current.is_write = (transfer == I2C_REQUEST_WRITE); data->current.is_arlo = 0U; data->current.is_err = 0U; data->current.is_nack = 0U; data->current.msg = msg; #if defined(CONFIG_I2C_SLAVE) data->master_active = true; #endif data->slave_address = slave; LL_I2C_Enable(i2c); LL_I2C_DisableBitPOS(i2c); LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK); if (msg->flags & I2C_MSG_RESTART) { stm32_i2c_generate_start_condition(i2c); } } static int32_t msg_end(const struct device *dev, uint8_t *next_msg_flags, const char *funcname) { struct i2c_stm32_data *data = DEV_DATA(dev); if (data->current.is_nack || data->current.is_err || data->current.is_arlo) { goto error; } if (!next_msg_flags) { stm32_i2c_master_finish(dev); } return 0; error: if (data->current.is_arlo) { LOG_DBG("%s: ARLO %d", funcname, data->current.is_arlo); data->current.is_arlo = 0U; } if (data->current.is_nack) { LOG_DBG("%s: NACK", funcname); data->current.is_nack = 0U; } if (data->current.is_err) { LOG_DBG("%s: ERR %d", funcname, data->current.is_err); data->current.is_err = 0U; } stm32_i2c_master_finish(dev); return -EIO; } #ifdef CONFIG_I2C_STM32_INTERRUPT static void stm32_i2c_master_mode_end(const struct device *dev) { struct i2c_stm32_data *data = DEV_DATA(dev); k_sem_give(&data->device_sync_sem); } static inline void handle_sb(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; uint16_t saddr = data->slave_address; uint8_t slave; if (I2C_ADDR_10_BITS & data->dev_config) { slave = (((saddr & 0x0300) >> 7) & 0xFF); uint8_t header = slave | HEADER; if (data->current.is_restart == 0U) { data->current.is_restart = 1U; } else { header |= I2C_REQUEST_READ; data->current.is_restart = 0U; } LL_I2C_TransmitData8(i2c, header); return; } slave = (saddr << 1) & 0xFF; if (data->current.is_write) { LL_I2C_TransmitData8(i2c, slave | I2C_REQUEST_WRITE); } else { LL_I2C_TransmitData8(i2c, slave | I2C_REQUEST_READ); if (data->current.len == 2) { LL_I2C_EnableBitPOS(i2c); } } } static inline void handle_addr(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; if (I2C_ADDR_10_BITS & data->dev_config) { if (!data->current.is_write && data->current.is_restart) { data->current.is_restart = 0U; LL_I2C_ClearFlag_ADDR(i2c); stm32_i2c_generate_start_condition(i2c); return; } } if (data->current.is_write) { LL_I2C_ClearFlag_ADDR(i2c); return; } /* according to STM32F1 errata we need to handle these corner cases in * specific way. * Please ref to STM32F10xxC/D/E I2C peripheral Errata sheet 2.14.1 */ if (data->current.len == 0U && IS_ENABLED(CONFIG_SOC_SERIES_STM32F1X)) { LL_I2C_GenerateStopCondition(i2c); } else if (data->current.len == 1U) { /* Single byte reception: enable NACK and clear POS */ LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); #ifdef CONFIG_SOC_SERIES_STM32F1X LL_I2C_ClearFlag_ADDR(i2c); LL_I2C_GenerateStopCondition(i2c); #endif } else if (data->current.len == 2U) { #ifdef CONFIG_SOC_SERIES_STM32F1X LL_I2C_ClearFlag_ADDR(i2c); #endif /* 2-byte reception: enable NACK and set POS */ LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); LL_I2C_EnableBitPOS(i2c); } LL_I2C_ClearFlag_ADDR(i2c); } static inline void handle_txe(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; if (data->current.len) { data->current.len--; if (data->current.len == 0U) { /* * This is the last byte to transmit disable Buffer * interrupt and wait for a BTF interrupt */ LL_I2C_DisableIT_BUF(i2c); } LL_I2C_TransmitData8(i2c, *data->current.buf); data->current.buf++; } else { if (data->current.flags & I2C_MSG_STOP) { LL_I2C_GenerateStopCondition(i2c); } if (LL_I2C_IsActiveFlag_BTF(i2c)) { /* Read DR to clear BTF flag */ LL_I2C_ReceiveData8(i2c); } k_sem_give(&data->device_sync_sem); } } static inline void handle_rxne(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; if (data->current.len > 0) { switch (data->current.len) { case 1: LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); LL_I2C_DisableBitPOS(i2c); /* Single byte reception */ if (data->current.flags & I2C_MSG_STOP) { LL_I2C_GenerateStopCondition(i2c); } LL_I2C_DisableIT_BUF(i2c); data->current.len--; *data->current.buf = LL_I2C_ReceiveData8(i2c); data->current.buf++; k_sem_give(&data->device_sync_sem); break; case 2: LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); LL_I2C_EnableBitPOS(i2c); __fallthrough; case 3: /* * 2-byte, 3-byte reception and for N-2, N-1, * N when N > 3 */ LL_I2C_DisableIT_BUF(i2c); break; default: /* N byte reception when N > 3 */ data->current.len--; *data->current.buf = LL_I2C_ReceiveData8(i2c); data->current.buf++; } } else { if (data->current.flags & I2C_MSG_STOP) { LL_I2C_GenerateStopCondition(i2c); } k_sem_give(&data->device_sync_sem); } } static inline void handle_btf(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; if (data->current.is_write) { handle_txe(dev); } else { uint32_t counter = 0U; switch (data->current.len) { case 2: /* * Stop condition must be generated before reading the * last two bytes. */ if (data->current.flags & I2C_MSG_STOP) { LL_I2C_GenerateStopCondition(i2c); } for (counter = 2U; counter > 0; counter--) { data->current.len--; *data->current.buf = LL_I2C_ReceiveData8(i2c); data->current.buf++; } k_sem_give(&data->device_sync_sem); break; case 3: /* Set NACK before reading N-2 byte*/ LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); data->current.len--; *data->current.buf = LL_I2C_ReceiveData8(i2c); data->current.buf++; break; default: handle_rxne(dev); } } } #if defined(CONFIG_I2C_SLAVE) static void stm32_i2c_slave_event(const struct device *dev) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; const struct i2c_slave_callbacks *slave_cb = data->slave_cfg->callbacks; if (LL_I2C_IsActiveFlag_TXE(i2c) && LL_I2C_IsActiveFlag_BTF(i2c)) { uint8_t val; slave_cb->read_processed(data->slave_cfg, &val); LL_I2C_TransmitData8(i2c, val); return; } if (LL_I2C_IsActiveFlag_RXNE(i2c)) { uint8_t val = LL_I2C_ReceiveData8(i2c); if (slave_cb->write_received(data->slave_cfg, val)) { LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); } return; } if (LL_I2C_IsActiveFlag_AF(i2c)) { LL_I2C_ClearFlag_AF(i2c); } if (LL_I2C_IsActiveFlag_STOP(i2c)) { LL_I2C_ClearFlag_STOP(i2c); slave_cb->stop(data->slave_cfg); /* Prepare to ACK next transmissions address byte */ LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK); } if (LL_I2C_IsActiveFlag_ADDR(i2c)) { uint32_t dir = LL_I2C_GetTransferDirection(i2c); if (dir == LL_I2C_DIRECTION_READ) { slave_cb->write_requested(data->slave_cfg); LL_I2C_EnableIT_RX(i2c); } else { uint8_t val; slave_cb->read_requested(data->slave_cfg, &val); LL_I2C_TransmitData8(i2c, val); LL_I2C_EnableIT_TX(i2c); } stm32_i2c_enable_transfer_interrupts(dev); } } /* Attach