/* bmc150_magn.c - Driver for Bosch BMC150 magnetometer sensor */ /* * Copyright (c) 2016 Intel Corporation * * This code is based on bmm050.c from: * https://github.com/BoschSensortec/BMM050_driver * * SPDX-License-Identifier: Apache-2.0 */ #define DT_DRV_COMPAT bosch_bmc150_magn #include #include #include #include #include #include #include #include #include "bmc150_magn.h" LOG_MODULE_REGISTER(BMC150_MAGN, CONFIG_SENSOR_LOG_LEVEL); static const struct { int freq; uint8_t reg_val; } bmc150_magn_samp_freq_table[] = { {2, 0x01}, {6, 0x02}, {8, 0x03}, {10, 0x00}, {15, 0x04}, {20, 0x05}, {25, 0x06}, {30, 0x07} }; static const struct bmc150_magn_preset { uint8_t rep_xy; uint8_t rep_z; uint8_t odr; } bmc150_magn_presets_table[] = { [LOW_POWER_PRESET] = {3, 3, 10}, [REGULAR_PRESET] = {9, 15, 10}, [ENHANCED_REGULAR_PRESET] = {15, 27, 10}, [HIGH_ACCURACY_PRESET] = {47, 83, 20} }; static int bmc150_magn_set_power_mode(const struct device *dev, enum bmc150_magn_power_modes mode, int state) { const struct bmc150_magn_config *config = dev->config; switch (mode) { case BMC150_MAGN_POWER_MODE_SUSPEND: if (i2c_reg_update_byte_dt(&config->i2c, BMC150_MAGN_REG_POWER, BMC150_MAGN_MASK_POWER_CTL, !state) < 0) { return -EIO; } k_busy_wait(USEC_PER_MSEC * 5U); return 0; case BMC150_MAGN_POWER_MODE_SLEEP: return i2c_reg_update_byte_dt(&config->i2c, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_OPMODE, BMC150_MAGN_MODE_SLEEP << BMC150_MAGN_SHIFT_OPMODE); break; case BMC150_MAGN_POWER_MODE_NORMAL: return i2c_reg_update_byte_dt(&config->i2c, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_OPMODE, BMC150_MAGN_MODE_NORMAL << BMC150_MAGN_SHIFT_OPMODE); break; } return -ENOTSUP; } static int bmc150_magn_set_odr(const struct device *dev, uint8_t val) { const struct bmc150_magn_config *config = dev->config; uint8_t i; for (i = 0U; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); ++i) { if (val <= bmc150_magn_samp_freq_table[i].freq) { return i2c_reg_update_byte_dt(&config->i2c, BMC150_MAGN_REG_OPMODE_ODR, BMC150_MAGN_MASK_ODR, bmc150_magn_samp_freq_table[i].reg_val << BMC150_MAGN_SHIFT_ODR); } } return -ENOTSUP; } #if defined(BMC150_MAGN_SET_ATTR) static int bmc150_magn_read_rep_xy(const struct device *dev) { struct bmc150_magn_data *data = dev->data; const struct bmc150_magn_config *config = dev->config; uint8_t reg_val; if (i2c_reg_read_byte_dt(&config->i2c, BMC150_MAGN_REG_REP_XY, ®_val) < 0) { return -EIO; } data->rep_xy = BMC150_MAGN_REGVAL_TO_REPXY((int)(reg_val)); return 0; } static int bmc150_magn_read_rep_z(const struct device *dev) { struct bmc150_magn_data *data = dev->data; const struct bmc150_magn_config *config = dev->config; uint8_t reg_val; if (i2c_reg_read_byte_dt(&config->i2c, BMC150_MAGN_REG_REP_Z, ®_val) < 0) { return -EIO; } data->rep_z = BMC150_MAGN_REGVAL_TO_REPZ((int)(reg_val)); return 0; } static int bmc150_magn_compute_max_odr(const struct device *dev, int rep_xy, int rep_z, int *max_odr) { struct bmc150_magn_data *data = dev->data; if (rep_xy == 0) { if (data->rep_xy <= 0) { if (bmc150_magn_read_rep_xy(dev) < 0) { return -EIO; } } rep_xy = data->rep_xy; } if (rep_z == 0) { if (data->rep_z <= 0) { if (bmc150_magn_read_rep_z(dev) < 0) { return -EIO; } } rep_z = data->rep_z; } *max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980); return 0; } #endif #if defined(BMC150_MAGN_SET_ATTR_REP) static int