and start I2C as slave */ int i2c_stm32_slave_register(const struct device *dev, struct i2c_slave_config *config) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; uint32_t bitrate_cfg; int ret; if (!config) { return -EINVAL; } if (data->slave_attached) { return -EBUSY; } if (data->master_active) { return -EBUSY; } bitrate_cfg = i2c_map_dt_bitrate(cfg->bitrate); ret = i2c_stm32_runtime_configure(dev, bitrate_cfg); if (ret < 0) { LOG_ERR("i2c: failure initializing"); return ret; } data->slave_cfg = config; LL_I2C_Enable(i2c); LL_I2C_SetOwnAddress1(i2c, config->address << 1, LL_I2C_OWNADDRESS1_7BIT); data->slave_attached = true; LOG_DBG("i2c: slave registered"); stm32_i2c_enable_transfer_interrupts(dev); LL_I2C_AcknowledgeNextData(i2c, LL_I2C_ACK); return 0; } int i2c_stm32_slave_unregister(const struct device *dev, struct i2c_slave_config *config) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; if (!data->slave_attached) { return -EINVAL; } if (data->master_active) { return -EBUSY; } stm32_i2c_disable_transfer_interrupts(dev); LL_I2C_ClearFlag_AF(i2c); LL_I2C_ClearFlag_STOP(i2c); LL_I2C_ClearFlag_ADDR(i2c); LL_I2C_Disable(i2c); data->slave_attached = false; LOG_DBG("i2c: slave unregistered"); return 0; } #endif /* defined(CONFIG_I2C_SLAVE) */ void stm32_i2c_event_isr(void *arg) { const struct device *dev = (const struct device *)arg; const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; #if defined(CONFIG_I2C_SLAVE) if (data->slave_attached && !data->master_active) { stm32_i2c_slave_event(dev); return; } #endif if (LL_I2C_IsActiveFlag_SB(i2c)) { handle_sb(dev); } else if (LL_I2C_IsActiveFlag_ADD10(i2c)) { LL_I2C_TransmitData8(i2c, data->slave_address); } else if (LL_I2C_IsActiveFlag_ADDR(i2c)) { handle_addr(dev); } else if (LL_I2C_IsActiveFlag_BTF(i2c)) { handle_btf(dev); } else if (LL_I2C_IsActiveFlag_TXE(i2c) && data->current.is_write) { handle_txe(dev); } else if (LL_I2C_IsActiveFlag_RXNE(i2c) && !data->current.is_write) { handle_rxne(dev); } } void stm32_i2c_error_isr(void *arg) { const struct device *dev = (const struct device *)arg; const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; #if defined(CONFIG_I2C_SLAVE) if (data->slave_attached && !data->master_active) { /* No need for a slave error function right now. */ return; } #endif if (LL_I2C_IsActiveFlag_AF(i2c)) { LL_I2C_ClearFlag_AF(i2c); LL_I2C_GenerateStopCondition(i2c); data->current.is_nack = 1U; goto end; } if (LL_I2C_IsActiveFlag_ARLO(i2c)) { LL_I2C_ClearFlag_ARLO(i2c); data->current.is_arlo = 1U; goto end; } if (LL_I2C_IsActiveFlag_BERR(i2c)) { LL_I2C_ClearFlag_BERR(i2c); data->current.is_err = 1U; goto end; } return; end: stm32_i2c_master_mode_end(dev); } int32_t stm32_i2c_msg_write(const struct device *dev, struct i2c_msg *msg, uint8_t *next_msg_flags, uint16_t saddr) { struct i2c_stm32_data *data = DEV_DATA(dev); msg_init(dev, msg, next_msg_flags, saddr, I2C_REQUEST_WRITE); stm32_i2c_enable_transfer_interrupts(dev); if (k_sem_take(&data->device_sync_sem, K_MSEC(STM32_I2C_TRANSFER_TIMEOUT_MSEC)) != 0) { LOG_DBG("%s: WRITE timeout", __func__); stm32_i2c_reset(dev); return -EIO; } return msg_end(dev, next_msg_flags, __func__); } int32_t stm32_i2c_msg_read(const struct device *dev, struct i2c_msg *msg, uint8_t *next_msg_flags, uint16_t saddr) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; msg_init(dev, msg, next_msg_flags, saddr, I2C_REQUEST_READ); stm32_i2c_enable_transfer_interrupts(dev); LL_I2C_EnableIT_RX(i2c); if (k_sem_take(&data->device_sync_sem, K_MSEC(STM32_I2C_TRANSFER_TIMEOUT_MSEC)) != 0) { LOG_DBG("%s: READ timeout", __func__); stm32_i2c_reset(dev); return -EIO; } return msg_end(dev, next_msg_flags, __func__); } #else /* CONFIG_I2C_STM32_INTERRUPT */ static inline int check_errors(const struct device *dev, const char *funcname) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; if (LL_I2C_IsActiveFlag_AF(i2c)) { LL_I2C_ClearFlag_AF(i2c); LOG_DBG("%s: NACK", funcname); data->current.is_nack = 1U; goto error; } if (LL_I2C_IsActiveFlag_ARLO(i2c)) { LL_I2C_ClearFlag_ARLO(i2c); LOG_DBG("%s: ARLO", funcname); data->current.is_arlo = 1U; goto error; } if (LL_I2C_IsActiveFlag_OVR(i2c)) { LL_I2C_ClearFlag_OVR(i2c); LOG_DBG("%s: OVR", funcname); data->current.is_err = 1U; goto error; } if (LL_I2C_IsActiveFlag_BERR(i2c)) { LL_I2C_ClearFlag_BERR(i2c); LOG_DBG("%s: BERR", funcname); data->current.is_err = 1U; goto error; } return 0; error: return -EIO; } static int stm32_i2c_wait_timeout(uint16_t *timeout) { if (*timeout == 0) { return 1; } else { k_busy_wait(1); (*timeout)--; return 0; } } int32_t stm32_i2c_msg_write(const struct device *dev, struct i2c_msg *msg, uint8_t *next_msg_flags, uint16_t saddr) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; uint32_t len = msg->len; uint16_t timeout; uint8_t *buf = msg->buf; int32_t res; msg_init(dev, msg, next_msg_flags, saddr, I2C_REQUEST_WRITE); if (msg->flags & I2C_MSG_RESTART) { timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_SB(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } if (I2C_ADDR_10_BITS & data->dev_config) { uint8_t slave = (((saddr & 0x0300) >> 7) & 0xFF); uint8_t header = slave | HEADER; LL_I2C_TransmitData8(i2c, header); timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_ADD10(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } slave = data->slave_address & 0xFF; LL_I2C_TransmitData8(i2c, slave); } else { uint8_t slave = (saddr << 1) & 0xFF; LL_I2C_TransmitData8(i2c, slave | I2C_REQUEST_WRITE); } timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_ADDR(i2c)) { if (LL_I2C_IsActiveFlag_AF(i2c) || stm32_i2c_wait_timeout(&timeout)) { LL_I2C_ClearFlag_AF(i2c); LL_I2C_GenerateStopCondition(i2c); data->current.is_nack = 1U; goto end; } } LL_I2C_ClearFlag_ADDR(i2c); } while (len) { timeout = STM32_I2C_TIMEOUT_USEC; while (1) { if (LL_I2C_IsActiveFlag_TXE(i2c)) { break; } if (LL_I2C_IsActiveFlag_AF(i2c) || stm32_i2c_wait_timeout(&timeout)) { LL_I2C_ClearFlag_AF(i2c); LL_I2C_GenerateStopCondition(i2c); data->current.is_nack = 1U; goto end; } } LL_I2C_TransmitData8(i2c, *buf); buf++; len--; } timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_BTF(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } if (msg->flags & I2C_MSG_STOP) { LL_I2C_GenerateStopCondition(i2c); } end: check_errors(dev, __func__); res = msg_end(dev, next_msg_flags, __func__); if (res < 0) { stm32_i2c_reset(dev); } return res; } int32_t stm32_i2c_msg_read(const struct device *dev, struct i2c_msg *msg, uint8_t *next_msg_flags, uint16_t saddr) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; uint32_t len = msg->len; uint16_t timeout; uint8_t *buf = msg->buf; int32_t