bmc150_magn_read_odr(const struct device *dev) { struct bmc150_magn_data *data = dev->data; const struct bmc150_magn_config *config = dev->config; uint8_t i, odr_val, reg_val; if (i2c_reg_read_byte_dt(&config->i2c, BMC150_MAGN_REG_OPMODE_ODR, ®_val) < 0) { return -EIO; } odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR; for (i = 0U; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); ++i) { if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) { data->odr = bmc150_magn_samp_freq_table[i].freq; return 0; } } return -ENOTSUP; } #endif #if defined(CONFIG_BMC150_MAGN_SAMPLING_REP_XY) static int bmc150_magn_write_rep_xy(const struct device *dev, int val) { struct bmc150_magn_data *data = dev->data; const struct bmc150_magn_config *config = dev->config; if (i2c_reg_update_byte_dt(&config->i2c, BMC150_MAGN_REG_REP_XY, BMC150_MAGN_REG_REP_DATAMASK, BMC150_MAGN_REPXY_TO_REGVAL(val)) < 0) { return -EIO; } data->rep_xy = val; return 0; } #endif #if defined(CONFIG_BMC150_MAGN_SAMPLING_REP_Z) static int bmc150_magn_write_rep_z(const struct device *dev, int val) { struct bmc150_magn_data *data = dev->data; const struct bmc150_magn_config *config = dev->config; if (i2c_reg_update_byte_dt(&config->i2c, BMC150_MAGN_REG_REP_Z, BMC150_MAGN_REG_REP_DATAMASK, BMC150_MAGN_REPZ_TO_REGVAL(val)) < 0) { return -EIO; } data->rep_z = val; return 0; } #endif /* * Datasheet part 4.3.4, provided by Bosch here: * https://github.com/BoschSensortec/BMM050_driver */ static int32_t bmc150_magn_compensate_xy(struct bmc150_magn_trim_regs *tregs, int16_t xy, uint16_t rhall, bool is_x) { int8_t txy1, txy2; int16_t val; if (xy == BMC150_MAGN_XY_OVERFLOW_VAL) { return INT32_MIN; } if (!rhall) { rhall = tregs->xyz1; } if (is_x) { txy1 = tregs->x1; txy2 = tregs->x2; } else { txy1 = tregs->y1; txy2 = tregs->y2; } val = ((int16_t)(((uint16_t)((((int32_t)tregs->xyz1) << 14) / rhall)) - ((uint16_t)0x4000))); val = ((int16_t)((((int32_t)xy) * ((((((((int32_t)tregs->xy2) * ((((int32_t)val) * ((int32_t)val)) >> 7)) + (((int32_t)val) * ((int32_t)(((int16_t)tregs->xy1) << 7)))) >> 9) + ((int32_t)0x100000)) * ((int32_t)(((int16_t)txy2) + ((int16_t)0xA0)))) >> 12)) >> 13)) + (((int16_t)txy1) << 3); return (int32_t)val; } static int32_t bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, int16_t z, uint16_t rhall) { int32_t val; if (z == BMC150_MAGN_Z_OVERFLOW_VAL) { return INT32_MIN; } val = (((((int32_t)(z - tregs->z4)) << 15) - ((((int32_t)tregs->z3) * ((int32_t)(((int16_t)rhall) - ((int16_t)tregs->xyz1)))) >> 2)) / (tregs->z2 + ((int16_t)(((((int32_t)tregs->z1) * ((((int16_t)rhall) << 1))) + (1 << 15)) >> 16)))); return val; } static int bmc150_magn_sample_fetch(const struct device *dev, enum sensor_channel chan) { struct bmc150_magn_data *data = dev->data; const struct bmc150_magn_config *config = dev->config; uint16_t values[BMC150_MAGN_AXIS_XYZR_MAX]; int16_t raw_x, raw_y, raw_z; uint16_t rhall; __ASSERT_NO_MSG(chan == SENSOR_CHAN_ALL || chan == SENSOR_CHAN_MAGN_XYZ); if (i2c_burst_read_dt(&config->i2c, BMC150_MAGN_REG_X_L, (uint8_t *)values, sizeof(values)) < 0) { LOG_ERR("failed to read sample"); return -EIO; } raw_x = (int16_t)sys_le16_to_cpu(values[BMC150_MAGN_AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L; raw_y = (int16_t)sys_le16_to_cpu(values[BMC150_MAGN_AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L; raw_z = (int16_t)sys_le16_to_cpu(values[BMC150_MAGN_AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L; rhall = sys_le16_to_cpu(values[BMC150_MAGN_RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L; data->sample_x = bmc150_magn_compensate_xy(&data->tregs, raw_x, rhall, true); data->sample_y = bmc150_magn_compensate_xy(&data->tregs, raw_y, rhall, false); data->sample_z = bmc150_magn_compensate_z(&data->tregs, raw_z, rhall); return 0; } static void bmc150_magn_convert(struct sensor_value *val, int raw_val) { /* val = raw_val / 1600 */ val->val1 = raw_val / 1600; val->val2 = ((int32_t)raw_val * (1000000 / 1600)) % 1000000; } static int bmc150_magn_channel_get(const struct device *dev, enum sensor_channel chan, struct sensor_value *val) { struct bmc150_magn_data *data = dev->data; switch (chan) { case SENSOR_CHAN_MAGN_X: bmc150_magn_convert(val, data->sample_x); break; case SENSOR_CHAN_MAGN_Y: bmc150_magn_convert(val, data->sample_y); break; case SENSOR_CHAN_MAGN_Z: bmc150_magn_convert(val, data->sample_z); break; case SENSOR_CHAN_MAGN_XYZ: bmc150_magn_convert(val, data->sample_x); bmc150_magn_convert(val + 1, data->sample_y); bmc150_magn_convert(val + 2, data->sample_z); break; default: return -ENOTSUP; } return 0; } #if defined(BMC150_MAGN_SET_ATTR_REP) static inline int bmc150_magn_attr_set_rep(const struct device *dev, enum sensor_channel chan, const struct sensor_value *val) { struct bmc150_magn_data *data = dev->data; int max_odr; switch (chan) { #if defined(CONFIG_BMC150_MAGN_SAMPLING_REP_XY) case SENSOR_CHAN_MAGN_X: case SENSOR_CHAN_MAGN_Y: if (val->val1 < 1 || val->val1 > 511) { return -EINVAL; } if (bmc150_magn_compute_max_odr(dev, val->val1, 0, &max_odr) < 0) { return -EIO; } if (data->odr <= 0) { if (bmc150_magn_read_odr(dev) < 0) { return -EIO; } } if (data->odr > max_odr) { return -EINVAL; } if (bmc150_magn_write_rep_xy(dev, val->val1) < 0) { return -EIO; } break; #endif #if defined(CONFIG_BMC150_MAGN_SAMPLING_REP_Z) case SENSOR_CHAN_MAGN_Z: if (val->val1 < 1 || val->val1 > 256) { return -EINVAL; } if (bmc150_magn_compute_max_odr(dev, 0, val->val1, &max_odr) < 0) { return -EIO; } if (data->odr <= 0) { if (bmc150_magn_read_odr(dev) < 0) { return -EIO; } } if (data->odr > max_odr) { return -EINVAL; } if (bmc150_magn_write_rep_z(dev, val->val1) < 0) { return -EIO; } break; #endif default: return -EINVAL; } return 0; } #endif #if defined(BMC150_MAGN_SET_ATTR) static int bmc150_magn_attr_set(const struct device *dev, enum sensor_channel chan, enum sensor_attribute attr, const struct sensor_value *val) { struct bmc150_magn_data *data = dev->data; switch (attr) { #if defined(CONFIG_BMC150_MAGN_SAMPLING_RATE_RUNTIME) case SENSOR_ATTR_SAMPLING_FREQUENCY: if (data->max_odr <= 0) { if (bmc150_magn_compute_max_odr(dev, 0, 0, &data->max_odr) < 0) { return -EIO; } } if (data->max_odr < val->val1) { LOG_ERR("not supported with current oversampling"); return -ENOTSUP; } if (bmc150_magn_set_odr(dev, (uint8_t)(val->val1)) < 0) { return -EIO; } break; #endif #if defined(BMC150_MAGN_SET_ATTR_REP) case SENSOR_ATTR_OVERSAMPLING: bmc150_magn_attr_set_rep(dev, chan, val); break; #endif default: return -EINVAL; } return 0; } #endif static DEVICE_API(sensor, bmc150_magn_api_funcs) = { #if defined(BMC150_MAGN_SET_ATTR) .attr_set = bmc150_magn_attr_set, #endif .sample_fetch = bmc150_magn_sample_fetch, .channel_get = bmc150_magn_channel_get, #if defined(CONFIG_BMC150_MAGN_TRIGGER_DRDY) .trigger_set = bmc150_magn_trigger_set, #endif }; static int bmc150_magn_init_chip(const struct device *dev) { struct bmc150_magn_data *data = dev->data; const struct bmc150_magn_config *config = dev->config; uint8_t chip_id; struct bmc150_magn_preset preset; bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_NORMAL, 0); bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_SUSPEND, 1); if (bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_SUSPEND, 0) < 0) { LOG_ERR("failed to bring up device from suspend mode"); return -EIO; } if (i2c_reg_read_byte_dt(&config->i2c, BMC150_MAGN_REG_CHIP_ID, &chip_id) < 0) { LOG_ERR("failed reading chip id"); goto err_poweroff; } if (chip_id != BMC150_MAGN_CHIP_ID_VAL) { LOG_ERR("invalid chip id 0x%x", chip_id); goto err_poweroff; } LOG_ERR("chip id 0x%x", chip_id); preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET]; if (bmc150_magn_set_odr(dev, preset.odr) < 0) { LOG_ERR("failed to set ODR to %d", preset.odr); goto err_poweroff; } if (i2c_reg_write_byte_dt(&config->i2c, BMC150_MAGN_REG_REP_XY, BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy)) < 0) { LOG_ERR("failed to set REP XY to %d", preset.rep_xy); goto err_poweroff; } if (i2c_reg_write_byte_dt(&config->i2c, BMC150_MAGN_REG_REP_Z, BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z)) < 0) { LOG_ERR("failed to set REP Z to %d", preset.rep_z); goto err_poweroff; } if (bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_NORMAL, 1) < 0) { LOG_ERR("failed to power on device"); goto err_poweroff; } if (i2c_burst_read_dt(&config->i2c, BMC150_MAGN_REG_TRIM_START, (uint8_t *)&data->tregs, sizeof(data->tregs)) < 0) { LOG_ERR("failed to read trim regs"); goto err_poweroff; } data->rep_xy = 0; data->rep_z = 0; data->odr = 0; data->max_odr = 0; data->sample_x = 0; data->sample_y = 0; data->sample_z = 0; data->tregs.xyz1 = sys_le16_to_cpu(data->tregs.xyz1); data->tregs.z1 = sys_le16_to_cpu(data->tregs.z1); data->tregs.z2 = sys_le16_to_cpu(data->tregs.z2); data->tregs.z3 = sys_le16_to_cpu(data->tregs.z3); data->tregs.z4 = sys_le16_to_cpu(data->tregs.z4); return 0; err_poweroff: bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_NORMAL, 0); bmc150_magn_set_power_mode(dev, BMC150_MAGN_POWER_MODE_SUSPEND, 1); return -EIO; } static int bmc150_magn_init(const struct device *dev) { const struct bmc150_magn_config * const config = dev->config; if (!device_is_ready(config->i2c.bus)) { LOG_ERR("I2C bus device not ready"); return -ENODEV; } if (bmc150_magn_init_chip(dev) < 0) { LOG_ERR("failed to initialize chip"); return -EIO; } #if defined(CONFIG_BMC150_MAGN_TRIGGER_DRDY) if (config->int_gpio.port) { if (bmc150_magn_init_interrupt(dev) < 0) { LOG_ERR("failed to initialize interrupts"); return -EINVAL; } } #endif return 0; } #define BMC150_MAGN_DEFINE(inst) \ static struct bmc150_magn_data bmc150_magn_data_##inst; \ \ static const struct bmc150_magn_config bmc150_magn_config_##inst = { \ .i2c = I2C_DT_SPEC_INST_GET(inst), \ IF_ENABLED(CONFIG_BMC150_MAGN_TRIGGER_DRDY, \ (.int_gpio = GPIO_DT_SPEC_INST_GET_OR(inst, drdy_gpios, { 0 }),)) \ }; \ \ SENSOR_DEVICE_DT_INST_DEFINE(inst, bmc150_magn_init, NULL, \ &bmc150_magn_data_##inst, &bmc150_magn_config_##inst, POST_KERNEL, \ CONFIG_SENSOR_INIT_PRIORITY, &bmc150_magn_api_funcs); \ DT_INST_FOREACH_STATUS_OKAY(BMC150_MAGN_DEFINE)