res; msg_init(dev, msg, next_msg_flags, saddr, I2C_REQUEST_READ); if (msg->flags & I2C_MSG_RESTART) { timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_SB(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } if (I2C_ADDR_10_BITS & data->dev_config) { uint8_t slave = (((saddr & 0x0300) >> 7) & 0xFF); uint8_t header = slave | HEADER; LL_I2C_TransmitData8(i2c, header); timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_ADD10(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } slave = saddr & 0xFF; LL_I2C_TransmitData8(i2c, slave); timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_ADDR(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } LL_I2C_ClearFlag_ADDR(i2c); stm32_i2c_generate_start_condition(i2c); timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_SB(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } header |= I2C_REQUEST_READ; LL_I2C_TransmitData8(i2c, header); } else { uint8_t slave = ((saddr) << 1) & 0xFF; LL_I2C_TransmitData8(i2c, slave | I2C_REQUEST_READ); } timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_ADDR(i2c)) { if (LL_I2C_IsActiveFlag_AF(i2c) || stm32_i2c_wait_timeout(&timeout)) { LL_I2C_ClearFlag_AF(i2c); LL_I2C_GenerateStopCondition(i2c); data->current.is_nack = 1U; goto end; } } /* ADDR must be cleared before NACK generation. Either in 2 byte reception * byte 1 will be NACK'ed and slave wont sent the last byte */ LL_I2C_ClearFlag_ADDR(i2c); if (len == 1U) { /* Single byte reception: enable NACK and set STOP */ LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); } else if (len == 2U) { /* 2-byte reception: enable NACK and set POS */ LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); LL_I2C_EnableBitPOS(i2c); } } while (len) { timeout = STM32_I2C_TIMEOUT_USEC; while (!LL_I2C_IsActiveFlag_RXNE(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } timeout = STM32_I2C_TIMEOUT_USEC; switch (len) { case 1: if (msg->flags & I2C_MSG_STOP) { LL_I2C_GenerateStopCondition(i2c); } len--; *buf = LL_I2C_ReceiveData8(i2c); buf++; break; case 2: while (!LL_I2C_IsActiveFlag_BTF(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } /* * Stop condition must be generated before reading the * last two bytes. */ if (msg->flags & I2C_MSG_STOP) { LL_I2C_GenerateStopCondition(i2c); } for (uint32_t counter = 2; counter > 0; counter--) { len--; *buf = LL_I2C_ReceiveData8(i2c); buf++; } break; case 3: while (!LL_I2C_IsActiveFlag_BTF(i2c)) { if (stm32_i2c_wait_timeout(&timeout)) { LL_I2C_GenerateStopCondition(i2c); data->current.is_err = 1U; goto end; } } /* Set NACK before reading N-2 byte*/ LL_I2C_AcknowledgeNextData(i2c, LL_I2C_NACK); __fallthrough; default: len--; *buf = LL_I2C_ReceiveData8(i2c); buf++; } } end: check_errors(dev, __func__); res = msg_end(dev, next_msg_flags, __func__); if (res < 0) { stm32_i2c_reset(dev); } return res; } #endif /* CONFIG_I2C_STM32_INTERRUPT */ int32_t stm32_i2c_configure_timing(const struct device *dev, uint32_t clock) { const struct i2c_stm32_config *cfg = DEV_CFG(dev); struct i2c_stm32_data *data = DEV_DATA(dev); I2C_TypeDef *i2c = cfg->i2c; switch (I2C_SPEED_GET(data->dev_config)) { case I2C_SPEED_STANDARD: LL_I2C_ConfigSpeed(i2c, clock, 100000, LL_I2C_DUTYCYCLE_2); break; case I2C_SPEED_FAST: LL_I2C_ConfigSpeed(i2c, clock, 400000, LL_I2C_DUTYCYCLE_2); break; default: return -EINVAL; } return 0; }